

Available online at www.sciencedirect.com



Journal of Fluorine Chemistry 126 (2005) 1166-1173



www.elsevier.com/locate/fluor

# Chromium-mediated fluoroalkenylation reactions of 1,1-dibromo-1-fluoroalkane and 1-bromo-1-fluoroalkene derivatives

Akio Saito, Muga Nakagawa, Takeo Taguchi\*

School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan

Received 16 March 2005; received in revised form 9 May 2005; accepted 9 May 2005 Available online 23 June 2005

#### Abstract

 $CrCl_2$ - and NiCl\_2-mediated coupling reactions of E/Z mixture of 1-bromo-1-fluoroalkenes with aldehydes proceeded in a high stereoselectivity to give the corresponding (*Z*)-2-fluoroallylic alcohol derivatives. On the other hand, in the reaction of 1,1-dibromo-1-fluoroalkane with  $CrCl_2$ , (*Z*)-fluoroalkene derivative was formed via  $\alpha$ -elimination reaction of the chromium carbenoid intermediate accompanying the concomitant 1,2-shift of  $\beta$ -hydrogen.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Chromium chloride; Fluoroalkenylation; 1-Bromo-1-fluoroalkene; 1,1-Dibromo-1-fluoroalkane; 2-Fluoroallylic alcohol

#### 1. Introduction

Fluorinated olefins are an important class of compounds in the field of medicinal chemistry and material science, for example in medicinal chemistry area as potential enzyme inhibitors [1,2] or as an ideal mimic of amide bond [3-5]. Therefore, development of new and efficient synthetic methods for fluorinated olefins has been extensively investigated. The synthetic methods for fluorinated olefins can be classified into two types, which involve carbon-fluorine bond forming reactions and the use of the fluorinated compounds as building blocks. In the former case, fluorination of alkenyl anion with electrophilic fluorinating reagent, such as Nfluorosulfonamide [6] or fluoroolefin formation by the reaction of carbonyl compounds with diethylaminosulfur trifluoride (DAST) [7] are known, while there remains several problems in the stereoselectivity and the generality of these reactions. As typical building blocks for fluorinated olefin synthesis, fluorophosphonoacetate in the Horner-Emmons reaction [8], fluorosilylacetate in the Peterson olefination [9] and 1-fluoro-1-sulfonyl- or 1-fluoro-1-stannylalkenes in palladium-catalyzed coupling reactions [10] are providing highly useful positions.

It would be expected that like non-fluorinated vinyl metal chemistry [11], if fluorovinyl metal species were readily generated by hydrometalation or carbometalation reaction with fluoroacetylene derivatives, such reactive organometallics should open convenient accesses to a variety type of fluorinated olefins. However, it is known that fluoroacetylenes oligomerize very easily [12], that is, fluoroacetylenes are too unstable to handle as synthetic intermediates (Scheme 1).

Therefore, development of an efficient method for the stereo- and chemo-selective generation of reactive fluorovinyl metal species should be challenging subject. Among such studies, Burton et al. have reported the kinetic separation of the (E)- and (Z)-isomers of 1-bromo-1fluoroalkenes using Pd-catalyzed carbonylation and hydrogenolysis reactions, in which the (E)-isomer shows remarkably higher reactivity than the (Z)-isomer [13]. Related to this, very recently, Pannecoucke and co-workers reported the stereoselective dehydrobromination of 1bromo-1-fluoroalkenes with DBU or LiHMDS obtaining the (E)-isomer unchanged [14].

<sup>\*</sup> Corresponding author. Tel.: +81 426 76 3257; fax: +81 426 76 3257. *E-mail address:* taguchi@ps.toyaku.ac.jp (T. Taguchi).

<sup>0022-1139/\$ –</sup> see front matter  $\odot$  2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2005.05.003

 $R-C\equiv C-X \xrightarrow{M-H} \begin{bmatrix} R\\ hydrometalation \end{bmatrix} \begin{bmatrix} R\\ H\end{bmatrix} C=C \begin{bmatrix} H\\ M \end{bmatrix} \xrightarrow{E^+} \begin{bmatrix} R\\ H\end{bmatrix} C=C \begin{bmatrix} H\\ H\end{bmatrix}$  X = H stable X = F extremely unstable

Scheme 1.

Accumulated synthetically useful methods for the preparation of alkenylated compounds employing chromium chemistry [15] prompted us to examine the generation of fluoroalkenyl chromium species from 1,1-dihalo-1fluoroalkane or 1-bromo-1-fluoroalkene. Falck et al. demonstrated that 1,1,1-trichloroalkane 1 reacts with chromium(II) chloride to generate (E)-chloroalkenyl chromium(III) species 3 stereoselectively via gem-bischromium(III) carbenoid intermediate 2 and this chloroalkenyl chromium species 3 can serve in carbon–carbon bond forming reactions such as addition to aldehyde and Pd-catalyzed arylation reaction [16] (Scheme 2). As one of the most useful chromium-mediated reactions, a highly chemo-selective addition reaction of alkenylchromium(III) generated from alkenyl iodide and CrCl<sub>2</sub>/NiCl<sub>2</sub> with aldehyde, so-called Nozaki-Hiyama-Kishi (N-H-K) reaction, has been well documented with many applications to the key steps in the total synthesis of structurally complicated natural products [15,17].

Contrary to the hydrocarbon chemistry area, however, when we started the chromium chemistry, there had been no report on the reaction of 1,1-dihalo-1-fluoroalkane or 1-bromo-1-fluoroalkene with  $CrCl_2$  [18], while very recently, Pannecoucke et al. reported the stereoselective fluoroalkenylation of aldehydes employing N–H–K reaction of 1-bromo-1-fluoroalkene [19]. In this paper, we report our collective results obtained from the reactions of 1,1-dibromo-1-fluoroalkane and 1-bromo-1-fluoroalkene derivatives with  $CrCl_2$ , in particular, the former shows a different reactivity as compared with that of trichloroalkanes and the latter provides *Z*-selective formation of 1-substituted 2-fluoroallylic alcohols using the *E/Z* mixture (Scheme 3).

