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Abstract: A general and efficient palladium-cata-
lyzed intermolecular direct C-2 alkenylation of in-
doles using oxygen as the oxidant has been devel-
oped. The reaction is of complete regio- and stereo-
selectivity. All products are E-isomers at the C-2-
position with no Z-isomers and 3-substituted prod-
ucts were detected.

Keywords: C-2 alkenylation; C—H activation; in-
doles; oxygen oxidation; palladium-catalyzed reac-
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The indole ring is a widespread structural unit in
pharmaceuticals, agrochemicals, and functional mate-
rials.l'! The development of efficient strategies for the
functionalization of the indole nucleus has been
a long-standing topic in organic synthesis.”) Among
them the metal-catalyzed alkenylation reaction is
a very appealing approach for the direct functionali-
zation of indoles. Because of the higher nucleophilic
character of the C-3 position compared with the C-2
position in indole, the C-3-position of indole is the in-
herently more reactive site.** Therefore, the C-2 al-
kenylation of C-2/C-3-unsubstituted indoles is a chal-
lenge. To the best of our knowledge, only a few proto-
cols have been reported so far for the direct C—H al-
kenylation with alkenes at the C-2 position of indoles,
despite the potential utility of such products.”! In
2005, Gaunt et al. realized a palladium(II)-catalyzed
direct and solvent-controlled regioselective C-2 alke-
nylation of indoles using tert-butyl benzoyl peroxide
(-BuOOBz, 0.9 equiv.) as the oxidant.[! However, the
yields were low to moderate (<57%). In the same
year, Ricci et al. described a palladium(II)-catalyzed
regiocontrolled C-2 alkenylation of indole directed by
a non-removable N-2-pyridylmethyl group using a stoi-
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chiometric amount of Cu(OAc), as the oxidant.” In
2008, Miura, Satoh et al. reported the palladium(II)-
catalyzed C-2 vinylation of indole-3-carboxylic acids
using Cu(OAc),H,O (2 equiv.) as the oxidant, in
which the carboxyl group blocks the C-3 position and
acts as a removable directing group.®! In 2009,
Arrayas, Carretero et al. disclosed an elegant palla-
dium(II)-catalyzed regioselective direct C-2 alkenyla-
tion of indoles assisted by the removable N-(2-pyri-
dyl)sulfonyl directing group using Cu(OAc),H,O (1-
2 equiv.) as the oxidant; nevertheless the excess of al-
kenes (2-5equiv.) was employed.”” More recently,
Prabhu etal. developed a ruthenium(Il)-catalyzed
C-2  alkenylation of N-benzoylindoles using
Cu(OAc),H,O (1equiv.) as oxidant and AgSbF,
(20 mol%) as an activator.'”! In spite of these impor-
tant advances, some challenging issues still remain:
for example, (i) a large excess of oxidants was used to
regenerate the catalyst;®* (ii) stoichiometric amounts
of the reduced external oxidant [such as Cu(OAc),,”
-BuOOBZ°l] were produced as waste; and (iii) sub-
strate scope was limited and some cases poor yields
were obtained.!! Herein, we describe a general, effi-
cient and structurally versatile palladium(II)-cata-
lyzed intermolecular C-2 alkenylation of indoles em-
ploying the easily installed and removed N-(2-pyri-
dyl)sulfonyl directing group, characterized by oxygen
as oxidizing agent, with complete regio- and stereose-
lectivity. Compared with Cu(OAc), and -BuOOBz,
oxygen is an ideal oxidant and offers attractive indus-
trial prospects in terms of green and sustainable
chemistry while no reduced waste is produced.!""

An effective strategy for regioselective C-2 alkeny-
lation of indoles is to utilize the coordination of a di-
recting group in the indole substrate to the metal
center of a catalyst, and the approach probably in-
volves a five- or six-membered metal-cyclic intermedi-
ate to activate the C-2 position of indole.**7*10)
Therefore, our study commenced by examining the
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Table 1. Optimization of reaction conditions.

