1084 Papers synthesis

Synthesis of 2-Alkyl-3-aryloxaziridines

Krystian Kloc, Elżbieta Kubicz, Jacek Młochowski,* Ludwik Syper

Institute of Organic and Physical Chemistry, Technical University of Wrocław, PL~50-370 Wrocław, Poland

A convenient method for the synthesis of 2-alkyl-3-aryloxaziridines 1 based on the formation of stable azomethines and their oxidation with *m*-chloroperoxybenzoic acid is reported. The scope and limitation of the method proposed is illustrated with numerous examples.

Oxaziridines of a general formula 1 have been a focus of interest of many laboratories since the pioneering work of Emmons, 1,2 Krimm, 3 and Horner and Jurgens 4 was reported thirty years ago. Their chemistry has been reviewed, 5,6 and some oxaziridines have been reported as substrates 2,"-10 or oxygen-transfer agents 11-14 useful for organic synthesis.

The most useful preparation of oxaziridines is the very ready oxidation of the azomethines, obtained from the appropriate aldehyde or ketone, with organic peracids. Although this method is a versatile one, its major limitations are the extremely labile nature of some oxaziridines and the instability of the azomethines.^{5,7-15} Contrary to the numerous oxaziridines having alkyl substituents in both 2 and 3 positions that are known, only a limited number of oxaziridines substituted at the 3 position with aromatic or heteroaromatic groups such as phenyl, nitrophenyls, p-chloro-, p-methoxy- and p-methylphenyl, or 2-furyl and 2-pyridyl have been reported. 1-5,9,15-17 It is noteworthy that during the last twenty-five vears the opinion that many azomethines (particularly derived from aromatic aldehydes having electron-releasing substituents) are unstable and useless for the preparation of 2-alkyl-3aryloxaziridines remained untested.

Extending our studies of compounds having small heterocyclic rings, $^{18-20}$ we modified the method for the preparation of azomethines 3 and 4, derived from various aromatic aldehydes 2, and oxidized them successfully to oxaziridines 5 and 6.

The azomethines 3 and 4 were obtained from the appropriate aldehydes 2 and *tert*-butylamine or propylamine, respectively. used in excess in the presence of molecular sieves. They were oxidized with *m*-chloroperoxybenzoic acid (MCPBA) in chloroform giving oxaziridines 5 and 6. The results of the experiments are given in Table 1. The ¹H-NMR data of azomethines 3 and 4, and oxaziridines 5 and 6 are given in Table 2.

The results obtained revealed that the structure of the aromatic moiety did not play a crucial role in the formation or stability of azomethines. Azomethines 3 and 4 were obtained in high yields from aldehydes having electron-withdrawing substituents (2b, c, d) or π -deficient heteroaromatic systems (2u-x), as well

Table 1. Conversion of Aromatic and Heteroaromatic Aldehydes 2 into Azomethines 3 and 4, and Their Oxidation to 2-Alkyl-3-aryloxaziridines 5

