REACTION OF DIALKYLPHOSPHOROUS ACIDS WITH STERICALLY HINDERED BENZOQUINONIMINES

M. G. Pavlichenko, B. E. Ivanov, B. I. Pantukh, V. N. Eliseenkov, and F. B. Gershanov

UDC 542.91:547.1'118:547. 567.3

Arbuzov et al. [1] reported that dialkylphosphorus acids react with quinones to form 1,6-addition products. We studied the reaction of dialkylphosphorous acids with the 1-phenylimine of 2,5-di-tert-butyl-4-benzoquinone and found that the addition proceeds at the C=N bond

$$\begin{array}{c} X & X \\ O = \\ X & Ph + H(O)P(OR)_2 \rightarrow O = \\ X & Y & P(O)(OR)_2 \end{array}$$

where R = Me (I), Et (II), Bu (III), C_6H_{13} (IV) and X = t-Bu, to form 0,0-dialky1-1-pheny1-amino-3,5-di-tert-buty1-4-benzoquinol-1-phosphonates, which are lightly colored products crystallizable from aqueous methanol or hexane. The IR spectra of these products show bands at 1235-1245 (P=0), 1665-1670 (C=0), 1510-1610 (C=C), and 3295-3330 cm⁻¹ (NH). The lack of the band at 3600-3630 cm⁻¹ characteristic for the phenol hydroxyl group [2] supports the quinolide structure. The ³¹P NMR spectra display signals at 18-24 characteristic for 0,0-dialky1-alky1phosphonates [3]. The physicochemical indices of these products are given in Table 1.

For comparison, we carried out the reaction of diethylphosphorous acid with 2,6-di-tert-butyl-4,6-benzoquinone, which proceeds by 1,6-addition to form diethyl-3,5-di-tert-butyl-4-hydroxyphenyl phosphate (V) as the major product

$$\begin{array}{c} X \\ O = \\ X \end{array} \longrightarrow \begin{array}{c} O + H(O)P(OEt)_2 \rightarrow \begin{bmatrix} X & OH & X & O \\ O = & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & \\ & & & \\ & & &$$

Cyclohexadiene structure (A) is apparently converted to aromatic species (V) by the phosphonate—phosphate rearrangement found for α -hydroxyalkylphosphonates [4]. On the other hand, the behavior of alkylated benzoquinonimines in their reaction with dialkylphosphorous acids is largely a consequence of the high stability of the quinolide structure having a phenylamino group in the α -position relative to the phosphorous atom.

EXPERIMENTAL

The IR spectra were taken on a UR-20 spectrometer. The ^{31}P NMR spectra were taken on a KGU-4 spectrometer at 10.2 MHz from 85% $\rm H_3PO_4$. A sample of 3,5-di-tert-butyl-4-benzoquinone 1-phenylimine was obtained from 2,6-di-tert-butyl-1,4-benzoquinone and aniline by heating at reflux in toluene with removal of the water formed by azeotropic distillation.

Reaction of 0,0-Diethylphosphorous Acid with 3,5-di-tert-butyl-4-benzoquinone 1-phenyl-imine. A mixture of 3 g (0.01 mole) quinonimine and 1.5 g (0.011 mole) diethylphosphorous acid in the presence of Et_2O BF3 was maintained for 24 h at 25-30°C. The crystals formed were recrystallized from 3:1 methanol-water to yield 3.3 g (75.6%) 0,0-diethyl-1-phenylamino-3,5-di-tert-butyl-4-benzoquinol-1-phosphonate (II) with mp 111.6-113°C.

A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Branch, Academy of Sciences of the USSR. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 8, pp. 1909-1911, August, 1985. Original article submitted October 23, 1984.

0,0-Dialkyl-1-phenylamino-3,5-di-tert-butyl-4-benzoquinol-1-phosphonates 0= TABLE 1,

- 821P, ppm		24 22
Calculated, %	ъ	7,62 7,15 6,33 5,68
	Z	3,45 8,74 2,86 2,56
	Н	7,95 9,07 9,60
	ວ .	65,16 66,45 68,69 70,42
Chemical formula		C ₂₂ H ₃₂ NO ₄ P C ₂₄ H ₃₆ NO ₄ P C ₂₆ H ₄ NO ₄ P C ₃₂ H ₅₂ NO ₄ P
Found, %	Ф	7,80 7,62 7,20 5,77
	z	3,61 2,80 2,80 3,38
	Ħ	7,87 8,49 8,69 9,71
	υ	65,38 66,32 68,47 70,82
. ℃		121–123,5 111,6–113 98–99 Viscous li qui d
Yield, %		46.5 75.6 65.2 2.2
Ħ		Me Et Bu Call,
Com- pound		eêêê

Note: IR spectra (v, cm⁻¹): (II) 1240 (P=0), 1510 and 1610 (C=C), 1665 (C=O), 3295 (NHR); in CCl₄: 1265 (P=O), 1510 and 1610 (C=C), 1665 (C=O), 3300 (NHR); (III): 1240 (P=O), 1510 and 1610 (C=C), 1670 (C=O), 3300 (NHR); in CCl₄: 1245 (P=O), 1510 and 1610 (C=C), 1665 (C=O) and 3300 (NHR).

Analogous procedures yielded 0,0-dimethyl- (I), 0,0-dibutyl- (III), and 0,0-dihexyl-l-phenylamino-3,5-di-tert-butyl-4-benzoquinol-l-phosphonates (see Table 1).

Reaction of 3,5-Di-tert-butyl-1,4-benzoquinone with Diethylphosphorous Acid. A mixture of 2.2 g (0.01 mole) quinone and 1.5 g (0.011 mole) diethylphosphorous acid in the presence of sodium ethylate was maintained for 20 h at 30°C. Then, 20 ml benzene was added to the mixture, and the solution was washed with aqueous sodium carbonate and dried over MgSO₄. Benzene was evaporated in vacuum, and the product was recrystallized twice from hexane to yield 3.1 g (85%) (V), mp 77-78°C. Found, %: C 60.58; H 8.66; P 8.56. $C_{2e}H_{31}O_{5}P$. Calculated, %: C 60.30; H 8.71; P 8.64. IR spectrum (ν , cm⁻¹): 1275 (P=0), 1596 (C=C_{arom}), 3330 (phenol OH).

CONCLUSIONS

- 1. Dialkylphosphorous acids in the presence of $Et_2O \cdot BF_3$ add to the 1-phenylimine of 3,5-di-tert-butyl-4-benzoquinone at the C=N bond to form dialkyl α -aminoquinolphosphonates.
- 2. Diethylphosphorous acid reacts with 3,5-di-tert-butyl-1,4-benzoquinone to give 0,0-diethyl-3,5-di-tert-butyl-4-hydroxyphenyl phosphate.

LITERATURE CITED

- 1. B. A. Arbuzov, N. A. Polezhaeva, and V. S. Vinogradova, Izv. Akad. Nauk SSSR, Ser. Khim., 1219 (1960).
- 2. N. Puttnam, J. Chem. Soc., 486 (1960).
- 3. R. A. J. Jones and A. R. Katritzky, Angew. Chem., 2, 60 (1962).
- 4. A. N. Pudovik, I. V. Konovalova, and L. V. Dedova, Dokl. Akad. Nauk SSSR, 153, 616 (1963).