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Abstract: Efficient Pd-catalyzed cyclization of homoallylated b-
bromo-vinylalcohols via a domino process to carbocycle deriva-
tives in presence of different bases is reported. An unexpected and
novel palladium-mediated Heck-type intramolecular oxidative
cyclization of 1-bromohexa-1-ene-5-yn-3-ol derivatives is also
described.
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The formation of carbon–carbon bonds using in situ gen-
erated organometallic reagents is of fundamental impor-
tance in organic synthesis.1 Palladium catalysts have
emerged as extremely powerful tools for the construction
of carbon–carbon bonds.2 Their popularity stems in part
from their capability to oxidize,3a,b reduce,3c,d isomerize3e,f

as well as to form new bonds. Substituted carbocycles rep-
resent a common structural component of naturally occur-
ring and biologically active molecules.4 The cyclization of
unsaturated substrates using an intramolecular Heck reac-
tion promoted by organopalladium complexes is of fun-
damental importance for the construction of a vast array
of mono- and polycarbocyclic and also polyheterocyclic
systems5 and is therefore a highly attractive feature in the
synthesis of cyclic natural products.5e In this context, we
have recently reported6 a new palladium-promoted domi-
no C–C cyclopalladation sequence allowing the facile
one-pot synthesis to cyclopentenones with promising syn-
thetic value. The 1-bromohexa-1,5-diene-3-ol derivatives
underwent Pd-catalyzed oxidative cyclization to function-
alized cyclopentenones in very good yields. In this com-
munication we wish to report the reactivity of new
sensitive substrates towards palladium-catalyzed intra-
molecular Heck reaction, which provides an efficient
route to cyclopentenones and cyclohexenones.

The starting materials were synthesized by addition of the
Grignard reagents derived from 4-bromo-1-butene and

Mg to bromoaldehydes (Scheme 1) in tetrahydrofuran
(THF) to afford bromo alcohols (1a–6a, Table 1) in good
yield.

Applying Heck reaction to the compounds 1a–6a under
standard conditions,7 produced substituted cyclohex-
enones (Scheme 2) exclusively through 6-exo-trig cycli-
zation pathways.

Scheme 2

In our previous communication, we opted for HCOONa
as the base, but later, we performed the reaction with other
bases (Na2CO3, K2CO3, NaOAc, Et3N) and acetonitrile as
solvent. In all these cases we successfully isolated the
cyclized products. To improve the yield further, we in-
corporated tetrabutyl ammonium chloride as additive,
which was found to be effective in all cases (Table 2).

The structure of 6b was unambiguously determined by X-
ray crystallographic analysis (Figure 1).

Figure 1 ORTEP view of the structure 6b

As we could not isolate any intermediate for this reaction,
we speculate that the mechanism follows the sequence in
Scheme 3. During the search for an intermediate, we syn-
thesized compound I by O-alkylation of 1-(2-bromo-
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acenaphthylen-1-yl)-but-3-en-1-ol with methyl iodide in
presence of sodium hydride in 67% yield. Heck reaction
of I (Scheme 4), under identical conditions, produced
compound II in 54% yield, which readily underwent
isomerization and afforded ketone III in presence of
mild acid in 45% yield. This may be considered as partial
evidence in favor of the cyclization followed by iso-
merization.

Our continuing interest was then focused towards the suc-
cessive coupling of 1-bromo-hexa-1-ene-5-yn-3-ol deriv-
atives via novel palladium-catalyzed oxidative cyclization
and isomerization. Attempted Heck reaction of substrates
(entries 1c–8c, Table 3) did not produce the anticipated
cyclopentanoid moiety containing an exocyclic double

Table 1 Homoallylation of the b-Bromo-vinylaldehydes Using Mg/4-Bromo-1-butenea

Entry Substrate Product Time (h) Yield (%)b

1

1a

6.0 69

2

2a

5.5 63

3

3a

5.5 64

4

4a

6.5 61

5

5a

5.5 72

6

6a

5.5 75

a Reagents and conditions: b-bromo-vinylaldehydes (1 mmol), 4-bromo-1-butene (1.3 mmol), THF (6–8 mL), Mg metal (1.2 mmol), stirred at 
–78 °C.
b Yields are of isolated product.
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bond but we found the 3-methyl cyclopentenone as the
only isolable product. Attempts to perform the reaction
using other bases like K2CO3, Na2CO3, Et3N, were all
unsuccessful resulting in polymeric materials.