Aldehyde	Ar	Azomethine	Yield (%)	m.p. (°C)	Molecular Formula ^a or Lit. Data	Oxaziridine	Yield (%)	m.p. (°C)	Molecular Formula ^a or Lit. Data
2a	4-CH ₃ C ₆ H ₄	3a	99	18-19	oil ¹⁷	5a	60	oil	oil ¹⁶ 67–70 ^{b, 17}
2b	4-ClC ₆ H ₄	3b	93	32-33	33-35 ¹⁷	5b	56	66-67	6816
2c	4-BrC ₆ H ₄	3e	97	29	C ₁₁ H ₁₄ BrN (240.2)	5e	66	4952	C ₁₁ H ₁₄ BrNO (256.2)
2d	3-ClC ₆ H ₄	3d	92	oil	$C_{11}H_{14}CIN$ (195.7)	5d	60	39	C ₁₁ H ₁₄ ClNO (211.7)
2e	3-HOC ₆ H ₄	3e	87	85-86	C ₁₁ H ₁₅ NO (177.2)	5e	43	78	$C_{11}H_{15}NO_2$ (193.2)
2f	4-CH ₃ OC ₆ H ₄	3f	85	27–29	C ₁₂ H ₁₇ NO (191.3)	5f	66	oil	oil ¹⁶
2g	H₃C OCH₃	3g	99	oil	$C_{15}H_{23}NO_2$ (249.3)	5g	57	oil	$C_{15}H_{23}NO_3$ (265.3)
	H ₃ C	4g	96	oil	$C_{14}H_{21}NO_{2}$ (235.3)	(<i>E</i>)- 6g	64	oil	$C_{14}H_{21}NO_3$ (251.3)
	CH ₃ O				, ,	(Z)-6g	10	61	$C_{14}H_{21}NO_3$ (251.3)
2h	$2,4-(CH_3O)_2C_6H_3$	3h	97	21	$C_{13}H_{19}NO_2$ (221.3)	5h	21°	oil	$C_{13}H_{19}NO_3$ (237.3)
2i	$3,4-(CH_3O)_2C_6H_3$	3i	92	63	$C_{13}H_{19}NO_2$ (221.3)	5i	59	58	$C_{13}H_{19}NO_3$ (237.3)
2j	4-ClCH ₂ C ₆ H ₄	$3j^d$	88	41-42	$C_{16}H_{26}N_2$ (246.4)	5j°	34	4850	$C_{16}H_{26}N_2O$ (262.4)
2k	$4-(C_2H_5)_2NC_6H_4$	3k	76	23-25	$C_{15}H_{24}N_2$ (232.4)	5k	0	***	(_ · · _ · · /
21		31	80	92	$C_{16}H_{24}N_2$ (244.4)	5l ^f	40	36-37	$C_{12}H_{15}NO_2$ (205.3)
						511 ⁸	36	155 (with dec.)	$C_{16}H_{24}N_2O_2$ (276.4)
2m	1-naphthyl	3m	98	oil	$C_{15}H_{17}N$ (211.3)	5m	35	oil	oil ²⁴
2n	2-naphthyl	3n	99	70-71	$C_{15}H_{17}N$ (211.3)	5n	53	83-84	C ₁₅ H ₁₇ NO (227.3)
20	5-acenaphthalenyl	30	83	91	$C_{17}H_{19}N$ (237.3)	50	62	74	$C_{17}H_{19}NO$ (253.3)
2p		3p	84	59-60	$C_{20}H_{26}N_2$ (294.4)	5p ^h	7	8485	$C_{16}H_{17}NO_2$ (255.3)
	° ° OCH₃				()	5pp ⁱ	32	116-118	$C_{20}H_{26}N_2O_2$ (326.4)
2q		3q	97	oil	$C_{17}H_{21}NO_{2}$ (271.4)	5q	62	oil	$C_{17}H_{21}NO_3$ (287.4)
	OCH ₃	4 q	96	42-43	$C_{16}H_{19}NO_2$ (257.3)	(E)-6q	66	59	$C_{16}H_{19}NO_3$ (273.3)
	2~~				(20110)	(Z)-6q	6	6263	$C_{16}H_{19}NO_3$ (273.3)
2r	6	3r	93	44	$C_{12}H_{15}NO_2$ (205.3)	5r	58	36-37	$C_{12}H_{15}NO_3$ (221.3)
2s	2-furyl	3s	88	oil	C ₉ H ₁₃ NO (151.2)	5s	27	42	$C_9H_{13}NO_2$ (167.2)
2t	3-indolyl	3t	75	121-122	$C_{13}H_{16}N_2$ (200.3)	5t	0		
2u	2-pyridyl	3u	90	oil	$C_{10}H_{14}N_2$ (162.2)	5u	43	oil	$C_{10}H_{14}N_2O$
2v	4-pyridyl	3v.	66	oil	$C_{10}H_{14}N_2$ (162.2)	5v	37	7778	(178.2) $C_{10}H_{14}N_2O$
2w	6-quinolyl	3w	83	72-73	$C_{14}H_{16}N_2$ (212.3)	5 w	95	44	(178.2) $C_{14}H_{16}N_2O$
2x	7-quinolyl	3x	81	38-39	$C_{14}H_{16}N_2$	5x	75	66-67	(228.3) C ₁₄ H ₁₆ N ₂ O

Satisfactory microanalyses obtained: $C \pm 0.4\%$, $H \pm 0.3\%$, Br or Cl $\pm 0.4\%$, N $\pm 0.3\%$.

The compound reported in Ref. 1 was not oxaziridine 5a, but most probably the nitrone. This nitrone (7a), synthesized in our laboratory, melts at $65-67^{\circ}$ C. Nitrone 2,4-(CH₃O)₂C₆H₃CH=N(O)C₄H₉-t 7i, m.p. 105-106, was also isolated in 32% yield.