#### 2. Results and discussion

Initially, reaction of TBDPS ether of 3,3-dibromo-3fluoropropanol **5** with  $CrCl_2$  was conducted under various conditions to see the possibility for the generation of fluoroalkenyl chromium species, similar to trichloro derivative (Table 1). Dibromofluoro compound **5** did not react with  $CrCl_2$  in THF at room temperature (entry 1), while a combination of  $CrCl_2$  and Mn powder in THF at the same



temperature promoted the reaction giving rise to (*Z*)fluoroalkene **6** in 16% yield after 20 h (entry 2). In DMF reaction proceeded smoothly consuming **5** within 6 h to give fluoroalkene **6** in 75% yield with complete *Z*-selectivity after aqueous work-up (entry 3). Furthermore, it was found that treatment of the reaction mixture obtained under the same conditions with D<sub>2</sub>O or benzaldehyde instead of aqueous work-up resulted in the formation of fluoroalkene **6** as a sole product, and any deuterium incorporation or fluoroalkenylation of aldehyde was not observed (entries 4–6).

Under the Barbier's conditions, namely when a mixture of **5**, benzaldehyde,  $CrCl_2$  and Mn powder in DMF was stirred at room temperature, we obtained the fluoroallyl alcohol **7db** in only 12% yield along with the isolation of **6** in 39% yield, still as a major product (Scheme 4).

Possible reaction pathway is illustrated in Scheme 5. From these results and the efficient fluoroalkenylation of aldehyde with 1-bromo-1-fluoroalkene mediated by CrCl<sub>2</sub>/ NiCl<sub>2</sub> in DMF (vide infra), it would be likely that the formation of fluoroalkenyl chromium species 11 is not the major reaction pathway in the reaction of dibromofluoroalkane 5 with CrCl<sub>2</sub> and Mn powder in DMF. On the other hand, the 1,2-shift of  $\beta$ -hydrogen to divalent carbon resulting in the formation of an alkene is well known reaction via carbene and carbenoid intermediate [20]. Likewise, the reaction pathway to the major product fluoroalkene 6 from dibromofluoride 5 possibly involves the generation of chromium carbenoid intermediate 9 as the first step, and then  $\alpha$ -elimination of bromine accompanying the concomitant 1,2-shift of  $\beta$ -hydrogen prior to the second reaction of the carbenoid intermediate 9 with CrCl<sub>2</sub> to generate bischromium intermediate 10 (Scheme 5). Mechanistic detail is the future subject.





Since it was difficult to achieve chromium-mediated fluoroalkenylation of aldehyde using 1,1-dibromo-1-fluoroalkane, we next examined the N-H-K reaction using a E/Z mixture of 1-bromo-1-fluoroalkene. According to the reported procedure [21], 1-bromo-1-fluoroalkenes 8a-8d were prepared as an almost 1:1 E/Z mixture, which was used chromium-mediated reaction with aldehyde. Results are summarized in Table 2. When a mixture of the 1-bromo-1fluorostyrene 8a (E/Z = 45:55, 4 equiv), 3-phenylpropanal (1 equiv), CrCl<sub>2</sub> (8 equiv) and a catalytic amount of NiCl<sub>2</sub> (8 mol %) in DMF was stirred at room temperature for 4 h, the fluoroallyl alcohol 7aa was isolated in 74% yield as a single (Z)-isomer (entry 1). Similarly, with benzaldehyde the adduct 7ab consisting of only (Z)-isomer was obtained in 62% yield (entry 2). The alkyl group substituted substrate 8b showed lower reactivity than styrene derivative 8a, requiring much more NiCl<sub>2</sub> for the reaction to proceed smoothly. Thus, on using 80 mol% NiCl<sub>2</sub>, the reaction of 8b (E/

Table 1

Reaction of dibromofluoroalkane 5 with CrCl

*Z* = 47:53) with 3-phenylpropanal gave the adduct **7ba** in 75% yield, and with benzaldehyde the product **7bb** was obtained in 70% yield (entries 3, 4). In these cases, a high *Z* selectivity of the isolated fluoroallyl alcohol derivative was observed, **7ba**; Z/E = 94:6 and **7bb**; Z/E = 92:8, respectively. Under the similar conditions, the homoallyl ether derivative **8c** reacted with 3-phenylpropanal and benzaldehyde to give the corresponding adduct **7ca** in 70% yield (Z/E = 93:7) and **7cb** in 73% yield (Z/E = 95:5), respectively (entries 5, 6). In the case of the allyl ether derivative **8d**, while a longer reaction time was required, highly *Z* selective formation of the adducts **7da** and **7db** was also observed (Z/E = 95:5) (entries 7,8).

To see the difference in reactivity due to the olefin geometry, we carried out the reaction of (*Z*)-isomer of bromofluoroalkene (*Z*)-**8d** with 2 equiv of benzaldehyde (Scheme 6). Reaction proceeded rather sluggishly to give the (*E*)-isomer of alkenylated product (*E*)-**7db** in 10% yield



| Entry | CrCl <sub>2</sub> (equiv) | Mn (equiv) | Solvent | Time (h) | $E^+$             | <b>6</b> yield (%) <sup>a</sup> |
|-------|---------------------------|------------|---------|----------|-------------------|---------------------------------|
| 1     | 4.8                       | 0          | THF     | 12       | H <sub>2</sub> O  | No reaction                     |
| 2     | 2                         | 4          | THF     | 20       | H <sub>2</sub> O  | 16                              |
| 3     | 2                         | 4          | DMF     | 6        | H <sub>2</sub> O  | 75                              |
| 4     | 2                         | 4          | DMF     | 6        | $\overline{D_2O}$ | 73 <sup>b</sup>                 |
| 5     | 2                         | 4          | DMF-d7  | 6        | H <sub>2</sub> O  | 66 <sup>b</sup>                 |
| 6     | 2                         | 4          | DMF     | 6        | PhCHO             | $60^{\circ}$                    |

<sup>a</sup> Isolated yield.

<sup>b</sup> **6-D** was not detected.

<sup>c</sup> 2-Fluoroallylic alcohol 7db was not detected.

