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Abstract 

Stereoselective synthesis of the (8S, 9S, 11R, 16S)-C~-C m segment 1 of amphidinolides G, H and L, bearing 
the unique trisubstituted "'s-cis-l,3-diene" moiety (C~9)=C~3-C~4----C~5), has been achieved for the f'trst time 
following a highly efficient convergent strategy. © 1998 Elsevier Science Ltd. All rights reserved. 
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The amphidinolides constitute a family of structurally complex macrolide molecules isolated 
from marine sources. Many of them have potent toxicity against various tumor cell lines [ 1,2]. 
Total synthesis of none of these compounds has so far been reported [3-15]. One of the major 
obstacles encountered en route to the total synthesis of some of the important members of this 
family, like amphidinolides B, D, G, H and L, is the construction of an uncommon 
trisubstituted "s-cis-l,3-diene" moiety (C28(29)=CI3--CI4=CI5), present in these molecules, in its 
naturally occurring configuration. We report here the first synthesis of this very important 
structural entity followed by its elaboration to the (8S, 9S, l lR,  16S)-CcCIs fragment of 
amphidinolides G, H and L. 
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Retrosynthetically, the CI-CI8 fragment 1 can be divided, as shown in Scheme 1, into two 
halves: the C7-Cta fragment 2 bearing the diene and the epoxyaldehyde functionalities and the 
C:C6 Wittig component 3. The important diene moiety of 2 was planned to be constructed by 
coupling the E-tx,~l-unsaturated aldehyde 4 and the functionalized sulfone unit 5. 
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Scheme 1. Retrosynthetic analysis of 1. 

Scheme 2 outlines the syntheses of fragments 4 and 5. Use of a common chiral precursor, 
(S)-4-benzyloxy-2-methylbutan- 1-ol (7), for the syntheses of both the fragments is the salient 
feature of this scheme. The monobenzyl-protected butane- 1,4-diol was transformed into 7 by 
Evans asymmetric alkylation method following reported procedures [16-18]. The chiral 
alcohol 7 was then converted to the methylketo intermediate 8 in 3 steps in 75% overall yield. 
Horner-Wadsworth-Emmons olefination of 8 with diethyl cyanomethylphosphonate gave a 
mixture of acrylonitriles 9 (3:1) in 98% yield. Reduction of this mixture of nitriles with 
DIBAL afforded the isomeric aldehydes 4 and 10 (3:1), in 93% yield, which could be 
separated easily at this stage by silica gel column chromatography. That the major isomer was 
the required E-olef'm 4 was confirmed by ~H NOE difference spectroscopic studies. Irradiation 
of the olefinic C~4-H signal of 10 at 6 5.87 caused significant enhancement of the 29-Me 
resonance at ~i 1.87, indicating a cis-relationship between them. As expected, there was no 
NOE observed between the CI4-H and the 29-Me in the E-olef'm 4. 
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Scheme 2. Reagents and conditions, a) Ref. 16-18; b) (i) (COCI)2 (1.5 eq.), DMSO (3.2 eq.), EhN (5 eq.), CH2CI 2, -78 to 0 "C, 

1.5 h; (ii) MeMgI (2.0 M, 2 eq.), Et20, 0 to 25 *C, 1 h; (iii) same as step (i), 75% from 7; c) (Et20)2P(O)CH2CN (1.5 eq.), Nail (1.5 
eq.), DME, 25 "C, 1 h, then 8 in DME, 25 *C, 3 h, 98%; d) DIBAL (1.1 eq.), toluene, - 78 "C, 1 h, 93%; e) (i) MsC1 (1.2 eq.), 
pyridine, 25 "C, 3 h; (ii) PhSH (I.2 eq.), K2CO 3 (1.5 eq.), DMF, 25 "C. 0.5 h; (iii) mCPBA (4 eq.), CH2CI2, 0 to 25 "C, 3 h; 89% 
from 7; f) (i) H 2, Pd/C, MeOH, 25 *C, 1 h; (ii) TBDPSCI (1.2 eq.), Et3N (2 eq.), DMAP (0.1 eq.), CH2CI 2, 25 "C, 3 h; 95% from 11. 

For the synthesis of 5, the common chiral precursor 7 (Scheme 2) was converted to the 
phenylsulfone 11 in 3 steps in 89% overall yield. This was followed by a change in the 
protective group, which was necessary to differentiate the two protective groups at a later 
stage, furnishing the requisite TBDPS-protected sulfone 5. 
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Coupling of fragments 4 and 5 and further elaboration of the resulting coupled product to 
the advanced stage intermediate 2 is delineated in Scheme 3. Addition of the anion generated 
from 5 to the aldehyde 4 gave a diastereomeric mixture of 13-hydroxysulfones which were 
oxidized using O-iodoxybenzoic acid (IBX) [19] to ketones 12 in 80% overall yield. Removal 
of the phenylsulfone appendage using lithium naphthalenide (LN) (60% yield) [20] and 
subsequent one-carbon Wittig olefination furnished the intermediate 13 L2 in 88% yield, thus, 
completing successfully the first synthesis of the targeted "s-cis- 1,3-diene" moiety. 