^d $Ar = 4-(t-C_4H_9NHCH_2)C_6H_4$. ^e $Ar = 4-(t-C_4H_9NHCH_2)C_6H_4$.

monooxaziridine-monocarbaldehyde.

bisoxaziridine.

monooxaziridine-monocarbaldehyde.

bisoxaziridine.

Table 2. ¹H-NMR Data of Azomethines 3 and 4, 2-Alkyl-3-aryl-oxaziridines 5 and 6, and Nitrones 7

Com- pound	1 H-NMR (100 MHz, CDCl ₃ /TMS)* δ , J (Hz)	Com- pound	1 H-NMR (100 MHz, CDCl ₃ /TMS) a δ , J (Hz)
3a	1.28 (s, 9H, CH ₃); 2.36 (s, 3H, ArCH ₃); 7.18 (d, 2H, $J = 9$, ArH); 7.65 (d, 2H, $J = 9$, ArH); 8.25 (s, 1H, CH=N)	3n	1.31 (s, 9H, CH ₃); 7.40-7.52 (m, 2H, ArH); 7.72-8.08 (m 5H, ArH); 8.40 (s, 1H, CH=N)
5a	1.16 (s, 9H, CH ₃); 2.34 (s, 3H, ArCH ₃); 4.64 (s, 1H, CH); 7.16 (d, 2H, $J = 9$, ArH); 7.36 (d, 2H, $J = 9$, ArH)	5n	1.18 (s, 9 H, CH ₃); 4.80 (s, 1 H, CH); 7.38–7.56 (m, 2 H, ArH) 7.70–7.96 (m, 3 H, ArH)
7a	1.60 (s, 9 H, CH ₃); 7.24 (d, 2 H, <i>J</i> = 9, ArH); 7.52 (s, 1 H, CH =); 8.22 (d, 2 H, <i>J</i> = 9, ArH)	30	1.35 (s, 9H, CH ₃); 3.31 (s, 4H, CH ₂); 7.16–7.60 (m, 3H ArH); 7.76 (d, 1H, $J = 8$, ArH); 8.69 (d, 1H, $J = 8$, ArH)
3b	1.26 (s, 9 H, CH ₃); 7.36 (d, 2 H, J = 9, ArH); 7.67 (d, 2 H, J = 9, ArH); 8.20 (s, 1 H, CH = N)	50	8.75 (s, 1H, CH=N) 1.23 (s, 9H, CH ₃); 3.33 (s, 4H, CH ₂); 5.28 (s, 1H, CH); 7.20-
5b 3c	1.14 (s, 9 H, CH ₃); 4.63 (s, 1 H, CH); 7.34 (s, 4 H. ArH) 1.25 (s, 9 H, CH ₃); 7.48 (d, 2 H, J = 9, ArH); 7.62 (d, 2 H, J	3р	7.61 (m, 4H, ArH); 7.92 (d, 1H, $J = 8$, ArH) 1.34 (s, 9H, CH ₃); 7.42 (dd, 2H, $J = 7$, 3, ArH); 7.89 (dd
5c	= 9, ArH); 8.19 (s, 1H, CH=N) 1.14 (s, 9H, CH ₃); 4.60 (s, 1H, CH); 7.27 (d, 2H. <i>J</i> = 9,	5p	2H, <i>J</i> = 7, 3, ArH); 8.16 (s, 2H, CH = N); 8.94 (s, 2H, ArH) 1.27 (s, 9H, CH ₃); 5.81 (s, 1H, CH); 7.52–8.30 (m, 6H, ArH)
3d	ArH); 7.38 (d, 2 H, $J = 9$, ArH) 1.27 (s, 9H, CH ₃); 7.20–7.82 (m, 4H, ArH); 8.19 (s, 1H, CH	5рр	10.21 (s, 1H, CHO) 1.22 (s, 9H, CH ₃); 5.27, 5.34 (2s, 2H, CH); 7.46 (dd, 2H, J
