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Abstract: 

An antibiotic lissoclinolide has been synthesized fi'om propargyl alcohol in 9 steps and in 32% overall yield via (i) 

hydrogen transfer hydrozirconation of TBS-protected propargyl alcohol with i-BuZrCp2C1, (ii) Pd-catalyzed trans- 

selective cross coupling of the hydrozirconation product with a key 1,1-dibromoalkene intermediate 5 and (iii) Ag- 

catalyzed lactonization o fa  trienynoic acid precursor 2. © 1998 Elsevier Science Ltd. All rights reserved. 

We have recently [1] reported that the Pd-catalyzed cross coupling-lactonization tandem 

process [2] based on Sonogashira coupling [3] can be optimized to give (Z)-y- 

alkylidenebutenolides in high yields, one of the key findings being the desirability of the use of 

a Pd-PPh 3 mixture, in which the PPh3/Pd ratio is >_4 [4]. This tandem process has been successfully 

applied to the syntheses of natural products, such as rubrolides [ 1 a], (+)-goniobutenolide [ 1 b], and 

freelingyne [lc], which provided, for the first time, examples of natural products syntheses via Pd- 

catalyzed lactonization of ynoic acids [ 1 d]. We have also reported [1 a] that, despite the lack of 
opportunity for exploiting the highly efficient cross coupling-lactonization tandem process, 

lactonization of (Z)-2-en-4-ynoic acids catalyzed by Ag salts [5] can provide (Z)-y- 
alkylidenebutenolides in excellent yields under dilute conditions. 

We now report that the Ag-catalyzed lactonization is significantly superior to the Pd-catalyzed 
procedure in the synthesis of lissoclinolide (1) [6] from its precursor 2. Coupled with hydrogen 

transfer hydrozirconation [7] ofTBS-protected propargyl alcohol, where TBS is t-BuMe2Si, to give 

3 and Pd-catalyzed trans-selective cross coupling [8] of 3 with 1,1-dibromoalkene 5, lissoclinolide 

has been synthesized in 9 steps and in 32% overall yield from propargyl alcohol with nearly 

complete (>98%) regio- and stereo-control (Scheme 1). 
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Lissoclinolide (1) [6], isolated from Lissoclinum patella, has been shown to be active against 

Gram negative bacteria. Interestingly, its (5E)-isomer, tetrenolin, is known to be active against 

Gram positive bacteria [9]. Despite their structural simplicity, their synthesis has not been reported. 

We initially envisioned the synthesis of 1 via Pd-catalyzed cross coupling-lactonization tandem 

process [1,2] but encountered difficulties in the synthesis of the requisite (Z)-13-iodo acid (6). We 

therefore opted for the synthesis of 2 as a precursor to 1. This option gave us the flexibility of 

using either Pd-catalyzed or Ag-catalyzed lactonization, which eventually proved to be crucial in 

the synthesis of 1. Hydrogen transfer hydrozirconation of TBS-protected propargyl alcohol at 50 

°C in benzene [7] provided 3 (>98% E) in 90% yield, while its iodinolysis gave 4 in 89% yield. 

Since i-BuZrCp2C1 is readily generated in situ by treatment of commercially available and 

relatively stable Cp2ZrC12 with one equiv of t-BuMgC1, this represents a convenient alternative to 

conventional hydrozirconation [10] and its modifications using various metal hydrides [11]. The 

reaction of 4 with propargyl alcohol in the presence of pyrrolidine and 5 mol% of Pd(PPh3) 4 

afforded 7 in 92% yield, which was oxidized with (COC1)2 and DMSO [12] and then treated with 

CBr4 (3 equiv) and PPh3 (6 equiv) [13] to give 5 in 68% yield from 7. Conversion of 5 into 8 via 

Pd-catalyzed cross coupling was initially attempted with the alkenylzinc derivative generated from 

4 via lithiation with t-BuLi (2 equiv) and zincation with ZnBr2. To our surprise, 8 was not at all 

formed. The results were puzzling, since a model experiment led to very satisfactory trans- 

selective cross coupling, as shown in Scheme 2. Moreover, the use of a 7-benzyloxyzinc 

derivative in a similar Pd-catalyzed reaction with a 1,1-dibromoalkene was recently reported [ 14]. 

Although not clear, inactivation of the alkenylzinc derivative via E-to-Z isomerization-chelation 

may be suspected. Fortunately, direct use of 3 was found to be highly satisfactory (>98% trans- 

selective) for the Pd-catalyzed cross coupling. The use of organozirconiums in the Pd-catalyzed 

trans-selective cross coupling of 1,1-dihaloalkenes appears to be unprecedented. 

Treatment of 8 with 2 equiv of t-BuLi at -110 °C followed by quenching with CO2 produced 

2 in 78% yield. It is essential to maintain the reaction temperature at -110 °C. Our attempts to 

achieve Pd-catalyzed carboxylation of g with CO and H20, which, in principle, could be 
accompanied by Pd-catalyzed lactonization, have been unsuccessful. With 2 in hand, we had an 

opportunity to further compare the Pd-catalyzed and Ag-catalyzed lactonization procedures [ 1 ]. 

In the conversion of 2 to 9, the maximum yield observed with the Pd-catalyzed lactonization was 

35%, and the reaction was complicated by some side reactions which were not investigated. On 

the other hand, the Ag-catalyzed reaction at the concentration of 0.01 mol/L cleanly produced 9 

in essentially quantitative yield. The crude product isolated by mere extractive workup and 

evaporation was >_98% pure by ~H and 13C NMR spectroscopy, which showed no extraneous 

signals for byproducts. 
The following two procedures describe the two critical steps of the synthesis. Ag-Catalyzed 

Laetonization: Conversion of 2 to 9. To a solution of 2 (109 mg, 0.25 retool) in MeOH (25 mL) 
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was added AgNO 3 (2 mg, 0.012 mmol). After stirring the mixture at 23 °C for 1 h, analysis by 
TLC indicated completion of the reaction. After concentration at room temperature and reduced 

pressure, yellow crystals thus obtained were dissolved in CDC13, and filtered through a short-path 
silica gel column to remove AgNO 3. Analysis by IH N1V[R spectroscopy using methylene bromide 

as a standard indicated the formation of 9 in quantitative yield. Evaporation of the solvents 

provided 9 in 100% yield. Pd-Catalyzed Cross Coupling of 3 with 5. To CP2ZrC12 (2.32 g, 7.95 

mmol) in 16 mL of benzene was added at 0 °C 2 M t-BuMgC1 in Et20 (4.0 mL, 8.0 mmol), and 

the reaction mixture was heated to 50 °C for 1 h. The formation of i-BuZrCp2C1 in 94% yield was 
observed by IH NMR spectroscopy. To the solution containing i-BuZrCp2C1 was added TBS- 
protected propargyl alcohol (1.35 g, 7.95 retool), and the reaction mixture was stirred at 50 °C for 

5 h. Analysis by ~H NMR spectroscopy indicated the formation of 3 in 90% yield. After 
evaporation of the solvents under reduced pressure, THF (20 mL), 5 (1.21 g, 3.18 mol) dissolved 

in 5 mL of THF, C12Pd(PPh3)2 (0.11 g, 0.16 mmol), and DIBAL-H (0.32 mL of 1 M solution in 
THF, 0.32 mmol) were sequentially added. The reaction mixture was heated to 50 °C for 5 h. 

After the usual extractive workup, concentration and chromatography using 3% EhO in hexane 

provided 1.36 g (91%) of 8. 
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