Synthesis of d,I-Norlabdane Oxide and Related Odorants: An Intramolecular Radical Approach

Phillip A. Zoretic* and Haiquan Fang
Department of Chemistry, East Carolina University, Greenville, North Carolina 27858
Anthony A. Ribeiro
Duke NMR Spectroscopy Center and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710

Received February 5, 1998

A cascade radical approach to d,I-norlabdane oxide and related odorants is reported. Oxidative radical cyclization of polyene $\mathbf{4}$ with $\mathrm{Mn}(\mathrm{III})$ and $\mathrm{Cu}(I I)$ afforded exclusively bicycle 3, which upon acid treatment gave tricycle 2 possessing the norlabdane oxide skeleton with a modified A-ring system. Tricycle $\mathbf{2}$ was ultimately converted to d,I-norlabdane oxide $\mathbf{1}$ and to several new A-ring labdane oxides as potential odorants.

Introduction

Ambergris ${ }^{1}$ is a metabolite of blue sperm whale (Physeter macrocephalus L.) and accumulates as concretions in the gut. A naturally occurring fragrance, (-)-norlabdane oxide 1, ${ }^{2}$ produced during the aging process of ambergris with sunlight and air, is highly valued in the perfumery industry. Owing to its unique olfactive and fixative properties and a diminished availability from a natural source, a number of synthetic approaches have been developed toward 1 and racemic norlabdane oxide, the odor ${ }^{3}$ of which is slightly different from that of the natural enantiomer. Since its first synthesis ${ }^{4}$ in 1950, the major efforts targeted toward the synthesis of $\mathbf{1}$ have focused on the use of optically active terpenoids, ${ }^{5}$ as

[^0]starting materials, that possess several of the contiguous chiral centers present in the natural product. Recent reports have shown that naturally occurring sclareol ${ }^{6}$ and communic acids ${ }^{7}$ are the most attractive precursors for the preparation of $\mathbf{1}$. Of these, sclareol, readily available from clary sage, appears to be the most ideal. The synthesis of both enantiomers of norlabdane oxide from geranylacetone ${ }^{8}$ involving an optical resolution step and several strategies, ${ }^{9}$ including a biomimetic-like ${ }^{10}$ approach to racemic norlabdane oxide, have also been reported.

Results and Discussion

Specific odorants of the labdane oxide type are not only valuable in perfumery ${ }^{1}$ but as additives to tobacco. ${ }^{11}$ Our interest in this area was to develop a radical strategy that might provide an alternative cascade route to known and possibly new olfactory agents. Retrosynthetic analysis of $\mathbf{1}$ (Scheme 1) suggests that radical cyclization of polyene 4 with $\mathrm{Mn}(I I I)$ and $\mathrm{Cu}(I I)$ could provide an indirect entry to tricycle 2 via a kinetic acid-catalyzed cydization of 3. Alternatively, stereospecific cyclization of 4 with 2 equiv of $\mathrm{Mn}(I I I)$ could in theory provide a direct one-step entry to 2 (vide infra), which in turn could serve as a common intermediate to known and to new functionalized A-ring norlabdane oxides as potential