5d	=N) 1.16 (s, 9H, CH ₃); 4.62 (s, 1H, CH); 7.27-7.46 (m, 4H, ArH) 1.28 (s, 9H, CH ₃); 6.74-6.88 (m, 1H, ArH); 7.14-7.22 (m,	3q	= 7, 3, ArH); 7.82 (dd, 2 H, <i>J</i> = 7, 3, ArH); 7.96 (s, 2 H, ArH 1.33 (s, 9 H, CH ₃); 3.83, 3.93 (s, 6 H, OCH ₃); 7.38–7.53 (m 3 H, ArH); 7.98–8.30 (m, 2 H, ArH); 8.84 (s, 1 H, CH = N)
3e 5e	11.26 (S, 9 H, CH ₃), 0.74–0.86 (III, 11H, AtH), 7.14–7.22 (III, 11H, AtH); 7.96 (S, 1H, ArOH); 8.18 (S, 1H, CH=N) 1.16 (S, 9 H, CH ₃); 4.38 (S, 1H, CH); 6.70–7.23 (m, 5 H, ArH,	4q	0.98 (t, 3H, $J = 8$, CH ₃); 1.77 (sext., 2H, $J = 7$, CH ₂ CH ₃) 3.92, 4.01 (2s, 6H, OCH ₃); 3.68 (dt, 2H, $J = 1$, 7, =NCH ₃)
3f	ArOH) 1.24 (s, 9H, CH ₃); 3.77 (s, 3H, OCH ₃); 6.88 (d, 2H, $J = 9$,		7.38 (s, 1H, ArH); 7.46–7.56 (m, 2H, ArH); 8.05–8.30 (m 2H, ArH); 8.81 (t, 1H, <i>J</i> = 1, CH = N)
5f	ArH); 8.20 (s, 1H, CH=N) 1.14 (s, 9H, CH ₃); 3.75 (s, 3H, OCH ₃); 4.61 (s, 1H, CH); 6.86	5q	1.22 (s, 9H, CH ₃); 3.96, 3.98 (s, 6H, OCH ₃); 5.34 (s, 1H CH); 6.72 (s, 1H, ArH); 7.74–7.62 (m, 2H, ArH); 8.00–8.32
3g	(d, 2H, J = 9. ArH) 1.30 (s, 9H, CH ₃); 2.16, 2.21 (s, 6H, ArCH ₃); 3.68, 3.85 (s,	(E)-6q	(m, 2H, ArH) 1.04 (t, 3H, $J = 7$, CH ₃); 1.81 (sext., 2H, $J = 7$, CH ₂ CH ₃)
4g	6H, ArOCH ₃); 7.33 (s, 1H, ArH); 8.63 (s, 1H, CH=:N) 0.94 (t, 3H, $J = 6$, CH ₃); 1.74 (sext., 2H, $J = 6$, CH ₂ CH ₃); 2.16, 2.21 (2s, 6H, ArCH ₃); 3.61 (dt, 2H, $J = 1$, 7, =NCH ₂);		2.66–3.20 (m, 2H, =NCH ₂); 3.94, 3.96 (2s, 6H, OCH ₃); 5.15 (s, 1H, ArH); 7.48–7.58 (m, 2H, ArH); 8.00–8.32 (m, 2H ArH)
	2.10, 2.21 (2s, 611, AICH ₃); 7.30 (s, 1H, ArH); 8.60 (s, 1H, CH=N)	(Z)-6q	0.93 (t, 3H, $J = 7$, CH ₃); 1.70 (sext., 2H, $J = 7$, CH ₂ CH ₃) 2.37–2.70 (m, 2H, =NCH ₂); 3.99 (s, 6H, OCH ₃); 5.61 (s, 1H
5g	1.19 (s, 9H, CH ₃); 2.14, 2.21 (2s, 6H, ArCH ₃); 3.74, 3.78 (2s, 6H, OCH ₃); 5.11 (s, 1H, CH); 6.70 (s, 1H, ArH)		CH); 6.33 (s, 1H, ArH); 7.52-7.64 (m, 2H, ArH); 8.06-8.33 (m, 2H, ArH)
(E)- 6g	1.03 (t, 3 $\rm H$, J = 7, CH ₃); 1.78 (sext., 2 $\rm H$, J = 7, CH ₂ CH ₃); 2.60–3.14 (m, 2 $\rm H$, NCH ₂); 3.72, 3.76 (2s, 6 $\rm H$, OCH ₃); 4.91	3r	1.25 (s, 9H, CH ₃); 5.95 (s, 2H, OCH ₂ O); 6.80 (d, 1H, $J = 8$ ArH); 7.12 (d, 1H, $J = 8$, ArH); 7.40 (s, 1H, ArH); 8.14 (s