Table 2Synthesis of 2-fluoroallyl alcohol derivatives 7

|                |                       |                                       | ŶН         |
|----------------|-----------------------|---------------------------------------|------------|
| $Br_{R^1 + F}$ | 2 <sup>2</sup> С НО - | NiCl <sub>2</sub> , CrCl <sub>2</sub> | $R^2  R^1$ |
| F              | ( OHO                 | DMF, rt                               | F          |
| 8              |                       |                                       | 7          |

| Entry  | <b>8</b> (E/Z)               | R <sup>2</sup> CHO | Method <sup>a</sup> | Time (h) | 7           | Yield <sup>b</sup> (%) | $Z/E^{c}$ |
|--------|------------------------------|--------------------|---------------------|----------|-------------|------------------------|-----------|
| 1<br>2 | Bryph                        | CHO                | А                   | 4        | <b>7</b> aa | 74                     | 100:0     |
|        |                              | Pn ~               | А                   | 4        | 7ab         | 62                     | 100:0     |
|        | ⊢<br><b>8a</b> (45∶55)       | PhCHO              |                     |          |             |                        |           |
| 3<br>4 | Brynner                      | , CHO              | В                   | 4        | 7ba         | 75                     | 94:6      |
|        |                              | Ph 🗸               | В                   | 4        | 7bb         | 70                     | 92:8      |
|        | ⊢<br>8b (47:53)              | PhCHO              |                     |          |             |                        |           |
| 5      | Br<br>F<br><b>8c</b> (45:55) | Ph                 | В                   | 4        | 7ca         | 70                     | 93:7      |
| 6      |                              |                    | В                   | 4        | 7cb         | 73                     | 95:5      |
|        |                              | PhCHO              |                     |          |             |                        |           |
| 7<br>8 | BrynnoSi                     | CHO                | В                   | 12       | 7da         | 64                     | >95:5     |
|        |                              | Pn ~               | В                   | 12       | 7db         | 60                     | >95:5     |
|        |                              | PhCHO              |                     |          |             |                        |           |

<sup>a</sup> Method A: 8 mol% of NiCl<sub>2</sub>, 8 equiv of CrCl<sub>2</sub> and 4 equiv of **8** were employed in DMF (0.03 M); method B: 8 mol% of NiCl<sub>2</sub>, 8 equiv of CrCl<sub>2</sub> and 4 equiv of **8** were employed in DMF (0.06 M).

<sup>b</sup> Isolated yield based on the aldehyde.

<sup>c</sup> Z/E ratio was determined by 300 MHz <sup>1</sup>H NMR.

along with the recovery of (Z)-8d in 4% yield, but (Z)-isomer of alkenylated product (Z)-7db was not detected. Besides, these compounds, formation of homocoupling products of 8d seemed to make this reaction rather complicated [17c,d]. Similar reaction using E/Z mixture (ratio 44:56) gave (Z)-7db in 89% yield based on the starting (E)-isomer of the bromide (E)-8d, and (E)-7db in 11% yield based on (Z)-8d along with the recovery of (Z)-8d in 11%. From these results, (E)-isomer of the bromide **8** shows highly efficient reactivity with  $CrCl_2/NiCl_2$  to form (E)-fluroalkenyl chromium species, which reacts with aldehyde to give the (Z)-fluoroallylic alchohol. On the other hand, compared with the (E)-isomer, (Z)-isomer reacts with CrCl<sub>2</sub>/NiCl<sub>2</sub> much more slowly to form the (Z)-alkenylchromium species stereospecifically leading to (E)-fluoroallylic alchohol although yield is quite low. Therefore, when the reaction is conducted using excess amount of bromofluoroalkene 8 relative to aldehyde, highly Z-selective fluoroalkenylation reaction can be achieved.

In summary,  $CrCl_2$ -Ni $Cl_2$ -mediated reaction of an E/Z mixture of 1-bromo-1-fluoroalkene with aldehyde provided a highly Z-selective alkenylation product. Furthermore, the reaction of 1,1-dibromo-1-fluoroalkane with  $CrCl_2$  was found to give (Z)-fluoroalkene derivative via  $\alpha$ -elimination reaction of the chromium carbenoid intermediate accompanying the concomitant 1,2-shift of  $\beta$ -hydrogen.

#### 3. Experimental details

*General*: CrCl<sub>2</sub>, NiCl<sub>2</sub> and Mn are available commercially. All reactions were carried out under argon atmosphere. <sup>1</sup>H and <sup>13</sup>C NMR spectra were taken on a Bruker dpx400 spectrometer, and chemical shifts were reported in



parts per million (ppm) using CHCl<sub>3</sub> (7.26 ppm) in CDCl<sub>3</sub> for <sup>1</sup>H NMR, and CDCl<sub>3</sub> (77.01 ppm) for <sup>13</sup>C NMR as an internal standard, respectively. <sup>19</sup>F NMR spectra were taken on a Bruker dpx400 spectrometer, and chemical shifts were reported in parts per million using benzotrifluoride as a standard. Infrared (IR) spectra were recorded on a JASCO FT/IR-620 infrared spectrophotometer. Mass spectra (MS) were obtained on a VG Auto Spec. Medium pressure liquid chromatography (MPLC) was performed using prepacked column (silica-gel, 50 μm) with RI detector.

### 3.1. Preparation of (1,1-dimethylethyl)(diphenyl)silyl 3,3-dibromo-3-fluoropropyl ether (5)

Under an argon atmosphere, to a solution of LiBH<sub>4</sub> (230 mg, 10.6 mmol) in Et<sub>2</sub>O (6 mL), ethyl 3,3-dibromo-3fluoropropionate [22] (2.7 g, 9.7 mmol) in Et<sub>2</sub>O (4 mL) and trimethyl borate (200  $\mu$ L, 1.8 mmol) were added at 0 °C. After being stirred at the same temperature for 2 h and then at room temperature for 5 h, addition of NH<sub>4</sub>Cl aq. followed by extractive work-up gave 3,3-dibromo-3-fluoropropanol, which was used without purification. A mixture of this alcohol, *tert*-butyldiphenylchlorosilane (1.5 mL, 5.8 mmol) and imidazole (550 mg, 8.1 mmol) in THF (6 mL) was stirred at room temperature for 5 h. Addition of H<sub>2</sub>O followed by extractive work-up and purification by column chromatograpy (hexane/AcOEt = 100:1) gave the product **5** (2.5 g, 5.2 mmol, 54% yield).

