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Abstract: An efficient rhodium(III)-catalyzed cou-
pling reaction of N-aryloxyacetamides with 6-diazo-
2-cyclohexenones through a cascade redox-neutral
C–H functionalization and aromatization has been
developed. This novel and scalable transformation
provides a straightforward way to construct unsym-
metrical ortho-biphenols with broad substrate scope
under mild and redox-neutral conditions. The syn-
thetic utility of this approach is demonstrated in the
late-stage functionalization of bioactive compounds
and the synthesis of an optically active ortho-biphe-
nol.
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ortho-Biphenols (2,2’-dihydroxy-1,1’-biaryls) are im-
portant structures featured in numerous natural and
synthetic substances with a wide array of interesting
biological properties.[1] Furthermore, their derivatives
are useful ligands or catalysts in catalysis.[2] Therefore,
the development of practical protocols to access struc-
turally diverse ortho-biphenols is highly significant.
Although the oxidative phenolic coupling offers
a direct approach to ortho-biphenols,[3] the synthesis
of unsymmetrical ortho-biphenols remains elusive[4]

due to homocoupling and poor regioselectivity. Un-
symmetrical ortho-biphenols can be constructed by in-
direct oxidative coupling of two phenols, in which one
coupling partner is oxidized to the quinone derivative
and then couples with the other phenol under organo-
catalysis.[5] In addition, studies on the synthesis of
non-C2-symmetical ortho-biphenols via transition
metal-catalyzed C–X/C–M cross-coupling[6] or intra-
molecular C–H/C–X coupling have also been report-

ed.[7] However, these approaches require selective
ortho-halogenation of phenols and multistep synthe-
sis, thus limiting their efficiency.

Transition metal-catalyzed C–H functionalization
provides a straightforward route to construct complex
organic frameworks from readily accessible sub-
strates.[8] Recently, the redox-neutral strategy employ-
ing an oxidizing directing group[9] has been emerged
in the field of C–H functionalization. This strategy
avoids the use of stoichiometric amounts of an exter-
nal metal oxidant and allows for a step-economical
and waste-reducing transformation under mild condi-
tions.[10] In our own efforts,[11] we developed a traceless
oxidizing directing group ONHAc for the redox-neu-
tral C–H functionalization of ArONHAc towards an
efficient synthesis of ortho-functionalized phenols
(Scheme 1a).[11,12] We envisioned that this powerful
strategy could be explored for the synthesis of unsym-
metrical ortho-biphenols.

a-Diazocyclohexenones are versatile molecules
having both diazo and a,b-unsaturated carbonyl
groups. They have been used as phenolic precursors
in transition metal-catalyzed aromatization cascade
reactions.[13] Inspired by these elegant works, we con-
ceive a-diazocyclohexenones as an alternative arylat-
ing agent for the synthesis of unsymmetrical o-biphe-
nols. While most approaches for the construction of
ortho-biphenols are concentrated on the direct cou-
pling of two phenolic units, few have been shown to
introduce the ortho-phenolic group from non-aromat-
ic precursors. Herein, we disclose a rhodium-catalyzed
cascade reaction involving redox-neutral C–H func-
tionalization and aromatization from N-aryloxyaceta-
mides and 6-diazo-2-cyclohexenones (Scheme 1c).
This process delivers unsymmetrical ortho-biphenols
with diverse substitutions, some of which are difficult-
ly accessed by traditional methods. The reaction pro-
ceeds under mild and redox-neutral conditions, and is
readily scalable.
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Our initial experiments were carried out with N-
phenoxyacetamide (1a) and 6-diazo-3-methylcyclo-
hex-2-enone (2a) as the model substrates to evaluate
the feasibility of the proposed cascade strategy. To
our delight, when the reaction was performed with
the commonly used [RhCp*Cl2]2/CsOAc catalytic
system in dichloroethane at 30 8C, the desired 2,2’-bi-
phenol 3aa was obtained in a yield of 83% (Table 1,
entry 1). Screening of bases (entries 2–6) demonstrat-
ed that Cs2CO3 was the most effective, affording the
desired product in 88% yield (entry 4). Other bases,
such as NaOAc, KOAc, K2CO3 and K3PO4, also deliv-
ered the desired product, albeit in relatively lower
yields. Changing the solvent from dichloroethane to
MeCN, THF, acetone and chloromethane did not
cause any improvement (entries 7–10). It is notewor-
thy that the reaction tolerates a lower catalyst load-
ing. The reaction proceeded smoothly even with
1.25 mol% of catalyst giving the product in 80% yield
(entry 11). Fine-tuning the amounts of Cs2CO3 and
the ratios of both substrates[14] did not further im-
prove the yield (for a more detailed optimization
study, see the Supporting Information). Notably, this
transformation could run smoothly even in the ab-
sence of a base (entry 12), which may indicate that C–
H activation of N-phenoxyacetamide could occur
without the assistance of a base. Nonetheless, control
experiments showed that no reaction happened in the
absence of a rhodium catalyst.

