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Identification of potent and selective MMP-13 inhibitors
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Abstract—A potent, selective series of MMP-13 inhibitors has been derived from a weak (3.2 lM) inhibitor that did not bear a zinc
chelator. Structure-based drug design strategies were employed to append a Zn-chelating group to one end of the molecule and func-
tionality to enhance selectivity to the other. A compound from this series demonstrated rat oral bioavailability and efficacy in a
bovine articular cartilage explant model.
� 2005 Elsevier Ltd. All rights reserved.
MMP-13 (collagenase 3), a member of the matrix
metalloproteinase family of zinc dependent enzymes,
has been identified as an important target for the treat-
ment of osteoarthritis (OA).1,2 This enzyme is known to
efficiently degrade type II collagen, the enzyme�s pre-
ferred substrate and the main structural component in
cartilage. Its expression has been shown to be upregulat-
ed in OA.3,4 In addition, small molecule inhibitors of
MMP-13 have been found to inhibit the degradation
of type II collagen in articular cartilage explants.5 The
potential for orally bioavailable MMP-13 inhibitors to
slow the progression of OA, for which there are at pres-
ent only agents that provide symptomatic relief, has led
to several clinical trials. Unfortunately, many broad
spectrum MMP inhibitors have been found to have
dose-limiting toxicity in the form of musculoskeletal side
effects including joint stiffness and inflammation.6,7

While the inhibition of specific MMPs such as MMP-
18–10 or MMP-1411,12 has been postulated to be respon-
sible for musculoskeletal syndrome (MSS) the exact
cause of this pathology is not yet clear.13,14 Therefore,
in an effort to reduce the likelihood of MSS in an effec-
tive therapeutic for OA, we sought a potent inhibitor of
MMP-13 with a high degree of selectivity over other
MMPs.
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Our design of a selective, orally bioavailable MMP-13
inhibitor began with CL-82198, a high-throughput
screening (HTS) hit that had an IC50 of 3.2 lM against
MMP-13 and was selective over MMP-1 and MMP-9.
We demonstrated earlier that a potent, selective,
hydroxamate-containing inhibitor could be realized by
using structure-based methods to hybridize the benzofu-
ran carboxamide portion of CL-82198 directly to a
hydroxamate head piece (see Scheme 1).15 We now dis-
close the design, synthesis, and biological activity of a
series of carboxylic acid inhibitors with a rigid linker
to the benzofuran carboxamide P1 0 terminus along with
additional functionalities that impart selectivity over a
broader range of MMPs.

The design of these rigid P1 0 analogs was the result of a
detailed, structure-based computational analysis,16

where the replacement of the ubiquitous hydroxamic
acid group as the chelator of the MMP-13 active site
zinc with a carboxylate group was specifically explored.
Since the carboxylate group is a less effective Zn-chela-
tor17 than the hydroxamate (note that the carboxylate
analog of WAY-170523 is not active at 10 lM18), sever-
al features of the scaffold of WAY-170523 that were be-
lieved to contribute negatively to its free energy of
binding needed to be optimized. These included entropic
penalties resulting from the conformationally mobile
–O–CH2–CH2– linker, the positioning of the amide
group, and minimal enthalpic interactions beyond
the hydroxamate moiety. This analysis led us to utilize
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Scheme 1. Evolution of potent, selective inhibitor WAY-170523 from HTS hit CL-82198.
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a scaffold exemplified by compound 1, with a carboxyl-
ate zinc chelator and a sulfonamide group to H-bond to
LEU185 and ALA186. To correctly position the benzo-
furan moiety of the P1 0 group, a biphenyl P1 0 linker was
installed to rigidify the molecule, fill the hydrophobic
S1 0 tunnel, and to p-stack with HIS222. Most impor-
tantly, it places the terminal benzofuran carboxamide
in a manner that retains the selectivity and binding fea-
tures of CL-82198. An overlay illustrating these features
is shown in Figure 1.