(1,1-Dimethylethyl)(diphenyl)silyl 3,3-dibromo-3-fluoropropyl ether (5): Colorless oil. IR (neat)  $\nu \text{ cm}^{-1}$ ; 3071, 2931, 2858, 1472, 1428, 1113, 823, 739, 702. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ ; 1.09 (9H, s), 3.04 (2H, dt, *J* = 15.8, 6.7 Hz), 4.00 (2H, t, *J* = 6.7 Hz), 7.40–7.48 (6H, m), 7.69–7.72 (4H, m). <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>)  $\delta$ ; 19.1, 26.8, 54.8 (d, *J* = 18.0 Hz), 61.0 (d, *J* = 2.9 Hz), 93.0 (d, *J* = 319.7 Hz), 127.8, 129.9, 133.1, 135.6. <sup>19</sup>F NMR (376.5 MHz, CDCl<sub>3</sub>)  $\delta$ ; 19.1 (1F, t, *J* = 15.8 Hz). EI–MS *m*/*z*: 291 (*M*<sup>+</sup>–C<sub>6</sub>H<sub>11</sub>BrF). HRMS calcd for C<sub>13</sub>H<sub>12</sub>BrOSi: 290.9841 (*M*<sup>+</sup>–C<sub>6</sub>H<sub>11</sub>BrF), Found: 290.9814. Anal. Calcd for C<sub>19</sub>H<sub>23</sub>Br<sub>2</sub>FOSi: C, 48.12; H, 4.89. Found: C, 48.39; H, 4.91.

#### 3.2. Reaction of 1,1-dibromo-1-fluoroalkane with CrCl<sub>2</sub>

Under an argon atmosphere, to a mixture of  $CrCl_2(94.0 \text{ mg}, 0.77 \text{ mmol})$  and Mn (55.0 mg, 1.0 mmol) in DMF (3 mL) sonicated for 10 min, was added a solution of **5** (120 mg, 0.25 mmol) and benzaldehyde (50  $\mu$ L, 0.49 mmol) in DMF (2 mL). After being stirred at room temperature for 14 h, addition of H<sub>2</sub>O followed by extractive work-up and separation by column chromatography gave a fraction containing **6** (hexane/AcOEt = 50:1) and allylic alcohol **7db** (12.4 mg, 0.03 mmol, 12%, hexane/AcOEt = 6:1). The former was further separated by MPLC (hexane/AcOEt = 50:1, flow rate 7.0 mL/min) to give **6** (31.2 mg, 0.1 mmol, 39% yield).

(1,1-Dimethylethyl)(diphenyl)silyl (Z)-3-fluoro-2-propenyl ether (6): Colorless oil. IR (neat)  $\nu$  cm<sup>-1</sup>; 3071, 2931,

2858, 1472, 1428, 1112, 740, 702. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ ; 1.06 (9H, s), 4.37 (2H, ddd, *J* = 6.6, 2.2, 1.5 Hz), 5.03 (1H, dtd, *J* = 42.2, 6.6, 4.8 Hz), 5.40 (1H, ddt, *J* = 84.0, 4.8, 1.5 Hz), 7.33–7.47 (6H, m), 7.61–7.73 (4H, m). <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>)  $\delta$ ; 19.2, 26.8, 56.3 (d, *J* = 7.6 Hz), 111.1 (d, *J* = 3.0 Hz), 127.7, 129.7, 133.6, 135.6, 147.7 (d, *J* = 260.4 Hz). <sup>19</sup>F NMR (376.5 MHz, CDCl<sub>3</sub>)  $\delta$ ; –64.3 (1F, ddt, *J* = 84.0, 42.2, 2.2 Hz). EI–MS *m*/*z*: 257 (*M*<sup>+</sup>–C<sub>4</sub>H<sub>9</sub>). HRMS calcd for C<sub>15</sub>H<sub>14</sub>FOSi: 257.0798 (*M*<sup>+</sup>–C<sub>4</sub>H<sub>9</sub>). Found: 257.0805.

(Z)-4-{ [(1,1-Dimethylethyl)(diphenyl)silyl]oxy}-2-fluoro -1-phenyl-2-buten-1-ol (7db): Colorless oil. IR (neat)  $\nu$  cm<sup>-1</sup>; 3398, 3070, 2931, 2858, 1472, 1428, 1111, 1060, 741, 702. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ ; 1.07 (9H, s), 2.16 (1H, br. s), 4.39 (2H, d, J = 6.6 Hz), 5.14 (1H, dd, J = 11.1, 4.4 Hz), 5.21 (1H, dt, J = 36.6, 6.6 Hz), 7.34–7.46 (11H, m), 7.67–7.70 (4H, m). <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>)  $\delta$ ; 19.1, 26.8, 57.1 (d, J = 6.8 Hz), 72.4 (d, J = 32.0 Hz), 107.2 (d, J = 11.0 Hz), 126.7, 127.7, 128.4, 128.6, 129.6, 133.6, 135.6, 139.1, 158.7 (d, J = 260.4 Hz). <sup>19</sup>F NMR (376.5 MHz, CDCl<sub>3</sub>)  $\delta$ ; -55.9 (1F, dd, J = 36.6, 11.1 Hz). EI–MS m/z: 285 ( $M^+$ –C<sub>10</sub>H<sub>15</sub>). HRMS calcd for C<sub>16</sub>H<sub>16</sub>FO<sub>2</sub>Si: 285.0747 ( $M^+$ –C<sub>10</sub>H<sub>15</sub>). Found: 285.0756. Anal. Calcd for C<sub>26</sub>H<sub>29</sub>FO<sub>2</sub>Si: C, 74.25; H, 6.95. Found: C, 73.90; H, 7.03.

3.3. General procedure for preparation of 1-bromo-1fluoroalkene: preparation of 1-[(E)- and (Z)-2-bromo-2fluoroethenyl]benzene (**8a**)

Under an argon atmosphere, to a suspension of Zn (1.2 g, 18.4 mmol) and triphenylphosphine (3.1 g, 11.8 mmol) in THF (30 mL), a solution of benzaldehyde (0.6 mL, 5.9 mmol) and tribromofluoromethane (4.8 g, 17.7 mmol) in THF (10 mL) was added at room temperature. After being refluxed for 2 h, usual work-up and purification by column chromatography (hexane/Et<sub>2</sub>O = 100:1) gave the product **8a** (1.1 g, 5.3 mmol, 89% yield, E/Z = 45:55).

1-[(E)- and (Z)-2-bromo-2-fluoroethenyl]benzene (8a): <sup>1</sup>H and <sup>19</sup>F NMR spectra of this compound was identical with those reported by Burton and co-workers [21].

1-[(E)- and (Z)-4-bromo-4-fluoro-3-butenyl]benzene (**8b**): <sup>1</sup>H and <sup>19</sup>F NMR spectra of this compound was identical with those reported by Hiyama and co-workers [23].