(Z)-6g	(s, 1H, CH); 6.64 (s, 1H, ArH) 0.96 (t, 3H, $J = 7$, CH ₃); 1.68 (sext., 2H, $J = 7$, CH ₂ CH ₃); $2.48 \cdot 2.24 \cdot 2.5 \cdot CH$, ArCH > 2.46 $\cdot 2.60 \cdot CH$, 2H, NCH > 2.75	5r	1H, CH=N) 1.14 (s, 9H, CH ₃); 4.60 (s, 1H, CH); 5.94 (s, 2H, OCH ₂ O) 7.74–8.02 (m, 3H, ArH)
3h	2.18, 2.24 (2s, 6H, ArCH ₃); 2.16–2.60 (m, 2H, NCH ₂); 3.75, 3.80 (2s, 6H, OCH ₃); 5.43 (s, 1H, CH); 6.66 (s, 1H, ArH) 1.26 (s, 9H, CH ₃); 3.78, 3.80 (2s, 6H, OCH ₃); 6.38–6.54 (m,	3s	1.28 (s, 9H, CH ₃); 6.46 (dd, 1H, $J = 4$, 2, ArH); 6.72 (d, 1H $J = 4$, ArH); 7.50 (d, 1H, $J = 2$, ArH); 8.08 (s, 1H, CH=N
5h	2H, ArH); 7.92 (d, 1H, <i>J</i> = 8, ArH); 8.60 (s, 1H, CH = N) 1.16 (s, 9H, CH ₃); 3.78, 3.82 (ds, 6H, OCH ₃); 5.07 (s, 1H,	5s	1.16 (s, 9 H, CH ₃); 4.78 (s, 1 H, CH); 6.38 (dd, 1 H, <i>J</i> = 4, 2 ArH); 6.62 (d, 1 H, <i>J</i> = 4, ArH); 7.46 (d, 1 H, <i>J</i> = 2, ArH)
7h	CH); 6.44–6.52 (m, 2H, ArH); 7.20–7.30 (m, 1H, ArH) 1.60 (s, 9H, CH ₃); 3.83 (s, 6H, OCH ₃); 6.59 (d, 1H, <i>J</i> = 2,	3t	1.31 (s, 9H, CH ₃); 7.12-7.38 (m, 4H, ArH); 8.24-8.36 (m 1H, ArH); 8.52 (s, 1H, CH=N)
,	ArH); 6.47 (dd, 1 H, J = 8, 2, ArH); 7.96 (s, 1 H, CH =); 9.45 (d, 1 H, J = 8, ArH)	3u	1.28 (s, 9H, CH ₃); 7.28 (dd, 1H, <i>J</i> = 8, 4.5, ArH); 8.11 (dt 1H, <i>J</i> = 8, 2, ArH); 8.28 (s, 1H, CH=N); 8.59 (dd, 1H, <i>J</i>
3i	1.28 (s, 9H, CH ₃); 3.90, 3.95 (2s, 6H, OCH ₃); 6.85 (d, 1H, J = 8, ArH); 7.18 (dd, 1H, J = 8, 2, ArH); 7.47 (d, 1H, J = 2.	5u	= 4.5, 2, ArH); 8.87 (d, 1H, $J = 2$, ArH) 1.15 (s, 9H, CH ₃); 4.75 (s, 1H, CH); 7.29 (dd, 1H, $J = 8$, 5
5i	ArH); 8.20 (s, 1H, CH=N) 1.28 (s, 9H, CH ₃); 3.85, 3.87 (2s, 6H, OCH ₃); 4.63 (s, 1H,	3v	ArH); 7.74 (dt, 1H, $J = 8$, 2, ArH); 8.60 (dd, 1H, $J = 5$, 2 ArH); 8.71 (d, 1H, $J = 2$, ArH) 1.26 (s, 9H, CH ₃); 7.59 (dd, 2H, $J = 4.5$, 2, ArH); 8.19 (s