Routine functional group manipulations converted 13 to the allylic alcohol 14 in 4 steps in 
80% overall yield. Sharpless asymmetric epoxidation [21] of 14 with natural (+)-diethyl L- 
tartrate gave the expected (8S,9S)-epoxy alcohol 15 as the major product (in 91:9 ratio). The 
minor diastereomer could be easily separated by silica gel column chromatography. The 
epoxyalcohol 15 was subsequently oxidized to get the intermediate 2. 
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Scheme 3. Reagents and conditions, a) (i) 5 (1 eq.), "BuLl (1 eq.), THF, -78 °C, 20 min., then 4 in THF, -78 to 0 °C, 1 h; (ii) IBX 
(2 eq.), DMSO, 25 °C, 1 h, 80% in 2 steps; (b) (i) LN (excess), THF, -78 °C, 1 h, 60%; (ii) Ph3P=CH2 (2 eq.), Et20, 0 °C, 0.5 h, 
88%; c) (i) TBAF (1.5 eq.), THF, 25 °C, 5 h; (ii) (COC1)2 (1.5 eq.), DMSO (3.2 eq.), Et3N (5 eq.), CH2CI 2, -78 to 0 °C, 1.5 h; (iii) 
Ph3P=CHCO2Et (2 eq.), CtH 6, 25 *C, 1 h; (iv) DIBAL (2.2 eq.), CH2CI 2, -78 °C, 1 h, 80% from 13; d) Ti('PrO) 4 (0.2 eq.), (+)-DET 
(0.22 eq.), TBHP (2 eq.), CH2C12, -10 °C, 12 h, 92% (based on 40% recovered starting material); e) same as step c(ii). 

Scheme 4 describes the preparation of the phosphonium salt 3 and its use in the olefination 
of epoxy aldehyde 2. Mono-THP-protected butane-1,4-diol 16 was oxidized and olefination 
with stabilized ylide gave the ct,l~-unsaturated ester 17. Deprotection of the THP-ether, 
bromination of the hydroxyl group and finally, treatment with PhaP gave the Wittig salt 3. 

Finally, the ylide generated from 3 was reacted with the aldehyde 2, following the 
procedure reported by Kobayashi etal [13], giving a mixture of olefins (trans:cis = 55:45) 
which were separated by preparative TLC to furnish the desired C1-C~, fragment 1.1'3 

1 Satisfactory NMR, IR and mass spectra were obtained for this compound. 
2 13: [O~]D 22 = -10.4 (C 0.5, CHCI3); IH NMR (CDC13, 200 MHz): ~i 7.7-7.2 (m, 15 H, aromatic), 5.54 (s, 1 H, Ct:H),  4.91 and 4.75 

(two s, 2 H, C=CH2), 4.42 (s, 2 H, CH2Ph), 3.67 (t, J = 6.8 Hz, 2 H, CH2OTBDPS), 3.35 (t, J = 6.8 Hz, 2 H, CH~OBn), 2.32 (m, 1 H, 

CIt-H), 2.06 (dd, J = 14.8, 5.6 Hz, 1 H, Ct2-/-/), 1.88-1.52 (m, 4 H, ~FH,  C12-H, C17-H2), 1.68 (s, 3 H, Cls-CH3), 1.3 (m, 2 H, Cl0- 

/-/2), 1.04 (s, 9 H, SiPh2'Bu), 1.0 (d, J = 6.7 Hz, 3 H, C,6-CH3), 0.78 (d, J = 6.3 Hz, 3 H, C,-CH3). 

3 1: [o~]D 22 = 14.5 (c 0.2, CHCI3); ~H NMR (CDCI 3, 400 MHz): 8 7.32 (m, 5 H, aromatic), 6.74 (t, J = 7 Hz, 1 H, CrH), 5.69 (dt, J = 

15.2, 7.7 Hz, 1 H, C t-H), 5.57 (s, 1 H, CI4-H), 5.08 (dd, J = 15.2, 8.1 Hz, 1 H, CT-H), 4.96 and 4.81 (two s, 2 H, C t~=CH0, 4.48 (s, 2 

H, CH2Ph), 4.19 (q, J = 7 Hz, 2 H, CO2CH2CH3), 3.4 (t, J = 7 Hz, 2 H, CH2OBn), 3.29 (rid, J = 8.1, 2.1 Hz, 1 H, Ca-H), 2.8 (dt, J = 

7, 2.1 Hz, 1 H, Cg-H), 2.45-1.88 (m, 8 H, allylic, Clt-H, C,6-H), 1.84 (s, 3 H, C2-CH3), 1.8-1.58 (m, 4 H, Cto-H2, CtT-H2), 1.7 (s, 3 H. 

Cts-CH3), 1.28 (t, J = 7 Hz, CO2CH2CH3), 1.03 (d, J = 6.8 Hz, 3 H, Ct~-CH3), 0.9 (d, J = 6.7 Hz, C~,-CH3). 
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Scheme 4. Reagents and conditions, a) (i) (COC!)2 (I.5 eq.), DMSO (3.2 eq.), EtsN (5 eq.), CH2CI 2, -78 to 0 "C, 1.5 h; (ii) 
Ph3P=C(CH3)CO2Et (2 eq.), C6I-I~, 25 "C, 1 h, 90% from 16; b) (i) PTSA (cat.), MeOH, 25 "C, 2 h; (ii) CBr+ (2.5 eq.), PhsP (2.5 eq.), 
CH2CI 2, 0 to 25 "C, 2 h, 92% from 17; c) Ph3P (1.2 exl. ), CI-IsCN, reflux, 12 h, 85%; d) 3 (2 eq.), "BuLi (2 eq.), THF, -78 "C, 2 h, 
then 2 in THF, -78 to 25 "C, 12 h, 80%. 

In conclusion, an efficient convergent route presented here led to the first stereoselective 
synthesis of the (8S, 9S, 11R, 16S)-CI-Cts segment of amphidinolides G, H, and L which will 
help to achieve the total synthesis of these molecules. Further work is under progress. 
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