(*E*)- and (*Z*)-4-bromo-4-fluoro-3-butenyl (1,1-dimethylethyl)(diphenyl)silyl ether (**8***c*): Colorless oil. IR (neat)  $\nu$  cm<sup>-1</sup>; 3071, 2931, 2858, 1472, 1428, 1112, 1024, 822, 740, 702. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ ; 1.09 (9H, s), 2.30 (*Z*-2H, dt, *J* = 7.4, 6.6 Hz), 2.38 (*E*-2H, dt, *J* = 7.7, 6.4 Hz), 3.69–3.76 (2H, m), 5.14 (*E*-1H, dt, *J* = 31.3, 7.7 Hz), 5.60 (*Z*-1H, dt, *J* = 13.4, 7.4 Hz), 7.40–7.49 (6H, m), 7.68–7.77 (4H, m). <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>)  $\delta$ ; 19.2, 26.8, 29.2, 31.1, 62.3, 62.4, 107.1 (d, *J* = 16.5 Hz), 109.6 (d, *J* = 12.4 Hz), 127.7, 129.7, 132.4 (d, *J* = 316.1 Hz), 133.6, 135.6, 136.0 (d, *J* = 317.9 Hz). <sup>19</sup>F NMR (376.5 MHz, CDCl<sub>3</sub>)  $\delta$ ; -7.5 (Z–1F, d, J = 13.4 Hz), -12.0 (*E*–1F, d, J = 31.3 Hz). EI–MS m/z: 349 ( $M^+$ –C<sub>4</sub>H<sub>9</sub>). HRMS calcd for C<sub>16</sub>H<sub>15</sub>BrFOSi: 349.0060 ( $M^+$ –C<sub>4</sub>H<sub>9</sub>). Found: 349.0054.

(E)- and (Z)-3-bromo-3-fluoro-2-propenyl (1,1-dimethylethyl)(diphenyl)silyl ether (8d): Colorless oil. IR (neat)  $\nu$  cm<sup>-1</sup>; 3071, 2958, 2857, 1472, 1428, 1113, 1070, 822, 740, 702. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ; 1.09 (9H, s), 4.24 (Z-2H, dd, J = 6.8, 2.2 Hz), 4.28 (E-2H, dd, J = 6.9,2.7 Hz), 5.30 (E-1H, dd, J = 30.6, 6.9 Hz), 5.74 (Z-1H, dd, J = 12.3, 6.8 Hz), 7.35–7.53 (6H, m), 7.62–7.78 (4H, m). <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>) δ; 19.1, 26.8, 57.9 (*E*, d, J = 3.3 Hz, 61.0 (Z, d, J = 7.3 Hz), 109.8 (Z, d, J = 14.7 Hz), 112.4 (*E*, d, J = 10.7 Hz), 127.8, 129.8, 133.2 (E), 133.2 (Z), 133.4 (E, d, J = 322.5 Hz), 135.5 (*E*), 135.6 (*Z*), 136.2 (*Z*, d, J = 318.6 Hz). <sup>19</sup>F NMR  $(376.5 \text{ MHz}, \text{CDCl}_3) \delta$ ; -6.6 (Z-1F, dd, J = 12.3, 2.2 Hz), -8.8 (*E*-1F, dd, *J* = 30.6, 2.7 Hz). EI-MS *m*/*z*: 335 (*M*<sup>+</sup>-C<sub>4</sub>H<sub>9</sub>). HRMS calcd for C<sub>15</sub>H<sub>13</sub>BrFOSi: 334.9903 (M<sup>+</sup>-C<sub>4</sub>H<sub>9</sub>). Found: 334.9908. Anal. Calcd for C<sub>19</sub>H<sub>22</sub>BrFOSi: C, 58.01; H, 5.64. Found: C, 58.18; H, 5.73.

## 3.4. General procedure for CrCl<sub>2</sub>/NiCl<sub>2</sub>-mediated reaction of 1-bromo-1-fluoroalkene with aldehyde

Under an argon atmosphere, to a mixture of  $CrCl_2$  (185 mg, 1.5 mmol) and NiCl<sub>2</sub> (2.0 mg, 15 µmol) in DMF (4 mL) sonicated for 10 min, was added a solution of **8a** (120 mg, 0.25 mmol) and 3-phenylpropanal (50 µL, 0.49 mmol) in DMF (2 mL). After being stirred at room temperature for 4 h, addition of H<sub>2</sub>O followed by extractive work-up and purification by column chromatography (hexane/AcOEt = 5:1) gave the product **7aa** (35.4 mg, 0.14 mmol, 74% yield).

(*Z*)-2-*Fluoro-1,5-diphenyl-1-penten-3-ol* (**7aa**): Colorless oil. IR (neat)  $\nu \text{ cm}^{-1}$ ; 3365, 3027, 2926, 1495, 1451, 1032, 752, 695. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ ; 2.02–2.18 (2H, m), 2.72–2.86 (2H, m), 4.24 (1H, ddd, *J* = 15.2, 7.2, 6.2 Hz), 5.78 (1H, d, *J* = 39.6 Hz), 7.20–7.37 (8H, m), 7.49– 7.53 (2H, m). <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>)  $\delta$ ; 31.5, 35.5, 70.6 (d, *J* = 30.1 Hz), 106.5 (d, *J* = 6.7 Hz), 126.0, 127.4, 128.5, 128.7, 128.7, 132.7, 141.2, 160.1 (d, *J* = 269.7 Hz). <sup>19</sup>F NMR (376.5 MHz, CDCl<sub>3</sub>)  $\delta$ ; -55.2 (1F, dd, *J* = 39.6, 15.2 Hz). EI–MS *m*/*z*: 256 (*M*<sup>+</sup>). HRMS calcd for C<sub>17</sub>H<sub>17</sub>FO: 256.1263 (*M*<sup>+</sup>). Found: 256.1252. Anal. Calcd for C<sub>17</sub>H<sub>17</sub>FO: C, 79.66; H, 6.69. Found: C, 79.27; H, 6.94.

(*Z*)-2-*Fluoro-1,3-diphenyl-2-propen-1-ol* (**7***ab*): <sup>1</sup>H and <sup>19</sup>F NMR spectra of this compound was identical with those reported by Hiyama et al [24].