(0] catalyst (10 mol%) PEt
@ A O, (1atm) N\ 7/
N OEt > o
R TFA, solvent N\
1 2a R 3
Entry R Catalyst Solvent Time [h] Conversion [% ]
1 Boc- (1a) Pd(OAc), DMA 24 -
2 Ts- (1b) Pd(OAc), DMA 24 <10
3 (2-pyridyl)SO,- (1¢) Pd(OAc), DMA 24 35 (30)
4 Ac- (1d) Pd(OAc), DMA 24 <10
5 Bz- (le) Pd(OAc), DMA 24 <10
6 (2-pyridyl)SO,- (1¢) PdCl, DMA 24 <10
7 (2-pyridyl)SO,- (1¢) Pd(TFA), DMA 24 80 (55)
8 (2-pyridyl)SO,- (1¢) Pd(OH), DMA 24 -
9 (2-pyridy)SO,- (1¢) Pd(PPh;),Cl, DMA 24 -
10 (2-pyridyl)SO,- (1¢) - DMA 24 -
11 (2-pyridyl)SO,- (1¢) Pd(TFA), DMF 24 62 (50)
12 (2-pyridyl)SO,- (1¢) Pd(TFA), Anisole 24 92 (65)
13 (2-pyridyl)SO,- (1¢) Pd(TFA), AcOH 24 100 (75)
14 (2-pyridy)SO,- (1¢) Pd(TFA), solvents(®! 24 <20
15 (2-pyridyl)SO,- (1c) Pd(TFA), AcOH 4 100 (73)
164! (2-pyridyl)SO,- (1¢) Pd(TFA), AcOH 4 100 (93)

2] Reaction conditions: 1 (1 mmol), 2a (1.5 mmol), catalyst (0.1 mmol), O, (1 atm) and TFA (8 mmol) in solvent (5 mL) at

60°C.
] The results in parentheses are isolated yields.

[l Solvents: 1,4-dioxane, toluene, DMSO, MeOH, CH,CN, THF, pyridine, CH;NO.,.

4" At 80°C.
] TFA (2 mmol) was used.

indole N-protecting groups which have potential di-
recting feature for the C-2 functionalization of indole
instead of the more nucleophilic C-3 position. A set
of protecting groups was tested for the reaction of
indole derivatives (1) and ethyl acrylate (2a) with
10 mol% Pd(OAc), as the catalyst, oxygen as the oxi-
dant and trifluoroacetic acid (TFA) as additive in
N,N-dimethylacetamide (DMA) (Table 1). The reac-
tion was found to proceed in low conversion (<10%)
when the N-protecting group was Boc, Ts, Ac or Bz
(entries 1, 2, 4, 5). The N-(2-pyridyl)sulfonyl group,
which can be easily removed by mild reduction condi-
tions,™ turned out to be the best protecting group to
give 35% conversion (entry 3). To our delight, N-(2-
pyridyl)sulfonylindole (1¢) provided complete C-2 re-
gioselectivity and E stereoselectivity. Then the palla-
dium source was investigated (entries 6-9), and the
conversion improved remarkably to 80% when
Pd(TFA), was used. In the absence of a palladium
catalyst, the reaction would not occur (entry 10).
After careful solvent screening, acetic acid (AcOH)
proved to be the best solvent to give complete conver-
sion and good yield (entries 11-14). Increasing the
temperature could greatly improve the reaction rate;
the reaction was done within 4 h at 80°C with a similar
yield, and a higher temperature led to a significant
drop in the yield due to decomposition of the starting
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material and product (entry 15). The amount of TFA
dramatically affected the yield, 2 equiv. of TFA were
the optimal amount to afford the desired product in
93% yield (entryl6, for details see the Supporting In-
formation). Accordingly, the reaction conditions were
optimized as follows: Pd(TFA), (10% mol), TFA
(2 equiv.) under oxygen atmosphere in AcOH at
80°C.

After identifying the optimized conditions, we
moved on to explore the scope of the C-2 alkenyla-
tion reaction. First, we studied the effect of electronic
and structural variations on the alkene (Table 2). The
present reaction tolerated a variety of alkenes. Mono-
substituted alkenes, not only electrophilic alkenes but
also the more challenging non-activated styrene, re-
acted with 1c¢ to give the corresponding C-2 alkenyla-
tion products with complete regio- and stereoselectiv-
ity in good to excellent yields (65-98%) (entries 1-7).
Indole phosphonate 3ch could also be generated from
vinyl phosphonate 2h in excellent yield (entry 8).
Pleasingly, 1,1-disubstituted alkenes successfully cou-
pled with indole at the C-2 position to give the corre-
sponding double-bond isomerized products in high
yields (entries 9, 10). Particularly noticeable is the
performance of 1,2-disubstituted alkenes in the reac-
tion in view of the small number of precedents and
lower reactivity of this kind of olefin in oxidative al-
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Table 2. Alkenylation of 1c with various alkenes.