Following the chemistry outlined in Scheme 219 the
compounds in Table 120 were prepared, wherein the car-
boxylic acid was connected to the benzofuran via a
biphenyl sulfonamide spacer, resulting in a series of rigid
and potent inhibitors of MMP-13. These analogs were
evaluated for selectivity for MMP-13 over MMP-14
and MMP-2. As MMP-2 is highly homologous to
Figure 1. Overlay of CL-82198 and compound 1.

Scheme 2. Reagents: (i) 4 0-nitrobiphenyl-4-sulfonyl chloride, iPr2NEt, CH2C
MMP-13 in and around the S1 0 pocket, it was hoped
that compounds that demonstrated selectivity over
MMP-2 would also possess enhanced levels of selectivity
over a wide variety of other MMPs.

While the glycine-based compound 1 was reasonably
potent, a 17-fold improvement in activity was obtained
for compound 2, with the isopropyl group derived
from valine. The increased potency of compound 2 is
attributed to both the restricted conformational flexi-
bility of the amino acid portion of the molecule due
to its bulky isopropyl group, and the increased burial,
or shielding of the sulfonamide H-bond with ALA186.
The rigidity and length of the P1 0 moiety also provide
selectivity for MMP-13 over MMP-1 (IC50 > 16 lM),
MMP-9 (IC50 = 1.1 lM), and MMP-14 (IC50 = 2.2 lM)
(Table 4). As can be seen in Table 1, MMP-13 activity
is retained for both hydrophobic (compounds 2 and 4)
and hydrophilic (compounds 3, 5, and 6) a-substitu-
ents. This is not surprising given the solvent exposed
nature of this region.21 Having identified compound 2
with excellent MMP-13 potency and promising selectiv-
ity, the activity of this analog in a bovine articular car-
tilage explant model,22 and its pharmacokinetic
properties were assessed. We were gratified to find that
compound 2 demonstrated low clearance in rats (2 mL/
min/kg at 2 mg/kg iv), reasonable half-life on both iv
(3.7 h) and oral dosing (3 h at 5 mg/kg po), as well as
bioavailability of 24%. It was also a potent inhibitor
of cartilage degradation in the explant assay with an
EC50 of 4 nM.

With compound 2 as a promising lead, the role of the
benzofuran and the amide linker in providing potency
and selectivity was examined. Following the chemistry
shown in Scheme 3 the compounds in Table 2 were
l2; (ii) SnCl2, DMF; (iii) R 0COCl, iPr2NEt, CH2Cl2; (iv) TFA.



Figure 2. Overlay of protein crystal structure of compound 2-MMP-13

(green) and MMP-2 (blue).

Table 1. Structure–activity relationships of different amino acid side

chains

Compound R MMP-13a MMP-2a MMP-14a

1 H 22 47 13,900

2 Isopropyl 1.3 5.0 2,200

3 CH2CONH2 2.53 10

4 Isobutyl 2.19 8.4

5 CH2OH 4.5 27.8

6 8.1 37

a IC50 (nM).

Scheme 3. Reagents and conditions: (i) ClSO3H, CHCl3, 60 �C; (ii) SOCl2, reflux; (iii) LL-valine tert-butyl ester hydrochloride, CH2Cl2, NaHCO3;

(iv) SnCl2, DMF; (v) RCOCl, Hunigs base, CH2Cl2; (vi) TFA.
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prepared. Both the amide linker and the benzofuran
were found to be optimal. Thus, replacement of the
amide linker with a methylene (compound 7) resulted
in a 3.8-fold loss of activity. Replacing the benzofuran
with an indole resulted in a 37-fold loss of potency,
and replacement of the benzofuran with monocyclic aryl
Table 2. Structure–activity relationships of different benzofuran

mimetics

Compound R MMP-13a MMP-2a MMP-14a

2 1.3 5.0 2200

7 4.9 23.3 6600

8 35.4 19 5600

9 10.9 2.14 —

10 13.7 14 —

a IC50 (nM).
or heterocyclic moieties resulted in compounds with a
loss in potency of approximately 10-fold.

