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In recent years, the synthesis and structural elucidation of
numerous mononuclear main-group polycations hase been
achieved.[1–5] Electron-rich substituents, such as N-heterocy-
clic carbenes (NHCs),[4a,b] polyethers,[3c,d] pyridines,[2a,b] and
diimines,[5a,b,d] were used to stabilize these highly reactive
compounds. A majority of these polycations are either
coordinatively saturated (for example, [B(NC5H5)4][Br]3

[2a]

and [{CH(CMe)2(NC6F5)2}Al {N(CH2CH2NMe2)3}][OTf]2
[2d])

or resemble classical Lewis bases ([(NHC)3Ge][OTf2]
[3e]),

rendering them inactive as Lewis acids. This certainly holds
true with respect to the recently reported NHC-stabilized
dicationic (I) and tricationic PIII-centered compounds (II ;
Scheme 1).[4a,b] Even though dication I (R = Cl; L = NHC)

was subjected to chloride substitution[4b] and trication II (L =

NHC) showed exciting coordination chemistry,[4a] they still
resemble Lewis basic neutral phosphines (III). Therefore, our
goal was to establish a ligand system that would stabilize
a two-coordinate PIII-centered dication (IV) containing
a formally vacant P3p orbital and potentially exhibiting
reactivity associated with Lewis acids.[6] It is evident that the
most stable two-coordinate PIII-centered monocations (V)
that have been reported, also known as phosphenium cations,
employed at least one, if not both, substituents R with strong
p-donating capabilities, such as an amino group (NR’2; R’=
alkyl, aryl).[7] It was subsequently proposed that the synthesis

of the target dicationic compounds IV in the condensed phase
would probably require both substituents R and L to be good
p-donors.

The use of a dialkylamino group as the R substituent was
already predetermined,[7c] but we needed to identify a suitable
neutral ligand for L. It was then recognized that carbodi-
phosphoranes (VI), also known as carbones, fit the criteria for
L, as computational and experimental studies showed that VI
contains two lone electron pairs with s and p symmetry that
are available for bonding.[8] Additionally, the stability of an
electron-deficient dihydridoborenium cation was attributed
to p-donor capabilities of the carbone ligand.[9] Therefore, we
set out to explore the synthesis of the target dicationic species
using carbobis(triphenyl)phosphorane (1) as L.

The synthesis of the dication is shown in Scheme 2. First,
1 was added to a benzene solution containing excess
iPr2NPCl2. Chloride displacement and the formation of [2+]

[Cl] was elucidated from ES-MS and 31P{1H} NMR experi-
ments. The ES-MS experiment showed a peak at m/z 702.2339
(calcd for 2+: 702.2370) with the correct isotopic pattern
predicted for 2+ (see the Supporting Information). The room-
temperature 31P{1H} NMR spectrum showed two second-
order signals at dP = 25.9 (d) and 133.4 ppm (t), which were
resolved into three doublets of doublets at �90 8C, consistent
with the carbone-for-chloride exchange and the formation of
carbone-stabilized phosphenium cation 2+.

The unambiguous identity of 2+, as a tetrachloroaluminate
(AlCl4

�) salt, was confirmed by single-crystal X-ray diffrac-
tion;[13b] one of the two independent cationic molecules is
shown in Figure 1. The average P�N (1.656(5) �) bond
length, which is comparable to the average P�N (1.663(4) �)
bond length observed for [(iPr2N)2P(DBN)]+ (DBN = 1,5-
diazabicyclo[4.3.0]-non-5-ene),[10] is consistent with the estab-
lished bond order of 1.5 for similar systems.[11] The average
Pcentral�Ccarbone bond distance of 1.814(6) � is slightly shorter
than the average P�C bond distance (1.838(6) �) observed

Scheme 1. General structures of three- (I, II and III) and two-coordi-
nate (IV and V) phosphorus compounds, and that of carbodiphosphor-
anes (VI).