[^1]Scheme 1

Scheme $\mathbf{2 a}^{\text {a }}$

${ }^{\text {a }}$ Key: (a) Swern oxidation, $-60^{\circ} \mathrm{C}, \mathrm{N}_{2}$; (b) $\mathrm{Ph} 3 \mathrm{P}=\mathrm{CH}_{2}, \mathrm{THF}$, $-78^{\circ} \mathrm{C}$; (c) $\left(\mathrm{Me} \mathrm{CHCHMe}_{2} \mathrm{BH}, \mathrm{THF},-10^{\circ} \mathrm{C}, \mathrm{N}_{2}\right.$, then aq NaOH , $\mathrm{H}_{2} \mathrm{O}_{2}$; (d) $\mathrm{MeOH}, \mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$, rt; (e) $\mathrm{NCS}, \mathrm{DMS}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20$ ${ }^{\circ} \mathrm{C}$; (f) 5 equiv $\mathrm{LiCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CMe}(\mathrm{Na}) \mathrm{CO}_{2} \mathrm{Et}$, THF, $0{ }^{\circ} \mathrm{C}$, then 10% HCl .
olfactory agents. We describe herein the application of the proposed radical methodology in the synthesis of racemic $\mathbf{1}$ and related norlabdane oxides.
The synthesis of polyene $\mathbf{4}$ from alcohol 5^{12} is shown in Scheme 2. Swern oxidation of $\mathbf{5}$ afforded aldehyde $\mathbf{6}$ in quantitative yield. Wittig reaction of $\mathbf{6}$ with triphenylphosphonium methylide followed by hydroboration of the resulting triene with disiamyl borane and subsequent oxidation with basic hydrogen peroxide gave the one carbon extended alcohol 7 in 87% yield (two steps). Cleavage of the THP protecting group in $\mathbf{7}$ afforded diol $8(97 \%)$, which was converted to the corresponding allyl chloride $\mathbf{9}(84 \%)$ by reaction of $\mathbf{8}$ with NCS and DMS. ${ }^{13}$ Reaction of 9 with the dianion of ethyl 2-methylacetoacetate (5 equiv) followed by acidification gave polyene 4 (85\%), after chromatography.
Oxidative freeradical ${ }^{14}$ cyclization of $\mathbf{4}$ (Scheme 3) with a 2:1 ratio of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}^{15}$ in an 0.1 M solution of deaerated acetic acid afforded exclu-

[^2]Scheme 3a

a Key: (a) $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{HOAc} ;(\mathrm{b}) \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, rt; (c) $\mathrm{NaBH}_{4}, \mathrm{EtOH}$; (d) $\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{Cl}, 4-\mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$; (e) 4-DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \Delta$; (f) LAH, THF, Δ, then satd $\mathrm{Na}_{2} \mathrm{SO}_{4}$; (g) CS_{2}, DBN, DMF, rt, then Mel ; (h) n-Bu ${ }_{3} \mathrm{SnH}$, xylene, Δ; (i) Pd/C, H_{2}; (j) $\mathrm{EtOH}, \mathrm{K}_{2} \mathrm{CO}_{3}$.
sively the exocyclic product $\mathbf{3}$ in 58% yield. None of the endocyclic isomer was detected (vide infra). Attempted cyclization of $\mathbf{3}$ with $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in nitromethane gave only 7% of desired tricycle $\mathbf{2}$ along with 59% of recovered starting materal and an unidentified faster moving compound(s). Fortunately cyclization of $\mathbf{3}$ with trifluoroacetic acid gave 2 (55\%) and crude ester 10 (38\%), which was hydrolyzed back to $\mathbf{3}$ and recyclized to afford $\mathbf{2}$ in 72% overall yield. It is noteworthy that cyclization of $\mathbf{3}$ could not be achieved with 90% aqueous trifluoroacetic acid.

The assignment of each proton and carbon resonance signal in $\mathbf{2}$ was determined from a series of 2D COSY, long-range COSY, HMQC, and HMBC correlations. The relative stereochemistry shown in $\mathbf{2}$ was consistent with the following 2D NOESY and 1D NOEDS results: The $\mathrm{C}-10 \mathrm{Me}(\delta 0.99)$ showed NOE enhancements to the C-8 $\mathrm{Me}(\delta 1.15)$, the $\mathrm{H}_{2 \mathrm{ax}}$ proton ($\delta 2.99$), the $\mathrm{H}_{\text {1eq }}$ proton (δ 1.85), the methyleneoxy protons of the ester ($\delta 4.15$), the $\mathrm{H}_{\text {6ax }}$ proton ($\delta 2.07$), and the $\mathrm{H}_{\text {tlax }}$ proton ($\delta 1.80$). The $\mathrm{C}-8 \mathrm{Me}$ showed enhancements to the $\mathrm{C}-10 \mathrm{Me}, \mathrm{H}_{122 \mathrm{x}}$, $\mathrm{H}_{\text {11ax }}, \mathrm{H}_{6 \mathrm{ax}}$, and $7_{\text {eq }}$ protons. These results confirmed the stereochemistry depicted in 2.