The 1-bromohexa-1-ene-5-yn-3-ol derivatives were
synthesized from substituted b-bromovinylaldehydes by

indium-mediated propargylation8 with propargyl bromide
(Scheme 5). The propargyl indium reagent generated in
situ readily underwent regioselective addition to the car-
bonyl group of bromo-vinylaldehyde at 0 °C.

Scheme 5

When we subjected the appropriate propargylated b-bro-
mo-vinylalcohols to Pd(OAc)2 (10 mol%), PPh3 (0.25
equiv), HCOONa (1 equiv) and DMF, we found the same
3-methyl cyclopentenones (Scheme 6, 1d–8d) as the only
isolable products (Table 4).

Scheme 6

It has been previously reported9a that the alkyne insertion
reactions are terminated by anion capture. In this case, the
alkynyl-palladium9b intermediate formed by intramole-
cular insertion of the unactivated triple bonds could be ter-
minated by hydrogenolysis with formic acid to generate
the terminal alkene, which undergoes isomerization to
thermodynamically stable ketone. All these substrates
(entries 1c–8c) underwent cyclization through the 5-exo-
dig pathway and were reduced through isomerization
under the reaction conditions.7 As the Pd(0)-catalyzed
isomerization is unusual, it may proceed through a Pd(II)
intermediate.10

We obtained the reduced cyclopentenone as the only
isolable product. However, the cyclization of 1-(1,7-di-
bromo-3,4-dihydro-naphthalen-2-yl)-but-3-yn-1-ol (entry
7c) failed under the same reaction conditions and we
obtained a complex mixture of products.

In conclusion, we have outlined a palladium-catalyzed
cycloisomerization towards the synthesis of fused car-
bocycles. The developed methodology serves an effective
transition metal-catalyzed protocol for the cyclization of
unactivated alkenes, alkynes via a tandem process. The
palladium acetate–HCOONa protocol could be used for
intramolecular Heck reactions, though the mechanistic
aspects are not yet fully understood. Our efforts are
currently directed towards further exploitation of this
procedure for sequential allylations and cyclizations.
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Table 2 Palladium-Catalyzed Cyclization

Substrate Product Yield (%)a

1a

1b

44

2a

2b

38

3a

3b

51

4a

4b

51

5a

5b

53

6a

6b

65

a Yield refers to isolated yield. All of the compounds gave satisfactory 
1H NMR, 13C NMR spectroscopic and MS spectrometric data.11
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Table 3 Propargylation of the b-Bromo-vinylaldehydes Using In/Propargyl Bromidea

Entry Substrate Time (h) Product Yield (%)b

1

1c

4.5 80

2

2c

5.5 78

3

3c

4.0 75

4

4c

5.0 74

5

5c

5.0 79

6

6c

5.0 82

7

7c

5.5 75

8

8c

5.0 78

a Reagents and conditions: b-bromo-vinylaldehydes (1 mmol), propargyl bromide (1.3 mmol), DMF, In metal (1.2 mmol), stirred at 0 °C.
b Yields are isolated yield.
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Substrate Product Yield (%)a

1c
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40

2c

2d
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3c

3d

48

4c

4d

42

5c

5d

34

6c

6d

40

7c Messy mixture (7d) –

8c

8d

35

a Yields refers to isolated yield. All of the compounds gave satisfac-
tory 1H NMR, 13C NMR spectroscopic and MS spectrometric data.11 
The structure of 6d was unambiguously determined by X-ray 
crystallographic analysis.
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d = 1.15 (d, 3 H, J = 6.96 Hz), 1.42–1.67 (m, 6 H), 1.73–1.83 
(m, 4 H), 2.26–2.58 (m, 2 H), 2.67–2.7 (m, 1 H). 13C NMR 
(75 MHz, CDCl3): d = 18.98, 23,09, 26.33, 26.50, 31.13, 
31.42, 37.04, 43.13, 141.72, 181.02, 208.11. MS (EI, 70 eV): 
m/z = 164 [M+]. Anal Calcd for C11H16O: C, 80.44; H, 9.82. 
Found: C, 80.65; H, 9.62.
10-Methyl-9,10-dihydro-8H-fluoranthen-7-one (6b):
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d = 1.55 (d, 3 H, J = 7.12 Hz), 2.06–2.09 (m, 1 H), 2.39–2.78 
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13C NMR (75 MHz, CDCl3): d = 20.38, 29.19, 31.32, 35.68, 
126.11, 126.21, 126.96, 127.54, 128.41, 128.66, 130.86, 
136.81, 161.66, 196.89. MS (EI, 70 eV): m/z = 234 [M+]. 
Anal Calcd for C17H14O: C, 87.15; H, 6.02. Found: C, 86.92; 
H, 5.93.
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