
LETTER 857

A Novel Chiral H¢4-NOBIN Schiff Base for Hetero-Diels–Alder Reaction of 
Danishefsky’s Diene with Aldehydes
Novel Chiral H¢4-NOBIN Schiff BaseXinsheng Li,*a,b Xiangyan Meng,b Hong Su,a Xiaohua Wu,b Dongcheng Xua,b

a Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, 
Jinhua 321004, P. R. of China
Fax +86(579)82282610; E-mail: sky33@zjnu.cn

b Department of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, P. R. of China
Received 26 October 2007

SYNLETT 2008, No. 6, pp 0857–0860xx.xx.2008
Advanced online publication: 11.03.2008
DOI: 10.1055/s-2008-1042913; Art ID: W19407ST
© Georg Thieme Verlag Stuttgart · New York

Abstract: Novel chiral H¢4-NOBIN was synthesized in 66% yield
through partial hydrogenation of 2-amino-2¢-hydroxy-1,1¢-binaph-
thyl, and the structure was proved via X-ray analysis of its salicyl-
aldehyde Schiff base, which was tested in the enantioselective
titanium-catalyzed hetero-Diels–Alder reaction of Danishefsky’s
diene with aldehydes. The reaction provided dihydropyranone in
moderate to high yield (up to 99%) and enantioselectivities (up to
84.5% ee).

Key words: asymmetric catalysis, Schiff bases, Diels–Alder reac-
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Optically active 1,1¢-bi-2-naphthol (BINOL), 1,1¢-bi-2-
naphthylamine (BINAM), 2-amino-2¢-hydroxy-1,1¢-bi-
naphthyl (NOBIN), and their derivatives have been suc-
cessfully developed as chiral ligands for many
asymmetric reactions.1 Some results showed that the cat-
alysts derived from partially saturated 1,1¢-binaphthyl ex-
hibit higher efficiency and enantioselectivity for some
asymmetric reactions than those obtained from their par-
ent ligands, due to the steric and electronic modulations
on the binaphthyl backbone.2 The procedure of preparing
chiral H8-BINOL (1), H8-BINAM (2), H8-NOBIN (3) and
H4-BINOL (4, Figure 1) has been developed by using dif-
ferent catalysts and conditions, such as PtO2 (15 mol%) at
25 °C for 7 days (Cram et al.) and 10% Pd/C (10 mol%)
at room temperature for 2 days (Sigimura et al.) for 1,3 Ni/
Al alloy in dilute H2O–i-PrOH alkaline solution for 1-4
(Ding et al.),4 5% Pd/C (7 mol%) at 80 °C under 50-60
bar pressure for several hours for 1 and 2 (Börner et al.).5

Among these methods, the procedure of Börner provided
a practical way for synthesis of 1 and 2, but preparation of
3 using of Börner’s method was not reported. Our study
needs multigram scale of 3. The hydrogenation of (S)-
NOBIN were carried out according Börner’s procedure,
but the method provided (S)-5¢,6¢,7¢,8¢-tetrahydro-2-ami-
no-2¢-hydroxy-1,1¢-binaphthyl (H¢4-NOBIN, 5) in 66%
yield and 3 in 19% yield. To the best of our knowledge,
this is the first report on the synthesis of 5.6 In the present
work, we wish to report the details on the synthesis of 5
and its Schiff base-titanium complex used as catalyst for

the enantioselective hetero-Diels-Alder reaction (HDA)
between Danishefsky’s diene and aldehydes.

The NOBIN was found to be an excellent chiral ligand for
asymmetric reactions and its synthesis has been well de-
veloped.7,8 The two naphthalene rings of NOBIN, unlike
the C2-symmetric BINOL and BINAM, have slightly dif-
ference in terms of electron density due to the difference
of hydroxyl and amino groups. The difference of the elec-
tronic properties makes the selective hydrogenation possi-
ble. The hydrogenation of (S)-NOBIN was carried out
with 5% Pd/C (5 mol%) as catalyst at 80 °C under 80 bar
of hydrogen pressure in ethanol (Scheme 1 and Table 1).9

Shorter reaction time gave a mixture of NOBIN, 3 and 5
(Table 1, entries 1 and 2). Higher catalyst loading im-
proved the yield of 3 (Table 1, entry 4). The complete
conversion of starting material needed 10 hours (Table 1,
entry 3). The hydrogenation product was isolated in 66%
yield after purification with column chromatography. The
1H NMR spectrum of the product showed that the ratio of
aromatic protons to alkyl protons is 1:1 rather than the ex-
pected value of 1:4 for octahydrobinaphthyl derivatives,
and the 13C NMR spectrum showed only four carbon at-

Figure 1
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1 X = Y = OH          
2 X = Y = NH2         
3 X = OH, Y = NH2

4 X = Y = OH
5 X = NH2, Y = OH
6 X = OH,  Y = NH2

Table 1 Catalytic Hydrogenation of (S)-NOBINa

Entry Time 
(h)