The prevalant olfactory properties ${ }^{1}$ of $(-)$-norlabdane oxide $\mathbf{1}$ are presumably due to the axial disposition of three methyl groups. Keeping this in mind, tricycle 2, having a functionalized A-ring and three suitably disposed axial groups, presents an ideal synthon for elaboration to known as well as to potentially new odorants possessing the desired norlabdane skeleton. The synthesis of d,l-norlabdane oxide $\mathbf{1}$ from tricycle $\mathbf{2}$ was realized in the following manner. Hydride reduction of 2 with NaBH_{4} gave alcohol $\mathbf{1 1}$ (91\%). Subsequent reaction of $\mathbf{1 1}$ with trifluoromethanesulfonyl chloride in the presence of 4-DMAP followed by treatment of the resulting sulfonate with 4-DMAP in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded
(15) Dombroski, M. A.; K ates, S. A.; Snider, B. B. J . Am. Chem. Soc. 1990, 112, 2759 and references within.

Scheme 4a

a Key: (a) LAH, THF, Δ, then satd $\mathrm{Na}_{2} \mathrm{SO}_{4}$; (b) CS_{2}, DBN, DMF, N_{2}, then Mel ; (c) $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}$, xylene, Δ; (d) $\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{Cl}, 4$-DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, \mathrm{N}_{2}$.

12 (83\%). Reduction of $\mathbf{1 2}$ with LAH yielded alcohol 13 (95\%). Deoxygenation of 13 was effected in two steps using the procedure devel oped by Barton. ${ }^{16}$ Thus, al cohol 13 was converted to dithiocarbonate 14 (94\%) and treatment of 14 with $n-\mathrm{Bu}_{3} \mathrm{SnH}$ afforded d,I-2-norlabdene oxide $\mathbf{1 5}$ in 78% yield al ong with a trace amount of 13. Catalytic reduction of $\mathbf{1 5}$ with H_{2} in the presence of 5% Pd / C gave a quantitative yield of $\mathrm{d}, \mathrm{I}-\mathbf{1}$, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of which were identical to those of $(-)-\mathbf{1}$.

Of the modified A-ring compounds 11-15, d,l-2-norlabdene oxide $\mathbf{1 5}$ possessed a fragrance most paralleling that of (-)-1. Hence, an alternative route to $d, l-15$ was explored, as projected in Scheme 4. Hydride reduction of keto ester 2 with LAH yiel ded diol 16 (95\%). Reaction of 16 with CS_{2} in the presence of DBU followed by methylation with methyl iodide gave monodithiocarbonate 17 in 62% yield, after chromatography, along with the bisdithiocarbonate 19 and the 3β-monodithiocarbonate 18. Subsequent treatment of $\mathbf{1 7}$ with $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}^{16}$ gave $\mathrm{d}, \mathrm{I}-\mathbf{2 0}{ }^{11}$ in 91% yield. It is noted that (-)-norlab-dane-3 β-ol oxide 20, obtained from a fermentation process, and the corresponding ketone are valued as odorants in tobacco. ${ }^{11}$ Reaction of $\mathbf{2 0}$ with $\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{Cl}$ in the presence of 4-DMAP afforded directly d,l-15 (97\%).

In theory, one might postulate that tricycle 2 (Scheme 5) might be obtained directly from the oxidative freeradical cyclization of polyene 4 using excess $\mathrm{Mn}(\mathrm{OAc})_{3}{ }^{\circ}$ $2 \mathrm{H}_{2} \mathrm{O}$. Here, it might be anticipated that the derived tertiary radical 22 resulting from the second endo trig cyclization would be oxidized by an additional equivalent

[^3]of $\mathrm{Mn}(I I I)$ to give the tertiary carbocation 23. Under kinetic conditions, intermediate 23 could in turn be trapped intramolecularly by the alcohol group to afford tricycle 2. Indeed, this postulation is intriguing, but in reality oxidative radical cyclization of 4 in the presence of 3 equiv of Mn (III) gave only 11% of $\mathbf{2}, 35 \%$ of an approximate $87: 13$ ratio of $\mathbf{3}$ and the corresponding Δ^{7} isomer 24, and acetate 25 (10\%), after chromatography.

