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Abstract: A magnetic nanoparticle (MNP)-supported di(2-pyr-
idyl)methanol palladium dichloride complex was prepared via click
chemistry. The MNP-supported catalyst was evaluated in Suzuki
coupling reaction in term of activity and recyclability in DMF. It
was found to be highly efficient for Suzuki coupling reaction using
aryl bromides as substrates and could be easily separated by an ex-
ternal magnet and reused in five consecutive runs without obvious
loss of activity.

Key words: Suzuki coupling, supported catalysis, palladium, di(2-
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The immobilization of homogeneous catalysts to facilitate
catalysts separation and recycling is of great importance
in catalyst science.1 Various supports have been explored
in the past decades, such as polymers,2 inorganic solids,3

fluorous tags,4 and ionic liquids.5 However, despite the
advantages mentioned above, substantial decrease of ac-
tivity and selectivity often appeared due to the low solu-
bility of the supported catalysts in the reaction media
which resulted in a slow diffusion of reactants and cata-
lysts.6 In the case of fluorous phase and ionic-liquid-sup-
ported catalysts, the preparation of the catalysts was
difficult and time-consuming. Nanoparticles have
emerged as attractive supports for solid-phase organic
transformations7 due to their high surface areas brought
by their nanometer scale. Consequently, the activity of the
supported catalysts was greatly improved as compared to
catalysts supported on traditional support matrix. But it
still came up with the problem of catalyst separation and
further recycling due to the colloidal property of the cata-
lyst. This could be solved by using magnetic
nanoparticles8 as catalyst supports, thus the catalyst could
be easily separated from the reaction media by the appli-
cation of an external magnetic field. During the past years,
a lot of magnetic-supported catalysts have been reported
in organic transformations such as cross-coupling reac-
tions,9 hydroformylation,10 olefin hydrogenation,11 asym-
metric hydrogenation,12 nucleophilic substitution,13 and
esterification.14

Recently, the copper-catalyzed azide–alkyne cycloaddi-
tion (CuAAC) reaction,15 which was coined as ‘click reac-
tion’, has been proved to be a powerful tool for

conjugation between appropriately functionalized part-
ners of azides and alkynes. It fulfills the advantages of
modularity, almost quantative yields, moderate reaction
conditions, ease of introduction of both the required azide
and alkyne groups, which are compatible with a broad
range of functional groups and reaction conditions. These
appealing advantages have led CuAAC to wide applica-
tions in fields such as drug design,16 polymer science,17

biochemistry,18 molecular biology and solid-phase organ-
ic transformations.19

Palladium-catalyzed cross-coupling reactions are power-
ful methods for C–C bond formation. Many supported-
catalyst-promoted cross-coupling reactions have been re-
ported to fulfill catalyst separation and recycling using
PS, PEG, silica gel as supports with different kinds of
ligands such as NHCs,20 phosphine ligands,21 and dipy-
ridyl ligands.22 But only few reports have been seen in lit-
erature using magnetic nanoparticles as catalyst supports.9

Our group has dedicated to the preparation of high effi-
cient catalysts for cross-coupling reactions and their fur-
ther reuse.23 Recently, we have reported a PEG-supported
dipyridyl catalyst and its application in Suzuki coupling
reaction.23a Herein we would like to present a simple and
efficient preparation of a novel MNP-supported dipyr-
idyl–Pd complex by using click chemistry as a practical
tagging method and its application in Suzuki coupling re-
actions. High activity was observed and the catalyst could
be easily isolated from the reaction mixture by simple
magnetic decantation and reused several runs without sig-
nificant loss of activity.

The magnetic nanoparticles were readily prepared by con-
ventional coprecipitation method with an average diame-
ter of 10 nm. The particles were then coated with a thin
layer of silica according to a literature method24 in order
to prevent the aggregation of the nanoparticles. As shown
in Scheme 1, further modification of the surface of the sil-
ica-capped MNP with excess azide-functionalized silane
3 in refluxed THF afforded 4.25 Direct propargylation of 1
give rise to 2 in high yield.26 Following a typical process
developed by Gmeiner,19a 6 mol% CuI was found to be
optimal for the cycloaddition of 2 and 4 to achieve 5,27 and
the reaction process was judged by the complete disap-
pearance of the FT-IR absorption of the azide group (2104
cm–1, Figure 1). Then, the MNP-supported dipyridyl–Pd
complex 6 was obtained by refluxing 5 with
PdCl2(MeCN)2 in toluene.28 In each step, the isolation and
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purification of the MNP was achieved via an external
magnetic field. The TEM image of 5 is illustrated in
Figure 2, which showed the core-shell structure of the sil-
ica-caped MNP (the long strips in Figure 2 were consid-
ered as the margin of the copper grids). The loading
capacity of 4, 5, and 6, calculated from elemental analysis
data of N are 0.684 mmol/g, 0.628 mmol/g, and 0.60
mmol/g, further showed the high efficiency of the click
chemistry for the immobilization of ligand. ICP-OES re-

vealed 6 containing 0.58 mmol/g Pd, which was quite near
to the value of the ligand suggesting the almost complete
coordination of the ligand with Pd.