3j	CH); 6.78–7.10 (m, 3 H, ArH) 1.14, 1.26 (2s, 18 H, CH ₃); 3.73 (s, 2 H, ArCH ₂); 7.35 (d, 2 H, J = 9, ArH); 7.69 (d, 2 H, J = 9, ArH); 8.23 (s, 1 H, CH = N)	5v 5v	11.26 (s, 9H, CH ₃); 7.39 (dd, 2H, $J = 4.5$, 2, ArH); 8.17 (s 1H, CH=N); 8.65 (dd, 2H, $J = 4.5$, 2, ArH) 1.16 (s, 9H, CH ₃); 4.66 (s, 1H, CH); 7.36 (dd, 2H, $J = 5$, 2
5j	J = 9, ArH); 7.69 (d, 2H, $J = 9$, ArH); 8.23 (s, 1H, CH = N) 1.14 (s, 9H, CH ₃); 3.71 (s, 2H, ArCH ₂); 4.63 (s, 1H, CH); 7.36 (s, 4H, ArH)	3w	ArH); 8.63 (dd, 2H, <i>J</i> = 5, 2, ArH) 1.30 (s, 9H, CH ₃); 7.30 (dd, 1H, <i>J</i> = 8, 4.5, ArH); 8.10–8.34
3k	7.30 (8, 411, AH1) 1.14 (t, 6H, $J = 7$, CH ₂ CH ₃); 1.26 (s, 9H, CH ₃); 3.37 (q, 4H, $J = 7$, -CH ₂ CH ₃); 6.64 (d, 2H, $J = 9$, ArH); 7.80 (d, 2H, J		(m, 3 H, ArH); 8.38 (s, 1 H, CH=N); 8.85 (dd, 1 H, $J=4.5$, 2 ArH)
31	= 9, ArH); 8.16 (s, 1H, CH=N) 1.28 (s, 18H, CH ₃); 7.76 (s, 4H, ArH); 8.26 (s, 2H, CH=N)	5w	1.20 (s, 9H, CH ₃); 4.87 (s, 1H, CH); 7.40 (dd, 1H, $J = 8$, 4.5 ArH); 7.78 (dd, 1H, $J = 8$, 2, ArH); 7.94 (d, 1H, $J = 2$, ArH); 8.46 (d, 1H, $J = 2$, ArH); 8.95 (d, 2H, 2H); 8.46 (d, 1H, $J = 2$, ArH); 8.95 (d, 2H, 2H); 8.95 (d, 2H, 2H); 8.95 (d, 2H, 2H); 8.95 (d, 2H); 8.95 (d
51	1.18 (s, 9H, CH ₃); 4.75 (s, 1H, CH); 7.61 (d, 2H, <i>J</i> = 9, ArH); 7.98 (d, 2H, <i>J</i> = 9, ArH); 10.02 (s, 1H, CHO)	2	8.15 (dd, 1H, $J = 8$, 2, ArH); 8.16 (d, 1H, $J = 8$, ArH); 8.99 (dd, 1H, $J = 4.5$, 2, ArH) 1.34 (s, 9H, CH ₃); 7.41 (dd, 1H, $J = 8$, 2, ArH); 7.78–8.20
511 3m	1.15 (s, 18H, CH ₃); 4.66 (s, 2H, CH); 7.44 (s, 4H, ArH) 1.36 (s, 9H, CH ₃); 7.38–7.61 (m, 3H, ArH); 7.76–7.93 (m,	3x	1.34 (s, 9H, CH ₃); 7.41 (dd, 1H, $J = 6$, 2, 74H); 7.76-6.2 (m, 4H, ArH); 8.49 (s, 1H, CH=N); 8.95 (dd, 1H, $J = 4.5$, 2 ArH)
5m	3H, ArH); 8.76–8.90 (m, 3H, ArH); 8.92 (s, 1H, CH=N) 1.25 (s, 9H, CH ₃); 5.38 (s, 1H, CH); 7.76–7.92 (m, 6H, ArH); 8.11–8.20 (m, 1H, ArH)	5x	1.20 (s, 9 H, CH ₃); 4.90 (s, 1 H, CH); 7.37–8.30 (m, 5 H, ArH) 8.95 (dd, 1 H, <i>J</i> = 4, 2, ArH)