(*Z*)-4-Fluoro-1,7-diphenyl-4-hepten-3-ol (**7ba**): Colorless oil. IR (neat)  $\nu$  cm<sup>-1</sup>; 3377, 3027, 2925, 2858, 1496, 1454, 1030, 748, 699. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ ; 1.86 (1H, br. s), 1.91–2.05 (2H, m), 2.47 (2H, dt, *J* = 7.5, 7.5 Hz), 2.59–2.78 (4H, m), 4.06 (1H, ddd, *J* = 16.6, 7.3, 6.5 Hz), 4.85 (1H, dt, *J* = 37.5, 7.5 Hz), 7.15–7.26 (6H, m), 7.29– 7.33 (4H, m). <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>)  $\delta$ ; 24.9 (d, J = 4.3 Hz), 31.4, 35.3, 35.4, 70.1 (d, J = 30.3 Hz), 105.9 (d, J = 13.9 Hz), 126.0, 126.0, 128.3, 128.4, 141.3, 159.5 (d, J = 257.4 Hz). <sup>19</sup>F NMR (376.5 MHz, CDCl<sub>3</sub>)  $\delta$ ; -61.5 (1F, dd, J = 37.5, 16.6 Hz). EI–MS m/z: 284 ( $M^+$ ). HRMS calcd for C<sub>19</sub>H<sub>21</sub>FO: 284.1576 ( $M^+$ ). Found: 284.1565. Anal. Calcd for C<sub>19</sub>H<sub>21</sub>FO: C, 80.25; H, 7.44. Found: C, 79.98; H, 7.49.

(Z)-2-Fluoro-1,5-diphenyl-2-penten-1-ol (7bb): Colorless oil. IR (neat)  $\nu$  cm<sup>-1</sup>; 3389, 3028, 2926, 2859, 1496, 1453, 1024, 748, 700. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ ; 2.26 (1H, br. s), 2.48 (2H, dt, J = 7.5, 7.5 Hz), 2.73 (2H, t, J = 7.5 Hz), 4.95 (1H, dt, J = 36.9, 7.5 Hz), 5.17 (1H, d, J = 12.7 Hz), 7.19–7.25 (3H, m), 7.28–7.39 (7H, m). <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>)  $\delta$ ; 25.1 (d, J = 4.0 Hz), 35.3, 72.7 (d, J = 32.0 Hz), 106.7 (d, J = 13.3 Hz), 126.0, 126.6, 128.2, 128.3, 128.4, 128.5, 139.5, 141.3, 158.8 (d, J = 256.5 Hz). <sup>19</sup>F NMR (376.5 MHz, CDCl<sub>3</sub>)  $\delta$ ; -59.4 (1F, dd, J = 36.9, 12.7 Hz). EI–MS m/z: 256 ( $M^+$ ). HRMS calcd for C<sub>17</sub>H<sub>17</sub>FO: 256.1263 ( $M^+$ ). Found: 256.1256.

(Z)-7-{[(1,1-Dimethylethyl)(diphenyl)silyl]oxy}-4-fluoro -1-phenyl-4-hepten-3-ol (7ca): Colorless oil. IR (neat)  $\nu$  cm<sup>-1</sup>; 3388, 3070, 2930, 2858, 1472, 1428, 1111, 740, 701. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ; 1.09 (9H, s), 1.91–2.09 (2H, m), 2.40 (2H, dt, J = 7.4, 6.4 Hz), 2.66–2.85 (2H, m), 3.73 (2H, t, J = 6.4 Hz), 4.07 (1H, ddd, J = 15.8, 9.4, 6.2 Hz), 4.92 (1H, dt, J = 37.8, 7.4 Hz), 7.18–7.26 (3H, m), 7.28-7.33 (2H, m), 7.37-7.47 (6H, m), 7.69-7.71 (4H, m). <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>)  $\delta$ ; 19.6, 27.3, 27.4 (d, *J* = 3.9 Hz), 32.0, 35.8, 63.5, 70.5 (d, *J* = 30.2 Hz), 103.8 (d, J = 13.7 Hz), 126.4, 128.1, 128.9, 128.9, 130.0, 134.3, 136.0, 141.8, 160.6 (d, J = 257.5 Hz). <sup>19</sup>F NMR  $(376.5 \text{ MHz}, \text{ CDCl}_3) \delta$ ; -61.9 (1F, dd, J = 37.8, 15.8 Hz). EI-MS m/z: 230 ( $M^+$ -C<sub>16</sub>H<sub>21</sub>F). HRMS calcd for  $C_{13}H_{14}O_2Si$ : 230.0763 ( $M^+$ - $C_{16}H_{21}F$ ). Found: 230.0780. Anal. Calcd for C<sub>29</sub>H<sub>35</sub>FO<sub>2</sub>Si: C, 75.28; H, 7.62. Found: C, 75.38; H, 7.66.

(Z)-5-{ [(1,1-Dimethylethyl)(diphenyl)silyl]oxy}-2-fluoro -1-phenyl-2-penten-1-ol (7cb): Colorless oil. IR (neat)  $\nu$  cm<sup>-1</sup>; 3397, 3070, 2930, 2858, 1472, 1428, 1111, 739, 702. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ ; 1.06 (9H, s), 2.20 (1H, br. s), 2.40 (2H, dt, J = 7.4, 6.4 Hz), 3.71 (2H, t, J = 6.4 Hz), 5.00 (1H, dt, J = 37.3, 7.4 Hz), 5.21 (1H, dd, J = 12.3, 3.5 Hz), 7.33–7.47 (11H, m), 7.66–7.71 (4H, m). <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>)  $\delta$ ; 19.2, 26.8, 27.0 (d, J = 3.7 Hz), 63.0, 72.8 (d, J = 31.7 Hz), 104.5 (d, J = 13.3 Hz), 126.7, 127.6, 128.3, 128.5, 129.6, 133.8, 135.6, 139.5, 159.5 (d, J = 257.0 Hz). <sup>19</sup>F NMR (376.5 MHz, CDCl<sub>3</sub>)  $\delta$ ; -58.7 (1F, dd, J = 37.3, 12.3 Hz). EI–MS m/z: 299 ( $M^+$ -C<sub>10</sub>H<sub>15</sub>). HRMS calcd for C<sub>17</sub>H<sub>18</sub>FO<sub>2</sub>Si: 299.0904 ( $M^+$ -C<sub>10</sub>H<sub>15</sub>). Found: 299.0893. Anal. Calcd for C<sub>27</sub>H<sub>31</sub>FO<sub>2</sub>Si: C, 74.61; H, 7.19. Found: C, 74.37; H, 7.33.

