

Tetrahedron Letters 40 (1999) 8277-8280

TETRAHEDRON LETTERS

Sequential one-pot Rh(I)/Pd(0) catalysed cycloaddition-cyclisation-anion capture. Assembly of polyfunctional compounds

Ronald Grigg,* Visuvanathar Sridharan and Jin Zhang

Molecular Innovation, Diversity and Automated Synthesis (MIDAS) Centre, School of Chemistry, Leeds University, Leeds LS2 9JT, UK

Received 12 August 1999; accepted 10 September 1999

Abstract

Wilkinson's catalyst and Pd(0) catalysts work harmoniously in sequence to create products containing three new rings, five or six bonds and one tetrasubstituted centre in ter- and tetramolecular processes. © 1999 Published by Elsevier Science Ltd. All rights reserved.

Keywords: Pd catalysis; Rh catalysis; cascade reaction; cycloaddition; cyclisation.

We have developed a wide range of powerful and selective Pd catalysed molecular queuing processes¹ whose potential would be considerably enhanced by interfacing with synthetically valuable catalytic processes mediated by other transition metals. Preliminary accounts of our electrochemically driven (Pd/Cr) Nozaki–Hiyama–Kishi reaction² and Heck-metathesis (Pd/Ru) reactions³ have appeared and we now report versatile Rh/Pd processes.

We have previously developed a [2+2+2]-alkyne cycloaddition process catalysed by Wilkinson's catalyst $[(PPh_3)_3RhCl]$.⁴ To interface this process with our cyclisation-anion capture methodology (Scheme 1) requires identification of a common solvent for the Rh and Pd processes. Toluene has proved suitable for this combination of catalysts.

Ter- and tetramolecular processes have been evaluated using the common substrates 1, 2 and 5 with a range of organotin, boron and hydride anion capture agents Y (Schemes 2 and 3).

A series of termolecular processes leading to 3 and 6 were evaluated first and the results are collected in Table 1.

A second series of tetramolecular processes were carried out on 1 and 5 in combination with 2, CO (1 atm) and various anion capture agents Y. These are summarised in Table 2.

^{*} Corresponding author. E-mail: r.grigg@chem.leeds.ac.uk

^{0040-4039/99/\$ -} see front matter © 1999 Published by Elsevier Science Ltd. All rights reserved. PII: S0040-4039(99)01742-6

Scheme 1.

Scheme 2.

Two further reactions $1 \rightarrow 8$ (60%) $\rightarrow 9$ (70%) and $5 \rightarrow 10$ (61%) $\rightarrow 11$ (62%) each involving hydride capture have been performed in two steps and await further development into one-pot processes (Schemes 4 and 5).

It is clear that the Rh/Pd combination discussed herein offers a very effective enhancement of molecular complexity and that with appropriate variations of aryl iodide, 1,6-diyne and Y considerable molecular diversity can be created.

Acknowledgements

We thank Leeds University and the ORS for support.

Aryl	Y	Additives	Temp	Product	Yield
lodide			(°C) ⁶		(%) ^c
1	Cs SnBu,	-	100	CO,Me	41
1	a. NaBPh4 b. PhB(OH)2	- -	Reflux Reflux		a. 54 b. 45
1	N BEt,	Na2CO3 (2eq) Et4NCl (1eq)	110		49
5	⟨_S↓_SnBu ₃	-	110	CO,Me	39
5	NaBPh4	-	Reflux		58

 Table 1

 Termolecular Rh/Pd catalysed processes of 1 and 5^a

- a. All reactions carried out in toluene initially at reflux for 4h with diyne 2 (1.5 mol eq.) and 5 mol% (PPh₃)₃RhCl. The mixture was then cooled to room temperature and Y (1 mol eq.), 10 mol% Pd(OAc)₂ and 20 mol% PPh₃, and appropriate additives added. Heating was then continued for 12-16 h.
- b. Oil bath temperature.

c. Isolated yields.

References

- 1. Grigg, R.; Sridharan, V. J. Organomet. Chem. 1999, 576, 65-87.
- 2. Grigg, R.; Putnikovic, B.; Urch, C. Tetrahedron Lett. 1997, 35, 6307-6308.
- 3. Grigg, R.; Sridharan, V.; York, M. Tetrahedron Lett. 1998, 39, 4139-4142; Evans, P.; Grigg, R.; Ramzan, M. I.; Sridharan, V.; York, M. ibid. 1999, 40, 3021-3024.
- 4. Grigg, R.; Scott, R.; Stevenson, P. J Chem. Soc., Perkin Trans. 1 1988, 1357–1364; idem., ibid. 1988, 1365–1369; Stevenson, P. J.; Neeson, S. J. Tetrahedron Lett. 1988, 29, 813–814; McDonald, F. E.; Zhu, H. Y. H.; Holmquist, C. R. J. Am. Chem. Soc. 1995, 117, 6605–6606.

Aryl	Ŷ	Additives	Temp	Product	Yield
Iodide			(°C) ^ь		(%) ^c
1	⟨_SnBu ₃	-	90	CO,Me	45
1	NaBPh4	EyNCl (leq)	100	CO,Me CO,Me	56
5	SnBu,		80	CO_Me CO_Me	58
5	NaBPh₄	EyNCl (leq)	100	CO,Me	41

 Table 2

 Tetramolecular Rh/Pd catalysed carbonylation processes of 1 and 5^a

- a. Reaction conditions and times as for *Table 1* except that CO (1atm) was introduced via a balloon when the Pd catalyst was added.
- b. Oil bath temperature.

c. Isolated yields.

Scheme 4.

Scheme 5. (a) Conditions as for Table 1. (b) HCO_2Na (1 mol equiv.) as hydride source, Et_4NCl (1 mol equiv.) and DMF as solvent (120°C, 12 h). Pd catalyst as for Table 1