The versatility of the rhodium(III)-catalyzed redox-
neutral C–H functionalization/aromatization cascade
process was probed under the optimized reaction con-

ditions (Scheme 2). When diazo compound 2a was
used as the coupling partner, a diverse array of N-
aryl ACHTUNGTRENNUNGoxyacetamides 1 could participate in the reaction
smoothly, providing the corresponding unsymmetrical
2,2’-biphenols in moderate to high yields. Substrates
bearing para, meta and ortho substituents were com-
patible with the reaction conditions (3aa–3fa). For
meta-trifluoromethyl substrate, C–H functionalization
took place at the less hindered position selectively
furnishing a single isomer (3fa). In contrast, the meta-
methoxy-substituted substrate gave a mixture of two
regioisomers (3ga and 3ga’), probably because the
methoxy group could play the role of a secondary di-
recting group leading to the formation of 3ga’. Nota-
bly, the hindered di-meta-substituted aromatic com-
pounds (1h and 1i) delivered the desired products
(3ha and 3ia) in high yields. Halogen-substituted N-
phenoxyacetamides, including the para-bromo-substi-
tuted one, underwent the cascade reaction in high
yields (3ja–3la) without any dehalogenation products.
Besides the commonly encountered functional groups,
strong electron-withdrawing functional groups, such
as ester and nitro groups, were also tolerated (3ma
and 3na). Furthermore, N-naphthoxyacetamide was
found to be a suitable substrate for this transforma-
tion, thus allowing the synthesis of the desired prod-
uct 3oa in high yield (90%).

We then examined differently decorated 6-diazo-2-
cyclohexenones with the protocol (Scheme 3). Various
6-diazo-2-cyclohexenones efficiently coupled with 1a

Scheme 1. Our strategy for the synthesis of unsymmetrical
ortho-biphenols.

Table 1. Optimization of the reaction conditions for the
model reaction.

Entry[a] Base Solvent Yield [%][b]

1 CsOAc ClCH2CH2Cl 83
2 NaOAc ClCH2CH2Cl 60
3 KOAc ClCH2CH2Cl 60
4 Cs2CO3 ClCH2CH2Cl 88
5 K2CO3 ClCH2CH2Cl 76
6 K3PO4 ClCH2CH2Cl 73
7 Cs2CO3 MeCN 25
8 Cs2CO3 THF 50
9 Cs2CO3 CH2Cl2 80
10 Cs2CO3 acetone 58
11[c] Cs2CO3 ClCH2CH2Cl 80
12 – ClCH2CH2Cl 73

[a] Reaction conditions: 1a (0.2 mmol, 1.0 equiv.), 2a
(0.4 mmol, 2.0 equiv.), [Cp*RhCl2]2 (2.5 mol%) and base
(25 mol%) in solvent (0.1 M).

[b] Isolated yields.
[c] 1.25 mol% of [Cp*RhCl2]2 were used.
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to deliver the expected ortho-biphenols. We observed
that the reactivity of the diazo compounds was influ-
enced by the position of the substituents. While most

diazo substrates could give the corresponding prod-
ucts in high yields (3aa–3af), the substrate bearing
a substituent adjacent to the diazo group reacted
rather sluggishly (3ag, 17%).