Initial studies of reaction conditions for Suzuki coupling
were performed with bromobenzene and phenylboronic
acid as the model reaction with different solvents, bases,
and catalyst loadings (Table 1). Using K2CO3 as base and
6 as catalyst, the reaction proceeded much slower in tolu-
ene, water, and DMF–water than in DMF (Table 1, entries

Scheme 1 Preparation of MNP-supported di(2-pyridyl)methanol–Pd complex 6. Reaction conditions: a) –78 °C, n-BuLi, then 2-pyridylcar-
boxaldehyde, –78 °C, 75%; c) NaH, 0 °C, DMF, propargyl bromide, 60%; d) butanone, NaN3, reflux, 72h, 90%; e) THF, reflux, 24 h; f) CuI,
DIPEA, DMF–THF (1:1); g) PdCl2(MeCN)2, toluene, reflux, 24 h.
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Figure 1 FT-IR Spectra of (a) di(2-pyridyl)methanol propargyl
ether (2); (b) magnetic nanoparticles 4, and (c) 5

Figure 2 TEM image of 5 (scale bar 50 nm)
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1–4). When Cs2CO3, Na2CO3, or NaOAc was used as
base, an obvious decrease in yield was observed (Table 1,
entries 5–7). Reducing the amount of 6 resulted in a direct
decrease in yield even with longer reaction time (Table 1,
entry 8).

With the optimized reaction conditions in hand, cross-
coupling reactions of different aryl halides with aryl bo-
ronic acids were performed and the results are summa-
rized in Table 2. Under standard conditions, which use
DMF as solvent, K2CO3 as base, and with 0.2% catalyst
loading, good to excellent yields were obtained with bro-
moarenes bearing both electron-withdrawing groups and
releasing groups (Table 2, entries 1–4). But for the sub-
strate with an ortho substituent, the yield of the coupling
products dropped slightly even using more catalyst load-
ing (Table 2, entry 5). Two other kinds of aryl boronic ac-
ids were also tested and they all reacted smoothly with
aryl bromides with high product yields (Table 2, entries
6–10). Unfortunately, the catalytic system was less effec-
tive with substrates such as aryl chloride and heterocyclic
bromide even using 1% of 6 and prolonged reaction time
(Table 2, entries 11 and 12). It was worthy to note that
magnetic nanoparticle 6 was air and moisture stable, and
the coupling reactions could be carried out under air di-
rectly.

Table 1 Suzuki–Miyaura Coupling of PhB(OH)2 with Bromoben-
zenea

Entry Pd 
(%)

Base Solvent Temp 
(°C)

Time 
(h)

Yield 
(%)b

1 0.2 K2CO3 toluene 110 5 60

2 0.2 K2CO3 H2O 100 5 83

3 0.2 K2CO3 DMF 100 5 92

4 0.2 K2CO3 DMF–H2O
c 100 5 86

5 0.2 Cs2CO3 DMF 100 5 85

6 0.2 Na2CO3 DMF 100 5 75

7 0.2 NaOAc DMF 100 5 60

8 0.1 K2CO3 DMF 100 8 85

a Reaction conditions: bromobenzene (2 mmol), PhB(OH)2 (2.6 
mmol), base (4 mmol), solvent (5 mL).
b Isolated yield.
c DMF–H2O = 3:2.

Br + B(OH)2

Table 2 MNP-Supported Catalyst 6 in Suzuki Coupling of Aryl Halides and Aryl Boronic Acida,29

Entry Aryl halides Aryl boronic acids Time (h) Product Yield (%)b

1 9
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7b
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7c
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Having established the scope of the new reaction system,
we then turned our attention to the recovery and reuse of
the catalyst 6. We chose the cross-coupling of 4-bromo-
acetophenone and phenylboronic acid as the model reac-
tion. After the completion of the reaction, the reaction
mixture was diluted with diethyl ether and the catalyst
was easily separated by an external magnet, washed with
diethyl ether, water, dried under vacuum, and then used
directly in the next run. No obvious loss in catalytic activ-
ity was observed in five recycling runs under the same re-
action conditions (Table 3).

In summary, we have described a novel MNP-supported
di(2-pyridyl)methanol-derived palladium chloride 6 pre-
pared via click chemistry. The catalyst was proved to be
highly efficient in Suzuki reactions with a variety of aryl
bromoarenes as substrates. Furthermore, the MNP-sup-
ported catalyst could be easily separated from the reaction
system by magnetic decantation and reused for several
runs with little loss in activity. Due to the wide application
of dipyridyl ligand, further effort to extend the use of 6 in
other reactions is still in progress.
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