R3
A Pd(TFA), (10 mol%) R2
R? /
©E,> Lt RN 0, (1atm) . ; 1
\ R
— = RS )
ofﬁ { TFA (2 equiv.), 80 °C, AcOH éozpy
o Y
1c 2 3
Entry Alkene Product Time [h] Yield [%]®
OEt
o)
/
1 \)I\OEt N\ o 4 93
2a |
SO,Py  3ca
O-n-Bu
o]
/
2 \)j\o_,,_su N\ o 4 98
2b |
SO.Py  3cb
o)
\)J\/ N / 0
3 A N 24 83
2 éOQPy 3cc
NEt,
o)
/
4 \)J\Naz N\ o 6 95
2d |
SOQPy 3cd
CN
N @_f
5 ) N 24 65
¢ éozpy 3ce
o) Q o
A\ N
6 XN N O\"/ y N7 o \ﬂ/ 8 97
o]
2f o sopy  3cf
N aV,
7 18 90
2g '}‘
SO,Py 3cg
cI)Et
OEt
|_OEt R
8 ) Saevi NI 12 9%
2h N
SO,Py  3ch
o)
o)
A\
gldl Yj\ome MON@ 25 92
o o)
A\
10[c] Yko/\(\a; MOM 4 97
2 dopy 3
<0
11 N 24 6314
|
% SOPY  3ck
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Table 2. (Continued)

Entry Alkene Product Time [h] Yield [%]®
OMe MeO, o
o] N
\—H
12 | o ] N 6 97
PyO,S 0 “OMe
OMe 3cl
E) 20 \_{ k=0
13 Yo N % 24 75
2m SOPy  3cm

&) Reaction conditions: 1¢ (1 mmol), 2 (1.5 mmol), Pd(TFA), (0.1 mmol), O, (1 atm) and TFA (2 mmol) in AcOH (5 mL) at

80°C.
) Isolated yields.

[l Double bond isomer of the alkenylation product.

4l After hydrogenation.

Figure 1. X-ray crystal structures of compounds 3cf, 3cl and 3cm.
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Table 3. The C-2 H-alkenylation for structural variation of the indole with ethyl acrylate and styrol.[?
4
HRY) PA(TFA), (10 mol%) H(RY)
/ O, (1 atm) . » _ij[\ng
X TFA (2 equiv.), 80 °C, AcOH X N
1 SOZPy 3 SOsPy
Entry Alkene Product Time [h] Yield [%]™
Me OEt
\_ 7
Me 0 4 96
N
| 3fa
N SO.Py
S, C O
1 S0P /
Y O > 15 73
\
SOQPy
OEt
Me
/
> 0 12 95
N 3ga
SO,P
) 2Py
M
e e O
15 91
N 3gf
SOZPy
OEt
MeO
/
> 0 8 87
MeO A ’}l 3ha
SOzpy
3 N
! MeO
1h  SO.Py e N / O
8 93
N
I 3ht
SOgPy
OEt
Br
/
N o 24 40 (96% )
Br N .
\ Sy ™
4 N 2Py
T O
1i  SO.Py A / “
24 56 (93%)"
N "
| 3if
SOQPy
OEt
Cl
/
N\ o 18 93
3ja
N\ I
SO,P!
5 \©|\/> 2
I Cl
2 o O
N 24 78
| 3jf
SOgPy
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Table 3. (Continued)

Entry Alkene Product

Time [h] Yield [%]™

OEt

/

/©\/N>_/_< ° 24 87
F 3ka

6 F N

\/
E N

|
SOzPy

3kf

[} Reaction conditions: 1¢ (1 mmol), 2 (1.5 mmol), Pd(TFA), (0.1 mmol), O, (1 atm) and TFA (2 mmol) in AcOH (5 mL) at

80°C.
] Isolated yields.
[l Yield in parentheses are based on recovered indole 1i.

kenylation (Fujiwara—Moritani) reactions.”? Under
these reaction conditions, cyclohexene underwent
a smooth reaction with 1¢ to afford the corresponding
trisubstituted alkene products 3ck (63% yield, after
hydrogenation) (entry 11). It is interesting that di-
methyl maleate which has the Z-configration reacted
with 1c¢ to afford a single E- configration diastereomer
3cl (93% yield) (entry12). Butadiene sulfone, as
a solid source of butadiene, was also compatible with
the reaction to provide the double-bond isomerized
product 3em in 75% yield (entry 13). The molecular
structures of compound 3cf, 3¢l and 3cm were con-
firmed by  X-ray  crystallographic  analysis
(Figure 1).1)

Next, we explored the reaction of various indole
derivatives with ethyl acrylate and styrol (Table 3).