(Z)-6-{ [(1,1-Dimethylethyl)(diphenyl)silyl]oxy}-4-fluoro -1-phenyl-4-hexen-3-ol (7da): Colorless oil. IR (neat)  $\nu$  cm<sup>-1</sup>; 3388, 3070, 2931, 2858, 1471, 1428, 1111, 1065, 740, 701. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ ; 1.08 (9H, s), 1.72 (1H, br. s), 1.87–2.01 (2H, m), 2.64–2.81 (2H, m), 4.04 (1H, ddd, J = 14.3, 7.1, 7.1 Hz), 4.38 (2H, d, J = 6.6 Hz), 5.09 (1H, dt, J = 37.1, 6.6 Hz), 7.19–7.24 (3H, m), 7.29–7.33 (2H, m), 7.38–7.45 (6H, m), 7.69–7.72 (4H, m). <sup>13</sup>C NMR (100.6 MHz, CDCl<sub>3</sub>)  $\delta$ ; 19.1, 26.8, 31.4, 35.2, 57.0 (d, J = 7.0 Hz), 69.6 (d, J = 30.0 Hz), 106.5 (d, J = 11.4 Hz), 126.0, 127.7, 128.5, 129.7, 133.6, 135.6, 141.2, 159.5 (d, J = 261.2 Hz). <sup>19</sup>F NMR (376.5 MHz, CDCl<sub>3</sub>)  $\delta$ ; -58.8 (1F, dd, J = 37.1, 14.3 Hz). EI–MS m/z: 313 ( $M^+$ –C<sub>10</sub>H<sub>15</sub>). HRMS calcd for C<sub>18</sub>H<sub>18</sub>FO<sub>2</sub>Si: 313.1060 ( $M^+$ –C<sub>10</sub>H<sub>15</sub>). Found: 313.1037. Anal. Calcd for C<sub>28</sub>H<sub>33</sub>FO<sub>2</sub>Si: C, 74.96; H, 7.41. Found: C, 74.84; H, 7.46.

#### References

 (a) J.R. McCarthy, D.P. Matthews, D.M. Stemerick, E.W. Huber, P. Bey, B.J. Lippert, R.D. Snyder, P.S. Sunkara, J. Am. Chem. Soc. 113 (1991) 7439–7440;

(b) A.J. Bionti, J.A. Dumont, T.L. Bush, E.A. Cashman, D.E. Cross-Doersen, S. Wright, D.P. Matthews, J.R. McCarthy, D.A. Kaplan, Cancer Res. 54 (1994) 1485–1490.

- [2] N. Daubresse, Y. Chupeau, C. Francesch, C. Lapierre, B. Pollet, C. Rolando, J. Chem. Soc. Chem. Commun. (1997) 1489–1490.
- [3] (a) R.J. Abraham, S.L.R. Ellison, P. Schonholzer, W.A. Thomas, Tetrahedron 42 (1986) 2101–2110;
  (b) P. Cieplak, P.A. Kollman, J. Comput. Aid. Mol. Des. 7 (1993) 291– 304;
  (c) M.M. Hann, P.G. Sammes, P.D. Kennewell, J.B. Taylor, J. Chem. Soc. Perkin Trans. I (1982) 307–314.
- [4] (a) T. Allemendinger, E. Felder, E. Hungerbuhler, in: J.T. Welch (Ed.), Selective Fluorination in Organic and Bioorganic Chemistry, ACS Symposium Series 456, ACS, Washington, DC, 1991, pp. 186–195;
  (b) J.T. Welch, J. Lin, L.G. Boros, B. DeCorte, K. Bergmann, R. Gimi, in: I. Ojima, J.R. McCarthy, J.T. Welch (Eds.), Biomedical Frontiers of Fluorine Chemistry, ACS Symposium Series 639, ACS, Washington, DC, 1996, pp. 129–142.
- [5] (a) T. Allemendinger, P. Furet, E. Hungerbuhler, Tetrahedron Lett. 31 (1990) 7297–7300;

(b) T. Allemendinger, E. Felder, E. Hungerbuhler, Tetrahedron Lett. 31 (1990) 7301–7304;

- (c) P.A. Bartlett, A. Otake, J. Org. Chem. 60 (1995) 3107-3111;
- (d) J.T. Welch, J. Lin, Tetrahedron 52 (1996) 291-304;

(e) J. Lin, P.J. Toscano, J.T. Welch, Proc. Natl. Acad. Sci. U.S.A. 95 (1998) 14020–14024;

(f) H. Hata, T. Kobayashi, H. Amii, K. Uneyama, J.T. Welch, Tetrahedron Lett. 43 (2002) 6099–6102;

(g) A. Otaka, H. Watanabe, E. Mitsuyama, A. Yukimasa, H. Tamamura, N. Fujii, Tetrahedron Lett. 42 (2001) 285–287;

(h) M. Okada, N. Nakamura, A. Sato, H. Horikawa, A. Saito, T. Taguchi, Chem. Lett. (2002) 28–29;

(i) M. Okada, N. Nakamura, A. Sato, H. Horikawa, A. Saito, T. Taguchi, Tetrahedron Lett. 43 (2002) 5845–5848.

- [6] S.H. Lee, J. Schwartz, J. Am. Chem. Soc. 108 (1986) 2445-2447.
- [7] (a) W.G. Dauben, B. Kohler, A. Roesle, J. Org. Chem. 50 (1985) 2007–2010;
  (b) For a review of DAST and related reagents, see M. Hudlicky, Org.

React. 35 (1988) 513.

[8] (a) H. Machleidt, R. Wassendorf, Justus Liebigs Ann. Chem. 674 (1964) 1–10;

(b) S. Sano, R. Teranishi, Y. Nagao, Tetrahedron Lett. 43 (2002) 9183–9186;

(c) For a review of fluoroalkene syntheses using phosphonium ylides,D.J. Burton, Z.-Y. Yang, W. Qiu, Chem. Rev. 96 (1996) 1641–1715.

[9] (a) J. Lin, J.T. Welch, Tetrahedron Lett. 39 (1998) 9613–9616;
(b) J.T. Welch, R.W. Herbert, J. Org. Chem. 55 (1990) 4782–4784.