Scheme 2. Key reagents/conditions: a) iPr2NPCl2 (excess), benzene for
X = Cl� , addition of AlCl3 (1.0 equiv), CH2Cl2 for X = AlCl4

� ;
b) 1.0 equiv of AlCl3 for X = AlCl4

� and 2.0 equiv of AlCl3 if X =Cl� in
CH2Cl2.

[*] M. Q. Y. Tay, Dr. Y. Lu, Dr. R. Ganguly, Dr. D. Vidović
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for carbene-stabilized mono- and dicationic three-coordinate
PIII-centered compounds, but is within the values expected for
a P�C single bond.[4b] Pyramidal geometry for 2+ is confirmed
by the value of 318.9(2)8 for the sum of bond angles around
the Pcentral.

The formation of dication 32+ from [2+][Cl] was achieved
by halide abstraction using 2.0 equiv of AlCl3 (Scheme 2). The
most indicative piece of evidence for the heterolytic P�Cl
bond cleavage in 2+ and the formation of dication 32+

originated from the appearance of a signal shifted downfield
at dP = 355.7 ppm, which is within the range of 200–500 ppm
established for the known two-coordinate phosphenium
cations.[7b–e] Furthermore, depleted electron density at the
dication was also evident from the 13C NMR spectrum, as the
Ccarbone signal (dC = 67.8 ppm) was found at about 50 ppm
shifted downfield with the respect to the same signal for 2+

(dC = 19.5 ppm). This observation also suggested an increase
in electron donation from the carbone lone pair with p

symmetry to the newly created and formally vacant P3p
orbital.

Indeed, the molecular structure of 32+ (one of the two
asymmetric units is shown in Figure 1)[13b] exhibits planarity
along the C2NPCP2 fragment, placing not only the amino but
also the carbone p symmetry lone pair in an ideal position to
interact with the formally vacant P3p orbital. This N!P !C
p-interaction is manifested by shortening of the average
Pcentral�N (1.623(6) � for 32+ vs. 1.656(5) for 2+) and Pcentral�
Ccarbone bonds (1.745(7) � for 32+ vs. 1.813(6) � for 2+) with
the respect to the precursor. Taking into account that 1) the
accepted description of the P�N bond is somewhere between
a single and double bond, and 2) the average P�C bond for 32+

is very similar to the P�C bond (1.7376(14) �) observed for
a phosphaalkene,[12] it is, therefore, reasonable to assume that
the NPC fragment for 32+ is allene-like, providing the
necessary thermodynamic stabilization for the dication.

At this point it is worth noting that the interion
interactions, manifested by P···Cl contacts (3.527(8) and

3.585(9) �, respectively, for the two independent molecules),
are at the extreme end of the sum of van der Waal�s radii for P
and Cl (3.55 �).[13a] As similar close contacts have been
observed for analogous phosphenium salts,[14] it is generally
accepted that these contacts have little or no effect on the
structural features of the cation(s) and the anion(s)[14a] unless
hydrogen bonding is involved.[15]

To gain more insight into the structural/electronic features
of dication 32+, a series of density function theory (DFT)
calculations were performed (see the Supporting Informa-
tion). The optimized structural parameters for 32+, including
the C2NPCP2 fragment, are in good agreement with the
experimental values. The delocalized nature of the HOMO
orbital for 32+ (Figure 2b) along the N�P�C fragment seems

to be very different from the HOMO for [P(NMe2)2]
+, which

is similar to filled N 2p atomic orbitals.[11] The molecular
orbital that resembles the lone pair located on the central P
atom for 32+ (HOMO�12,[16] �12.737 eV; see the Supporting
Information) is quite destabilized with respect to the analo-
gous orbital for [P(NMe2)2]

+ (�13.518 eV), hinting at 32+

being a better s-donor than the phosphenium cation.
Interestingly, the most bonding p-orbital, HOMO�14[16]

(�13.810 eV; see the Supporting Information) for 32+ is more
stabilized than the same orbital for [P(NMe2)2]