Indoles possessing either electron-withdrawing
groups or electron-donating groups smoothly reacted
and provided C-2 alkenylation products 3 in good to
excellent yields (73-96%), albeit 5-bromoindole (1i)
proved to be less reactive than other substituted in-
doles (entry 4). Many functional substituents such as
F, Cl, Br and MeO were compatible under these con-
ditions, which could be further transformed into other
functionalities.

As shown in Scheme 1, blocking the C-2 position of
indole resulted in the formation of the C-3 alkenyla-
tion product. Compared with C-2 alkenylation of N-
(2-pyridyl)sulfonyl-3-methylindole (1f), C-3 alkenyla-
tion of N-(2-pyridyl)sulfonyl-2-methylindole (11) was
much slower. This case indicated that the N-(2-pyri-

dyl)sulfonyl group was not only a readily removable
directing group but also an activating group in the C-
2 alkenylation reaction of indole.

Removal of the 2-pyridysulfonyl group from the al-
kenylation products was easily achieved by reduction
with zinc in NH,CI (aq)/THF (1:1) at room tempera-
ture, with the stereochemistry of the olefin moiety un-
touched. For instance, the products 3ca and 3hf were
converted to their free indole derivatives 4ca and 4hf
under the conditions in 92% and 85% yields, respec-
tively (Scheme 2).

In summary, we have developed a general, simple
and efficient method for the intermolecular direct C-2
alkenylation of indoles using palladium(II) as catalyst
and oxygen as the oxidant. The reaction not only can
proceed well without Cu(II), but shows complete
regio- and stereoselectivity. All products are E-iso-
mers at the C-2 position, and no Z-isomers and 3-sub-
stituted products can be detected on analyzing the re-
action mixtures. The method should have many appli-
cations in organic and medical chemistry. Detailed

R! R2 Zn R1 R2
W NH,CI W
N N

| THF, r.t. )
SO,Py i

3caR'=H, R? = CO,Et 4caR'=H, R? = CO,Et 92%
3hf R'=0OMe, R2 = Ph 4hf R'=0OMe, R2 = Ph 85%

Scheme 2. Deprotection of 2-alkenyl-N-(2-pyridyl)sulfonyl-
indoles.

o Pd(TFA), (10 mol%) o
N Me 0, (1 atm) X “OEt
>—Me |
N \)koa |
do.p TFA (2 equiv.), 80 °C, AcOH N" > Me
LR 2a 18 h, 84% Sopy @

Scheme 1. The C-3 alkenylation of 2-substituted indoles.
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mechanistic investigations and the development of
a more efficient catalytic system are currently under-
way.

Experimental Section

General Information

All commercial reagents and solvents were used as received
without further purification. Flash chromatographies were
carried out on silica gel 200-300 mesh. All NMR spectra
were obtained at ambient temperature using a Varian
INOVA-400 MHz spectrometer. The following abbreviations
are used to show the multiplicities: s=singlet, d=doublet,
t=triplet, q=quartet, m =multiplet. All new products were
further characterized on Bruker EQUINOXSS instrument
and AXIMA-CFR™plusMALDI-TOF mass spectrometers.
In addition, X-ray crystal structure analyses were measured
on a Bruker Smart APEXIICCD instrument using Mo-K,
radiation.

General Procedure for Palladium-Catalyzed Inter-
molecular C-2 Alkenylation of Indoles Using Oxygen
as the Oxidant

A sealed tube containing the N-(2-pyridyl)sulfonylindole de-
rivative 1e¢ (0.39 mmol), Pd(TFA), (10 mol% ), was evacuat-
ed and filled with dioxygen gas using an oxygen containing
balloon. Then, AcOH (2.0 mL), alkene 2 (0.58 mmol) and
trifluoroacetic acid (TFA) (0.78 mmol) were sequentially
added to the system via syringe under an oxygen atmos-
phere. The mixture was heated to 80°C for 8-24 h (as indi-
cated in each case). Then the reaction mixture was cooled
to room temperature, diluted with EtOAc (30 mL) and
washed with saturated aqueous NaHCO; (3x5mL). The
combined organic phase was dried (Na,SO,) and concentrat-
ed under reduced pressure. Purification by flash chromatog-
raphy afforded the C.2 alkenylated indole derivative 3.
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