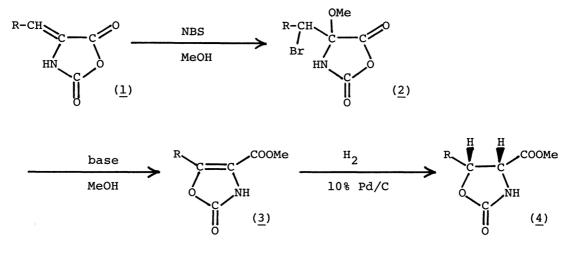
synthesis of new 2-oxazolinones from n-carboxy α -dehydroamino acid anhydrides

Yasuchika YONEZAWA, Chung-gi SHIN,^{*} Akira OHTSU, and Juji YOSHIMURA[†] Laboratory of Organic Chemistry, Kanagawa University, Kanagawa-ku, Yokohama 221 [†]Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology, Midori-ku, Yokohama 227

Addition of methanol to N-carboxy α -dehydroamino acid anhydride in the presence of NBS, followed by the treatment of the resulting product with base gave a new 2-oxazolinone-4-carboxylate.

Recently, our attention has been directed to the utilization of N-carboxy α -dehydroamino acid anhydride (dehydro-NCA; <u>1</u>), prepared by the cyclization of N-benzyloxycarbonyl- α -dehydroamino acid with SOCl₂.¹⁾ Of special interest are the addition reaction to <u>1</u> and the use of the adduct for the syntheses of peptides and heterocyclic compounds, which seem to be important to the new synthesis of various α -amino acids. Here, we will report the reaction of <u>1</u> with NBS in methanol, followed by the conversion of the resulting 4-methoxy-2,5-oxazolidione derivative into a new 2-oxazolinone-4-carboxylate.


Treatment of an equimolar $\underline{1}$ (2 mmol) with NBS in methanol (30 ml) under cooling for 40 minutes²⁾ gave colorless crystals almost quantitatively, identified as 4-bromoalkyl-4-methoxy-2,5-oxazolidione (2). The subsequent treatment of 2 (1.5 mmol) with an organic or inorganic base (2 mmol), such as DBU and NaOH, in methanol (30 ml) at room temperature for 5 hr gave crude substance, which was purified on a silica gel column using a mixture of benzene and ethyl acetate (3 : 1 v/v) as the eluent to give colorless crystals.

Based on the spectroscopic data [IR: -O-CO- $(1770-1755 \text{ cm}^{-1})$, -COOMe $(1725-1715 \text{ cm}^{-1})$, C=C $(1670-1630 \text{ cm}^{-1})$, NMR: δ 9.40-9.61 (NH)], satisfactory elemental analyses, and the conversion into the authentic samples, the compounds obtained above could be determined unambiguously as methyl 5-alkyl-2-oxazolinone-4-carboxylates (<u>3</u>). The formation of <u>3</u> from <u>2</u> would be explained by the ring cleavage of <u>2</u> with methoxide anion and recyclization of the resulting intermediate to <u>3</u>, accompanied by the elimination of methanol prior to or after the cyclization.

Catalytic hydrogenation of <u>3a</u> (0.1 mmol) with 10% Pd/C (0.8 g) in methanol (60 ml) at room temperature for 20 hr gave the expected methyl 5-methyl-2oxazolidione-4-carboxylate [<u>4a</u>: mp 80-82 $^{\circ}$ C (lit.³⁾ mp 83.5-84.5 $^{\circ}$ C), yield 75%. NMR (CDCl₃): δ 5.00 (double q, 1H, J=8.5, 6.5Hz, 5-H), 4.50 (d, 1H, J=8.5Hz, 4-H)]. From the vicinal coupling constant between ring protons,⁴⁾ the compound <u>4a</u> was suggested to be the erythro (cis)-isomer and this was confirmed by the comparison with the specimen derived from allo-threonine and phosgen in two steps.³⁾

The above results in conjunction with the previously reported conversions $^{3,5)}$

will be useful for the syntheses of both of erythro and threo- β -hydroxy- α -amino acids.

a; $R=CH_3$, b; $R=C_2H_5$, c; $R=n-C_3H_7$, d; $R=i-C_3H_7$, e; $R=C_6H_5$

Scheme 1	eme l
----------	-------

Table 1. The yields, melting points, and spectroscopic data of 2 and 3

Compd. No.	Yield	Mp ^{a)} o _C	NMR, δ (CDCl ₃) -CH-Br (J _{Hz}) I	Compd. No.	Yield ^{b)}	Mp ^{c)}	IR ^{d)} cm ⁻¹ C=C	NMR ^{e)} δ NH
<u>2a</u>	98	93-94	4.44q (7.0)	<u>3a</u>	70	143-144	1670	9.43
<u>2b</u>	97	107-109	4.22dd (13.0, 2.5)	<u>3b</u>	62	111-112	1665	9.50
<u>2c</u>	98	86-87	4.26dd (13.0, 2.5)	<u>3c</u>	65	86.5-87.0	1660	9.50
<u>2d</u>	99	66-68	4.38d (12.0)	<u>3c</u>	63	90.5-91.5	1655	9.40
<u>2e</u>	95	140-141	5.24s	<u>3e</u>	75	165-166	1630	9.61

a) Colorless needles from n-hexane. b) Yield from $\underline{2}$ and DBU. c) Colorless needles from cyclohexane. d) Recorded in KBr. e) Measured in CDCl₃.

References

- 1) C. Shin, Y. Yonezawa, and J. Yoshimura, Chemistry Lett., 1981, 1635.
- 2) C. Shin, Y. Sato, H. Ohmatsu, and J. Yoshimura, Bull. Chem. Soc. Jpn., <u>54</u>, 1134 (1981).
- 3) T. Kaneko and T. Inui, Nippon Kagaku Zasshi, 82, 1075 (1961).
- 4) S. Futagawa. T. Inui, and T. Shiba, Bull. Chem. Soc. Jpn., <u>46</u>, 3308 (1973).
- 5) T. Inui, Nippon Kagaku Zasshi, <u>83</u>, 493 (1962).

(Received April 30, 1982)