+ (�13.450 eV)
implying a more effective p interaction along the N2p�P3p�
C 2pp fragment for 32+ with respect to the analogous N2p�
P3p�N 2p fragment for [P(NMe2)2]

+.[11] Nonetheless, the
LUMO (p*, Figure 2a) detected at �7.638 eV for 32+ is still
more stabilized relative to the LUMO (�6.910 eV) for
[P(NMe2)2]

+, which is presumably due to a greater positive
charge at the former compound. Thus, this particular obser-
vation indicates that 32+ should also be a better Lewis acid (e�

acceptor) than [P(NMe2)2]
+.

Lewis acidic properties of the dication were explored by
the addition of either 1 or 2 equiv of PMe3 into a dichloro-
methane solution containing [32+][AlCl4]2 (see the Supporting
Information for details). It was immediately evident that
a simple Lewis acid–base adduct formation did not occur, but
a more complex reaction mixture was developing. Variable-
temperature 31P NMR studies showed the formation of not
only 32+·PMe3 (dP = 40.7 ppm) adduct but also 2+ precursor,
suggesting the existence of a dynamic equilibrium system
(Scheme 3). On the other hand, the reaction between [32+]-
[AlCl4]2 and DMAP (dimethylaminopyridine) resulted in the

Figure 1. Molecular view of 2+ and 32+ (ellipsoids set at 50% proba-
bility). For clarity, only one of the two asymmetric units is shown for
both structures, and the counterions [AlCl4

�] together with hydrogen
atoms have been omitted. Selected bond lengths [�] and angles [8]
(values in the parenthesis are of the second asymmetric unit): 2+: P1–
C1, 1.812(5) (1.815(6)), P1–N1, 1.660(4) (1.652(5)), P1–Cl1, 2.173(2)
(2.178(2)); N1-P1-C1, 111.6(2) (110.8(2)), N1-P1-Cl1, 106.58(18)
(107.06(18)), C1-P1-Cl1, 100.84(18) (100.9(2)). 32+: P1–C1, 1.741(6)
(1.79(7)), P1–N1, 1.623(6) (1.622(6)); N1-P1-C1, 118.1(3) (117.3(3)).

Figure 2. Selected molecular orbitals for 32+. a) LUMO, b) HOMO.
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formation of [2+][AlCl4] and DMAP·AlCl3, an observation
which is consistent with the HSAB concept regarding PMe3

and DMAP.[7b]

To eliminate counterion interference with respect to the
dication reactivity with DMAP, [32+][BArf

4]2 (Arf = 3,5-
(CF3)2-C6H3) was synthesized (see the Supporting Informa-
tion). Indeed, introducing 1.0 equiv of DMAP in a solution
containing [32+][BArf

4]2 resulted in the formation of the target
adduct [32+·DMAP] (dP = 131.2 ppm).

Therefore, the unprecedented equilibrium system
(Scheme 3), especially the equilibrium involving a heterolytic
P�P bond formation/cleavage,[17] for phosphenium chemistry
revealed that PMe3 has a higher preference to interact with
AlCl4

� than with the cation but that the preference can be
altered with a decrease in temperature. Lastly, the presence of
a (partially) vacant P 3p orbital on 32+ and, hence, the Lewis
acidic nature of this dication was confirmed with the observed
formation of 32+·PMe3 and 32+·DMAP.

In conclusion, we have succeeded in utilizing the unique
electron-donor properties of 1 to stabilize the very first
example of coordinatively unsaturated PIII-centered dication
32+. Electronic (based on DFT) and reactivity properties
(based on the reactions with PMe3 and DMAP) promise an
exciting chemistry for this polycation. In fact, we hope that 32+

could be to phosphenium chemistry as cyclic (alkyl) (amino)
carbenes (CAACs) are to carbene chemistry.[18] Reactivity
investigations of this interesting polycationic molecule, espe-
cially involving transition-metal chemistry, are ongoing and
will be reported in due course.
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