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Abstract: (+)-Juvabione and (+)-epijuvabione, natural sesquiterpenes exhibiting insect juvenile 
hormone activity, have been synthesized from (+)-norcampbor via the both enantiomeric 
intermediates having bicyclo[3.2.1]octane framework by employing a i i p a s e - ~  kinetic 
ester-hydrolysis reaction and cyclopropane ring-expansion reaction as the key steps. 
© 1999 Elsevier Science Ltd. All rights reserved. 
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(+)-Juvabione 1 and (+)-epijuvabione 2 are natural sesquiterpenes exhibiting selective insect juvenile 

hormone activity (Fig. 1). t These compounds have two contiguous secondary stereogenic centers on a ring 

and a side chain, which make their diastereodivergent synthesis from a single starting material very difficult. 2 So 

far, only one example carried out by us has solved the stereoehemical problem to give diastereodivergently these 

two diastereomeric natural products using (+)-norcamphor 3 as the starting material? We wish to report here an 
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alternative stereocontrolled construction of these two compounds from racemic norcamphor (+)-3 by employing 

lipase-mediated kinetic resolution 4 and iterative use of the same ring-expansion in the key stages. 

Racemic norcamphor (+)-3 was first transformed into racemic bicyclo[3.2.1]oet-3-en-2-one (+)-7, on 

sequential silyl enol ether formation, cyclopropanation, and oxidative ring-expansion reaction, 5 in 75% overall 

yield (Scheme 1). Reduction of (+)-7 with diisobutylaluminum hydride (DIBAL) gave diastereoselectively the 
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Scheme 1 Reagents and conditions: a) LDA, TMSCI, THF, -78 °C (82%); b) CH212, Et2Zn, Et20, reflux (98%); c) FeCI 3, DMF, 
0 °C (93%). 

endo-alcohol (+)-8. Kinetic transesterification between (+)-8 and vinyl acetate occurred in tert-butyl methyl 

ether in the presence of lipase PS to afford the acetate (+)-9 and the alcohol (-)-8 in satisfactory chemical yields, 

but their enantiomeric purities were less than satisfactory for practical use. On the other hand, kinetic hydrolysis 

of the racemic acetate (+)-9, generated from (+)-8, in a phosphate buffer in the presence of the same lipase 

afforded the alcohol (+)-8 and the acetate (-)-9, in satisfactory chemical and enanfiomerical yields, which were 

used for the following synthesis. The alcohol (+)-8 gave the enone (+)-7, [Ct]D 29 +362.1 (C 0.6, CHCI3) {lit): 

[a]t, ~~ +359.2 (c 1.64, CHCI3) }, on Dess-Martin oxidation, 6 while the acetate (-)-9 gave the enantiomeric enone 

(-)-7, [crib -'2 -339.0 (c 2.8, CHCI3) {lit.3: [0t]D ~'9 --346.2 (C 1.55, CHCI3)}, on sequential I~CO3-mediated 

methanolysis and Dess-Martin oxidation. Both enantiomers of the enone 7 were identical with the authentic 

materials obtained from (+)-norcamphor) Enatiomeric purities of the resolved products were estimated for both 

as > 95% ee at this stage by HPLC of both enantiomers of 7 thus obtained using a chiral column (CHIRALCEL 

OB, iPrOH-hexane 1:200) (Scheme 2). 
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Scheme 2 Reagents and conditions: a) DIBAL, CH2CI 2, -78 °C (85%); b) AezO, EhN, DMAP (cat.), CH2CI 2 (97%). 

To obtain the key intermediate (+)-13 of (+)-juvabione 1, the enone (+)-7 was treated with the cuprate 

reagent generated in situ to give diastereoselectively the 1,4-adduct (+)-10, [Ct]D 27 + 147.1 (C 1.0, CHCi 3) { lit.3: 

[ct],; ~2 +136.7 (c !.!5, CHCI3) }, having exo-methyl stereochemistry. The bicyclic ketone (+)-10 was then 

transformed into the cyclopentanone (+)-13, [Ct]D 25 +98.1 (C 1.1, CHCI3) { lit): [Ct]o 3~ +97.3 (c 1.15, CHCI 3) }, 

in 47% overall yield via 11 and 12 by sequential Baeyer-Villiger oxidation, Weinreb amide formation, 7 

Grignard coupling, ketone protection and oxidation as shown 3 (Scheme 3). 

H ~ =  H HOh,~,J~H H ~ . ~ H  oO ] 
(+)-7 a> (+)~I0 b,._.~ HO" ~ e,f._~ O 

. 
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Scheme 3 Reagents and conditions: a) MeMgl, CuCN, LiCI, THF, - 78°C (95%); b) mCPBA, CH2Ci2, 0 °C; 
c) MeNHOMe.HCI, Me3AI, CH2CI2 (87%, 2 steps); d) iPrCH2MgCI, THF (65%); e) (CH2OH)2, pTsOH (cat.), benzene, reflux; 
f) PCC, NaOAc, CH2C12 (86%, 2 steps). 
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On the other hand, to obtain the key intermediate (+)-17 of (+)-epijuvabione 2, the enantiomeric enone 