Ratio of 3/5/
NOBINb

Yield of 3 
(%)c

Yield of 5 
(%)c

1 5 9:58:33 – 41

2 7 15:70:15 7 62

3 10 26:74:0 18 66

4d 10 45:55:0 33 48

a Reaction conditions: 0.57 g NOBIN, 0.2 g 5% Pd/C, 80 bar of H2 
pressure, 80 °C, 15 mL EtOH.
b Determined by GC.
c Isolated yield. The ee >99.5% was determined by chiral HPLC using 
Chiralcel AD-H or OJ-H column.
d The amount of 0.4 g 5% Pd/C was used.
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oms at the high field region. The result indicated that four
hydrogen atoms were added on the non-C2-symmetric
NOBIN. Thus, two different compounds were at least
formed: 5¢,6¢,7¢,8¢-tetrahydro-2-amino-2¢-hydroxy-1,1¢-
binaphthyl (5, H¢4-NOBIN) and 5,6,7,8-tetrahydro-2-ami-
no-2¢-hydroxy-1,1¢-binaphthyl (6, H4-NOBIN). The final
determination that the molecular structure was 5 and not 6
was ascertained by characterization of its salicylaldehyde
Schiff base using X-ray crystallographic analysis.

Figure 2 Molecular structure of (R)-7.

The Schiff base (R)-7 was synthesized by condensation of
(R)-5 with salicylaldehyde in refluxing toluene
(Scheme 1).10 The structure of (R)-5 was confirmed by the
analysis of X-ray crystal structure of (R)-7.11 As shown in
Figure 2, the C–C bond lengths of C5-C6, C6-C7, C7-
C8, and C9-C10 are between 1.49-1.52 Å. The dihedral
angle of the two binaphthyl rings (99.01°) is larger than its
parent Schiff base (75.61°), and the dihedral angle of imi-
no naphthyl ring and salicylidene phenyl ring (0.72°) is
smaller than its parent Schiff base (23.51°).7b The short
distance of N1-H(O2) (1.78 Å) suggested that the imino
nitrogen atom formed a strong intramolecular hydrogen
bond with the hydroxy group of salicylidene moiety rather
than that of naphthyl unit.

The HAD reaction between dienes and carbonyl deriva-
tives provides one of the most direct methods for the con-
struction of substituted 2,3-dihydro-4H-pyran-4-ones,
which have extensively applied in synthesis of natural or
unnatural products.12 Recently, the chiral NOBIN-derived
Schiff base–titanium complexes were reported to be ef-
fective catalysts for the enantioselective HDA reaction of
Danishefsky’s diene and aldehydes by Ding et al.7b With
the novel ligand 7 in hand, we tested its asymmetric in-
duction in the HDA reaction. Naproxen was not the choice
of additive due to a change of configuration of the ligand.
Thus, a number of acids were screened (Table 2). The re-
sults showed that the additive could remarkably improve
the yields and ee, and the additive 2-naphthoic acid was
found to be the best.

The HDA reaction of Danishefsky’s diene and a variety of
aldehydes, including aromatic, a,b-unsaturated and ali-
phatic aldehydes, was carried out with 2-naphthoic acid as
additive in the presence of the Ti-(S)-7 complex
(Table 3).13 The results showed that aromatic aldehydes
provided higher yield and enantiomeric excess than ali-
phatic aldehydes. The electronic effect of substituents of
aromatic ring on reactivity was obvious. The presence of
either electron-withdrawing groups such as Br, Cl, CF3, to
NO2 (Table 3, entries 2-5), or electron-donating capabil-
ity from 3-MeO to 3-Me (Table 3, entries 6 and 7), result-
ed in lower enantioselectivities. Furfural and trans-
cinnamaldehyde afforded the corresponding dihydropy-
rones with moderate enantioselectivity and high yield
(Table 3, entries 8 and 9). The HDA reaction of cyclohex-
anecarboxaldehyde and diene provided dihydropyrone in
modest enantioselectivity and yield (Table 3, entry 10).
The results obtained showed that the enantioselectivities
were inferior to its parent catalyst.

In summary, novel chiral (S)-H¢4-NOBIN was prepared
by partial hydrogenation of (S)-NOBIN, and the structure
was determined by X-ray crystal structure analysis. The
(S)-H¢4-NOBIN-derived Schiff base was tested in the
enantioselective titanium-catalyzed HDA reaction of
Danishefsky’s diene and aldehydes. The reaction provid-

Scheme 1 Synthesis of (S)-5 and ligand (S)-7.
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ed dihydropyranone in moderate to high yields and up to
84.5% ee. Further studies of the derivatives of (S)-H¢4-
NOBIN as a ligand in asymmetric synthesis are currently
under investigation.
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Aldehydes in the Presence of (S)-7a

Entry R Yield (%)b Ee (%)c
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for 12 h.
b Isolated yields.
c The ee were determined by HPLC on Chiralcel OD-H. Absolute 
configurations were determined by comparison of specific rotations 
with literature data.
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