The broad substrate scope and mild reaction condi-
tions prompted us to apply the present method in the
late-stage functionalization of complex bioactive com-
pounds. Remarkably, the derivatives of l-tyrosine and
estrone (1p and 1q) underwent the coupling with 2a
smoothly to afford the desired 2,2’-biphenol scaffolds,
which are difficult to be accessed by the traditional
synthetic methods [Eqs. (1) and (2)]. Furthermore, we
also tested whether our approach could be used to
synthesize optical active ortho-biphenols from chiral
5-substituted 6-diazo-2-cyclohexenone via central-to-
axial chirality transfer. The reaction of optical active
diazo 2h with 1o provided the desired orhto-biphenol
with high ee value (98%) albeit in a poor yield [20%
yield, Eq. (3)], along with a complex mixture of side
products. Finally, a relatively large-scale reaction was
conducted. With 2 mol% of Rh catalyst under the
standard conditions, the desired ortho-biphenol could
be produced conveniently on a gram scale without
any obvious decrease in yield [Eq. (4)].

To gain some insights into the reaction mechanism,
deuterium-labelling experiments were conducted.
When the reaction between 1a and 2a was performed

Scheme 2. Scope of the N-aryloxyacetamides 1.

Scheme 3. Scope of 6-diazo-2-cyclohexenones 2.
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in the presence of D2O, 3aa was obtained in a good
yield and no deuterium incorporation was observed
[Eq. (5)]. Next, the kinetic isotope effect was studied
in competition experiments and a KIE of 1.9 was de-
termined [Eq. (6)]. Based on these results, we pro-
pose that the C–H activation might be irreversible
under the reaction conditions and the C–H bond
cleavage process might not be involved in the rate-de-
termining step.

A plausible mechanism for this redox-neutral C–H
functionalization/aromatization cascade process is
proposed (Scheme 4). The reaction is presumably ini-
tiated by a facile directed C–H activation to afford
the intermediate A. According to the literature,[12a,c]

the rhodacyclic intermediate A may react with the
diazo compound 2 through metal carbene formation
and migratory insertion to produce the intermediate
B accompanied by the release of N2.

[15–17] Subsequent
b-H elimination produces the intermediate C,[18]

which undergoes aromatization and reductive elimi-
nation to furnish one o-phenolic group and generate
the Rh(I) species (intermediate D). Intramolecular
oxidative addition of the N–O bond to Rh(I) would
give the intermediate E, which upon protonlysis will
deliver the product 3 and regenerate the Rh(III) cata-
lyst. For 5-substituted diazo substrates (2g and 2h),
the steric congestion around the diazo group may
result in the low reactivity.[13a,e] It is also possible that
the substituent adjacent to the diazo group may par-
tially generate the trans-H intermediate B, which im-
pedes the subsequent b-H elimination and results in
the observed low yields.

In conclusion, we have developed a rhodium-cata-
lyzed cascade C–H functionalization/aromatization
coupling of N-aryloxyacetamides with 6-diazo-2-cyclo-
hexenones under mild and redox-neutral conditions.
This process provides an efficient way for the synthe-
sis of unsymmetrical ortho-biphenols with broad sub-
strate scope. Moreover, this practical transformation
could be used in the late-stage functionalization of
bioactive compounds and the synthesis of an optical
active ortho-biphenol. Further investigations on the
synthetic application of this reaction are in progress.

Experimental Section

General Procedure

Without any particular precaution to exclude oxygen or
moisture, N-aryloxyacetamide 1 (0.3 mmol, 1 equiv.), diazo
compound 2 (0.6 mmol, 2 equiv.), [Cp*RhCl2]2 (2.5 mol%,
4.8 mg) and Cs2CO3 (24.5 mg, 0.075 mmol, 25 mol%) were
weighed into a 10-mL vial equipped with a stirring bar.
Then DCE (3 mL, 0.1 M) was added. The reaction mixture
was stirred at 30 8C for 10 h. Afterwards, the reaction mix-
ture was diluted with EtOAc and transferred to a round-
bottom flask. Silica gel was added to the flask and volatiles
were evaporated under reduced pressure. The purification
was performed by flash column chromatography on silica
gel.
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