To improve the selectivity of compound 2 against
MMP-2, the exact size, shape, and chemical environ-
ment of the S1 0 pocket of MMP-2 compared with those
of MMP-13 were studied23 utilizing the protein crystal
structure of compound 2 and MMP-13 (1ZTQ) and
MMP-2 (1QIB24,25). As seen in Figure 2, the most strik-
ing difference between MMP-13 and MMP-2 is the size
and conformation of the loop that give rise to the S1 0

pocket. This difference is primarily due to the fact that
the MMP-2 S1 0 loop is two amino acids shorter in this
vicinity; it is missing residues analogous to GLY248
and SER250 in MMP-13. This causes the loop to be dis-
placed by 4 Å in the area around SER250 of MMP-13.
This constriction of the MMP-2 S1 0 loop results in the
placement of THR229 in a manner that would clash
with substituents at the benzofuran 4-position. Thus
substitution at the 4-position of the benzofuran should
be more easily accommodated by MMP-13, resulting
in selectivity over MMP-2.

Having identified an approach to attain selectivity
against MMP-2, and potentially other MMPs, the com-
pounds shown in Table 3 were prepared utilizing the
chemistry outlined in Scheme 3. As expected, substitu-
tion of the benzofuran with the 7-methoxy group did
not provide selectivity for MMP-13 and in fact resulted
in a reversal of selectivity. Substitution at the 5-position,
with a variety of electron donating and withdrawing
moieties, generally resulted in slightly increased potency,



Table 4. Selectivity profiles for compounds 2 and 21

Compound R MMP-13a MMP-1a MMP-2a MMP-3a MMP-7a MMP-9a MMP-14a

2 H 1.3 >16,000 5.0 50.5 19 1100 2,200

21 OCH(CH3)CO2H 14.9 — 1590 843 2500 5600 20,000

a IC50 (nM).

Table 3. Structure–activity relationships of different substituents on the benzofuran

Compound R MMP-13a MMP-2a Selectivity 2/13 MMP-14a

2 H 1.3 5.0 3.8 2,200

11 7-OMe 20.2 12.1 0.6 10,900

12 5-Cl 0.6 3.2 5.3 —

13 5-OMe 0.66 1.9 2.8 1.5

14 5-NO2 0.7 2 2.8 —

15 5-NH2 1.5 — — —

16 5-NHCOCH3 0.98 4 4.1 —

17 5-NHSO2CH3 0.43 3.9 9.1 —

18 5-NHSO2Ph 3.4 19 5.6 —

19 4-OMe 2.33 16 6.9 —

20 4-OBn 3.45 62 18 —

21 4-OCH(CH3)CO2H 14.9 1590 106.7 20,000

a IC50 (nM).
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but did not affect selectivity significantly, again as
expected from structural analysis of the enzymes. How-
ever, we were gratified that, as predicted, substitution at
the benzofuran 4-position resulted in substantially great-
er selectivity. The 4-methoxy compound 19 was 6.9-fold
selective over MMP-2, while the 4-benzyloxy compound
20 was 18-fold selective. Even more dramatic selectivity
for MMP-13 over MMP-2, greater than 100-fold, could
be obtained by the replacement of the 4-benzyloxy
group with –OCH(CH3)CO2H (compound 21). As
shown in Table 4, compound 21 also had increased
selectivity for MMP-13 over MMP-3 and MMP-7, and
MMP-14, as compared to 2.

Herein, we have reported the identification of a potent
and selective series of MMP-13 inhibitors based on the
integration of key components of the HTS hit CL-
82198 and further analysis and design to obtain selectiv-
ity against the highly homologous MMP-2. While others
have reported a-amino acid derived biphenyl sulfona-
mides as MMP-13 inhibitors,20–23 this series attains
excellent selectivity against MMP-2 as well as MMP-7,
MMP-9, and MMP-14. Further investigation of this ap-
proach to selectivity will be reported in subsequent
publications.
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