- [10] (a) J.R. McCarthy, E.W. Huber, T.-B. Le, F. Mark Laskovics, D. Mattews, Tetrahedron 52 (1996) 45–58;
  (b) C. Chen, K. Wilcoxen, Y.-F. Zhu, K. Kim, J.R. McCarthy, J. Org. Chem. 64 (1999) 3476–3482;
  (c) See also Ref. [1a];
  (d) J.M. Percy, R.D. Wilkes, Tetrahedron 53 (1997) 14749–14762;
  (e) S. Patel, J.M. Percy, R.D. Wilkes, Tetrahedron Lett. 37 (1996)
- 5183–5186.[11] Review and examples of alkenylaluminum, borane and zirconium via hydrometalation or carbometalation:
  - (a) G. Zweifel, J.A. Miller, Org. React. 32 (1984) 375;
  - (a) G. Ewener, S.A. Binner, org. React. 52 (1904) 515,
    (b) W. Oppolzer, R.N. Radinov, Helv. Chim. Acta 75 (1992) 170–w173;
  - (c) W. Oppolzer, R.N. Radinov, E.J. El-Sayed, J. Org. Chem. 66 (2001) 4766–4770;
  - (d) S. Baba, E. Negishi, J. Am. Chem. Soc. 98 (1976) 6729-6731;
  - (e) E. Negishi, D.E. Van Horn, J. Am. Chem. Soc. 99 (1977) 3168– 3170;
  - (f) H. Matsushita, E. Negishi, J. Am. Chem. Soc. 103 (1981) 2882–2884;

(g) E. Negishi, T. Takahashi, S. Baba, D.E. Van Horn, N. Okukado, J. Am. Chem. Soc. 109 (1987) 2393–2401;

- (h) J.S. Temple, J. Schwartz, J. Am. Chem. Soc. 102 (1980) 7381–7382;
- (i) M. Riediker, J. Schwartz, Tetrahedron Lett. 22 (1981) 4655–4658;
  (j) J.S. Temple, M. Riediker, J. Schwartz, J. Am. Chem. Soc. 104 (1982) 1310–1315;
- (k) P. Wipf, S. Ribe, J. Org. Chem. 63 (1998) 6454–6455.
- [12] (a) H.G. Viehe, Angew. Chem. Int. Ed. 2 (1963) 477–478;
  (b) H.G. Viehe, R. Merenyi, J.F.M. Oth, P. Valange, Angew. Chem. Int. Ed. 3 (1964) 746–754;
  (c) H.G. Viehe, R. Merenyi, J.F.M. Oth, J.R. Senders, P. Valange, Angew. Chem. Int. Ed. 3 (1964) 755–756;
  (d) H.G. Viehe, Angew. Chem. Int. Ed. 4 (1965) 746–751.
- [13] (a) X. Zaung, D.J. Burton, J. Fluorine Chem. 112 (2001) 47–54;
- (b) X. Zaung, D.J. Burton, J. Fluorine Chem. 112 (2001) 317–324;
  (c) J. Xu, D.J. Burton, Org. Lett. 4 (2002) 831–833;
  - (d) J. Xu, D.J. Burton, Tetrahedron Lett. 43 (2002) 4565–4567.
- [14] X. Lei, G. Dutheuil, X. Pannecoucke, J.-C. Quirionz, Org. Lett. 6 (2004) 2101–2104.
- [15] For reviews of organochromium chemistry:
  (a) A. Furstner, Chem. Rev. 99 (1999) 991–1045;
  (b) L.A. Wessjohann, G. Scheid, Synthesis (1999) 1–36.
  [16] (a) J.R. Falck, D.K. Barma, C. Mioskowski, T. Schlama, Tetrahedron Lett. 40 (1999) 2091–2094;
  (b) D.K. Barma, R. Baati, A. Valleix, C. Mioskowski, J.R. Falck, Org. Lett. 3 (2001) 4237–4238;
  (c) R. Baati, D.K. Barma, J.R. Falck, C. Mioskowski, J. Am. Chem. Soc. 123 (2001) 9196–9197;
  (d) R. Baati, D.K. Barma, U.M. Krishna, C. Mioskowski, J.R. Falck, Tetrahedron Lett. 43 (2002) 959–961.
  [17] (a) Y. Okude, S. Hirano, T. Hiyama, H. Nozaki, J. Am. Chem. Soc. 99 (1977) 3179–3181;
  - (b) K. Takai, M. Tagashira, T. Kuroda, K. Oshima, K. Uchimoto, H. Nozaki, J. Am. Chem. Soc. 108 (1986) 6048–6050;
    (c) H. Jin, J.-I. Uenishi, W.J. Christ, Y. Kishi, J. Am. Chem. Soc. 108 (1986) 5644–5646;
    (d) Y. Kishi, Tetrahedron 58 (2002) 6239–6242;
    (e) A. Furstner, N. Shi, J. Am. Chem. Soc. 118 (1996) 2533–
    - 2534; (f) A. Furstner, N. Shi, J. Am. Chem. Soc. 118 (1996) 12349–

12357.

- [18] Preliminary results were firstly reported at the 124th Annual Meeting of Pharmaceutical Society of Japan, March 2004, Osaka, Japan, p. 67 (abstract).
- [19] G. Dutheuil, X. Lei, X. Pannecoucke, J.-C. Quirion, J. Org. Chem. 70 (2005) 1911–1914.

- [20] (a) H. Tomioka, T. Sugiura, Y. Matsumoto, Y. Izawa, S. Inagaki, K. Iwase, J. Chem. Soc. Chem. Commun. (1986) 693–695;
  (b) R.A. Moss, G.-J. Ho, W. Liu, J. Am. Chem. Soc. 114 (1992) 959–963 (and references cited therein).
- [21] (a) R.W. Vanderhaar, D.J. Burton, D.G. Naae, J. Fluorine Chem. 1 (1971/72) 381–383;
  - (b) See also Ref. [8b].

- [22] C. Wakselman, H. Molines, M. Tordeux, J. Fluorine Chem. 102 (2000) 211–213.
- [23] M. Shimizu, N. Yamada, Y. Tanabe, T. Hata, M. Kuroboshi, T. Hiyama, Bull. Chem. Soc. Jpn. 71 (19982) 2903–2921.
- [24] M. Shimizu, T. Hata, T. Hiyama, Bull. Chem. Soc. Jpn. 73 (2000) 1685–1690.