December 1987 Papers 1087

as those with electron releasing substituents (2a, e-i, k, g, r) or π -excess heteroaromatic systems (2s, t). Even aldehyde 2g, having four electron-releasing substituents, gave relatively stable azomethines 3g and 4g, which were successfully oxidized to oxaziridines 5g and 6g. Exceptionally, phthalaldehyde gave a very unstable azomethine, which could not be isolated and oxidized, in contrast to its naphthalene analog 2p or terephtalaldehyde, which afforded stable products 4p, 4pp and 4l, 4ll, respectively, in high yields.

In the ¹H-NMR spectra of azomethines 3 the signal of the -CH=N-proton was observed as a singlet between 8.08 and 8.92 ppm. The signal of the corresponding proton in azomethines 4 is a triplet due to its weak coupling with the $=N-CH_2-protons$. These spectra gave the evidence that all the azomethines obtained were individual diastereoisomers, most probably with the *E*-configuration due to steric factors.

The majority of the azomethines underwent oxidation to oxaziridines 5 and 6, except 3k and 3t. Their oxidation gave complex mixtures, in which the desired oxaziridines 5k and 5t were not found.

Azomethines can react with peracids by two competitive ways.21,22 Oxidation of the azomethine group can lead to oxaziridines or to the isomeric nitrones. In our experiments, oxaziridines were accompanied by starting aldehydes (isolated in 10-46% yield), but not by nitrones, except for compound 7h, which was isolated in significant amounts (32%). When compounds having two azomethine groups (3ll and 4pp) were oxidized, a mixture containing bisoxaziridines (5ll or 5pp), monooxaziridines with a formyl group (41, 4p), formed as minor products, and the corresponding dialdehydes (21, 2p) was formed. The epoxidation of azomethines as a two-step process is not stereospecific, and both E- and Z-diastereoisomers can be formed from the sterically defined azomethine. 21,23 Azomethines 3 having a tert-butyl substituent when oxidized with MCPBA gave only (E)-2-tert-butyl-3-aryloxaziridines 5, since two bulky substituents make the Z-form unfavorable. On the other hand, azomethines 4 containing a propyl substituent gave both (E)- and (Z)-2-propyl-3-aryloxaziridines 6, although the Eisomer was the major product, as confirmed by ¹H-NMR analysis (the singlet due to the methine proton for the Z-isomer was downfield from that of the E-isomer; a similar effect was reported for 2-alkyl-3-(p-nitrophenyl)oxaziridines²³). For (E)-2-tert-butyl-3-aryloxaziridines 5, the methine proton gave a signal between 4.38 and 5.35 ppm, depending on structure of the aromatic moiety, which is the same region as for (E)-oxaziridines

N-(Arylmethylene)alkylamines 3 and 4; General Procedure:

The appropriate arenecarbaldehyde 2 (15 mmol) is dissolved in an excess of tert-butyl- or propylamine (12 mL), and molecular sieves (Serva 4a; 1.0 g) are added. The reaction mixture is allowed to stand at room temperature for 24 h, and is then filtered. The molecular sieves are washed on the filter with dry CHCl₃ (15 mL). The CHCl₃ and excess amine are evaporated from the filtrate in vacuo at a water-bath temperature < 40 °C. The residue is dissolved in hexane (10 mL), and the solution shaken with active carbon and filtered through celite. The celite is washed with hexane (10 mL), and the solvent is evaporated from filtrate in the same manner as above. The residue is pure azomethine.

The IR spectra of all azomethines 3 and 4 exhibit a strong absorption band $v_{C=N}$ between 1616 and 1639 cm⁻¹, which is not observed in the spectra of the oxaziridines 5 and 6.

Oxidation of Azomethines 3 and 4 to 2-Alkyl-3-aryloxaziridines 5 and 6; General Procedure:

To an ice/salt-cooled (ca. -15°C) solution of azomethine 3 or 4 (5 mmol) in CHCl₃ (25 mL), anhydrous Na₂CO₃ (1.06 g, 10 mmol) is added. A solution of 90 % MCPBA (1.15 g, 6 mmol) in CHCl₃ (50 mL) is added dropwise with vigorous stirring during 1.5 h (for the compounds 2l and 2p, double amounts of Na₂CO₃ and MCPBA are used), and the mixture is stirred at -15 to 0°C for 3 h more. The per-oxycompounds are removed by filtration for the reaction mixture through basic alumina. The filtrate is washed with satd. aq. NaHCO₃, decolorized with active carbon and dried (K₂CO₃). Chloroform is removed *in vacuo* at a water-bath temperature < 40°C, and the residue is separated on a silica gel (Merck 0.063-0.2 mm) column.