(-)-7 was first treated with methyllithium to give the 1,2-adduct 14, [Ct]D 's --68.5 (C 1.0, CHCI~). This afforded 

the enone 15, [ct]D -'4 +274.0 (c 1.3, CHCI.0, on oxidation with pyridininm chlorochromate (PCC), which on 

catalytic hydrogenation, gave diastereoselectively the hicyclic ketone (+)-16, [Ct]v 26 +115.4 (c 1.0, CHCI3), 

having an endo-methyl stereochemistry. Employing exactly the same procedure as for (+)-10, the 

diastereomeric ketone (+)-16 was similarly transformed into the diastereomeric cyclopentanone (+)-17, [ct]v 27 

+87.3 (c 1.3, CHCI0, in 44% overall yield (Scheme 4). 
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(+)-16 

(+)-17 

Scheme 4 Reagents and conditions: a) McLi, THF (97%); b) PCC, CH2C12 (84%); c) H 2 (10%), Pd-C, AcOEt (98%); d) as 
Scheme 3 (44%, 5 steps). 

Having obtained the two key intermediates, (+)-13 and (+)-17, we examined their transformation into t ic  

target natural products, the former into (+)-juvabione I and the latter into (+)-epijuvabione 2, by employing the 

cyclopropanation and the ring-expansion reaction that used for the conversion of norcamphor (+)-3 into the 

enone precursor (+)-7. Since we could not find appropriate conditions to convert regioselectively both (+)-13 

and (+)-17 into the single silyl enol ether products, we decided to use the mixtures consisted of the two regio- 

isomers, 18a,b and 19a,b, for the next step without separation. Thus, the 2.6:1 mixture consisted of 18a and 

19a gave an inseparable mixture of the cyclopropanes, 20a and 21a, which on treatment with iron(III) chloride 5 

followed by 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) afforded the two isomeric cyclohexenones, 22a, [Ct]D 27 

--13.0 (C 0.3, CHCI3), and 23a, [Crib 3~ +l 1.3 (C 0.3, CHCI3), in overall yields of 38 and 17% after separation 

by silica gel column chromatography. On the same treatment, the 2.8:1 mixture consisted of 18b and 19b 

furnished the two isomeric cyclohexenones, 22b,  [ct]D -~s -9.7 (c 0.6, CHCI3), and 23b, [ct]D 29 +52.8 (c 0.2, 

CHCI3), in overall yields of 37 and 14% after separation (Scheme 5). 
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Scheme 5 Reagents and conditions: a) LDA, TMSCI, THF, -78 °C (88% for a: 86% for b); b) CH212, Et2Zn, CH2CI 2 (80% for a 
and b); c) FeCI 3, DMF then DBU, CH2C12 (51% for 22a, 52% for 22b; 22% for 23a, 19% for 23b). 
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To obtain the natural products, the 3-substituted cyclohexenones, 22a and 22b, were sequentially 

hydrogenated and carbomethoxylated to give the keto-esters, 24a and 24b, which were further transformed into 

the cyclohexenecarboxylates,-" 26a, [aid "~~ +71.3 (C 0.2, CHCI3), and 26b,  [t~]D "-7 +49.3 (C 0.3, CHCI3), by 

sequential reduction and dehydration, in overall yields of 48 and 53%, respectively. On the other hand, the 4- 

substituted cyclohexenones, 23a and 23b, were treated sequentially with L-selectride and N-(2- 

pyridyl)triflirnide in the same flask s to give the enol triflates, 27a and 27b. On the palladium-mediated 

methoxycarbonylation, 9 both the triflates, 27a and 271), furnished the esters, 26a and 26b, identical with those 

obtained from 23a and 23b, both in 35% yields. Finally, the esters, 26a and 26b, were acid-hydrolyzed to 

give (+)-juvabione 1, [ct]ff -7 +65.2 (c 0.2, benzene) {lit): [ct]~) -'7 +65.2 (c 0.46, benzene)}, and epijuvabione 

(+)-2,. [Ct]D 29 +95.8 (C 0.5, benzene) {lit): [0tip 3"* +96.3 (C 0.81, benzene)}, in yields of 84 and 82%, 

respectively (Scheme 6). 

d,e~ 26a~ h (+)-juvabtone 1 

27 a,  b 26  a,  b (+)-epijuvabione 

a series : I~-H* b series : (x-H* 

Scheme 6 Reagents and conditions: a) H a, 10% Pd-C, AcOEt; b) Nail, (MeO)2CO , THF (82% for 2,4a and 90% for 24b, 2 
steps); c) NaBH(, MeOH (65% for 25, and 68% for 25b); d) MesCI, Et.aN, CH2CIz; e) DBU, CH2C12 (90% from 25a and 87% from 
25b, 2 steps); 0 L-selectride, THF then N-(2-pyridyl)triflimide (71% for 27a and 75% for 27b); g) CO, Pd(OAc)z (cat.), PPh 3, 
Et~N, MeOH, DMF (49% from 27a; 46% from 27b); h) aq. CF3CO2 H, CHCI.~ (84% for 1; 82% for 2). 

In summary, a new diastereocontroiled route to (+)-juvabione and (+)-epijuvabione has been developed by 

lipase-mediated preparation of the key chiral building block having bicyclo[3.2.1]octane framework starting 

from racemic norcamphor. 
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