Compounds 5a, h, i o r, s are eluted with hexane/i- Pr_2O (1:1); 5b-d, f, l, p with hexane/i- Pr_2O (2:1); 5m, n, q with hexane/i- Pr_2O (3:1); 5g with hexane/i- Pr_2O (3:2); 5e with hexane/acctone (1:1); 5u-x with hexane/EtOAc (1:2); and 5j with MeOH.

The compounds $\mathbf{6g}$ are separated on a silica gel column using hexane/i-Pr₂O (1:1) as eluent to give pure isomer (E)- $\mathbf{6g}$ and a mixture of (E)- $\mathbf{6g}$, (Z)- $\mathbf{6g}$ and $\mathbf{2g}$. From this mixture, pure isomer (Z)- $\mathbf{6g}$ is isolated using CHCl₃/EtOAc (50:1) as eluent.

The compounds $6\mathbf{q}$ are separated on a silica gel column using hexane/i-Pr₂O (2:1) as eluent to give pure isomer (*E*)- $6\mathbf{q}$ and a mixture of (*Z*)- $6\mathbf{q}$ and $2\mathbf{q}$, from which isomer (*Z*)- $6\mathbf{q}$ is isolated with CHCl₃/EtOAc (25:1) as eluent.

This work was supported by the Polish Academy of Sciences, Grant CPBP 01.13.

Received: 27 March 1987; revised: 15 July 1987

- (1) Emmons, W.D. J. Am. Chem. Soc. 1956, 78, 6208.
- (2) Emmons, W.D. J. Am. Chem. Soc. 1957, 79, 5739.
- (3) Krimm, H. Chem. Ber. 1958, 91, 1057.
- (4) Horner, L., Jurgens, E. Chem. Ber. 1957, 90, 2184.
- (5) Emmons, W.D., in: Heterocyclic Compounds, Part 1, Weisberger, A. (ed.), Wiley-Interscience, New York, 1964, p. 624.
- (6) Schmitz, E., in: Comprehensive Heterocyclic Chemistry, Vol. 7, Katritzky, A.R., Rees, C.W., Lwowski, W., Pergamon Press, Oxford, 1984, p. 195.
- (7) Komatsu, M., Ohshiro, Y., Hotta, H., Sato, M., Agawa, T. J. Org. Chem. 1974, 39, 948, 957.
- (8) Black, D.St.C., Blackmann, N.A. Aust. J. Chem. 1975, 28, 2547.
- (9) Poloński, T., Chimiak, A. Bull. Acad. Pol. Sci. Ser. Sci. Chim. 1979, 27, 459.
- (10) Duhamel, P., Benard, D., Plaquevant, J.-C. Tetrahedron Lett. 1985, 26, 6065.
- (11) Wagner, W.R., Spero, D.M., Rasletter, W.H. J. Am. Chem. Soc. 1984, 106, 1476.
- (12) Yuan, L.-C., Bruice, T.C. J. Chem. Soc. Chem. Commun. 1985, 868
- (13) Davis, F.A., Jenkins, R.H., Jn, Awad, S.B., Stringer, O.D., Watson, W.H., Galloy, J. J. Am. Chem. Soc. 1982, 104, 5412.
- (14) Davis, F.A., Harakel, M.E., Awad, S.B. J. Am. Chem. Soc. 1983, 105, 3123.
- (15) Splitter, J.S., Calvin, M. J. Org. Chem. 1965, 30. 3427.
- (16) Madan, V., Clapp, L.B. J. Am. Chem. Soc. 1969. 91, 6078.
- (17) Tamagaki, S., Sakaki, K., Oae, S. Bull. Chem. Soc. Jpn. 1972, 45, 3179.
- (18) Syper, L., Młochowski, J., Kloc, K. Tetrahedron 1983, 39, 781.
- (19) Kloc, K., Kubicz, E., Młochowski, J. Heterocycles 1984, 22, 2517.
- (20) Kloc, K., Młochowski, J., Syper, L., Mordarski, M. J. Prakt. Chem. 1986, 328, 419.
- (21) Ogata, Y., Sawaki, Y. J. Am. Chem. Soc. 1973, 95, 4637, 4692.
- (22) Boyd, D. R., Coulter, P. B., Sharma, N. D. Tetrahedron Lett. 1985, 26, 1673.
- (23) Boyd, D.R., Spratt, R., Jerina, D.M. J. Chem. Soc. C 1969, 2651.
- (24) Pirkle, W. H., Rinaldi, P. R. J. Org. Chem. 1978, 43, 4475.