Acetate $\mathbf{2 5}$ was converted into $\mathbf{2}$ in the following manner. Hydrolysis of 25 with EtOH in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ afforded an intermediate diol which upon treatment with $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in nitromethane gave 2 (70%, two steps).

It is noteworthy that cyclization of polyene 4 with Mn (III) in tandem with $\mathrm{Cu}(\mathrm{II})$ (vide supra) differs dramatically from that with $\mathrm{Mn}(\mathrm{III})$. The exclusive formation of the exo product 3 in the former case maybe due to an interelectron-transfer process ${ }^{17}$ invol ving intermediate 26 (eq 1) resulting from intramolecular complexation of the

$\longrightarrow 3$ (eq. 1)

26
al cohol group with the copper species. Here, synchronous electron-transfer to copper and β-hydrogen elimination in the product-forming step may only be possible from the methyl group, since the $\mathrm{C}-\mathrm{Cu}$ and $\mathrm{C}-\mathrm{H}$ bonds should be aligned syn for smooth β-H elimination. The exclusion of the endo isomer $\mathbf{2 4}$ in this case may simply reflect the fact that the $\mathrm{C}-\mathrm{Cu}$ and $\mathrm{C}_{7}-\mathrm{H}$ bond cannot align in a syn fashion for β-H elimination to occur, since alcohol complexation locks the conformation. In support of this rationale, it was noted that cyclization of the corresponding acetate of $\mathbf{4}$ afforded a 67:33 ratio of acetates $\mathbf{3}$ and 24. With the alcohol blocked as an acetate, the copper should come in from the less sterically hindered α-face of $22(\mathrm{OH}=\mathrm{OAc}$, Scheme 5). Here, syn β-hydrogen elimination via 27a or $\mathbf{2 7 b}$ (eq 2) could occur to afford exo and endo acetate products 3 and 24, respectively.

Conclusion

A stereoselective radical cascade approach to norlabdane oxides has been demonstrated. The distinct regiospecificity derived from the radical cyclization of polyene 4 with $\mathrm{Mn}(\mathrm{III})$ and $\mathrm{Cu}(\mathrm{II})$ versus that obtained from the corresponding acetate of $\mathbf{4}$ is also noteworthy.

Experimental Section

General Procedures. NMR spectra were obtained at 200 and 500 MHz . Elemental analyses were obtained from Galbraith Laboratories. HRMS analyses were obtained from the Mass Spectroscopy Facilities at UNC-CH and Duke. All melting points are uncorrected. Preparative chromatography was performed on Merck silica gel G 60 (70-230 mesh) and Merck silica gel G (230-400 mesh, for pressure chromatography). TLC was preformed with Sybron/Brinkmann silica gel G/UV 254 plates, 0.25 mm (analytical). Compounds on chromatography plates were visualized by spraying with 4% phosphomolybdic acid in isopropyl alcohol followed by heating. THF was distilled from sodium benzophenone ketyl. Commercial reagent grade solvents and chemicals were used as obtained unless otherwise noted.
(2E ,6E)-3,7-Dimethyl-8-[(tetrahydro-2H-pyran-2-yl)-oxy]-2,6-octadien-1-ol (5). Anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (12.2 g , 88 mmol) was added to (2E, 6E)-3,7-dimethyl-8-[(tetrahydro-2H-pyran-2-yl)oxy]-2,6-octadienyl acetate ${ }^{12}$ ($52.1 \mathrm{~g}, 176 \mathrm{mmol}$) in absolute $\mathrm{MeOH}(95 \mathrm{~mL})$ and the reaction mixture was stirred overnight at room temperature and then diluted with $\mathrm{H}_{2} \mathrm{O}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. After back-washing of the aqueous solution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic sol ution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give an oil. Chromatography on silica gel ($200 \mathrm{~g}, 70-230$ mesh) eluting with ethyl acetate-hexanes gave 40.6 g (91\%) of 5: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.33-5.48(\mathrm{~m}, 2 \mathrm{H}), 4.57-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.03-4.22$ $(\mathrm{m}, 3 \mathrm{H}), 3.79-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.58(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.28(\mathrm{~m}$, $4 \mathrm{H}), 1.67(\mathrm{~s})$ and $1.48-1.95(\mathrm{~m})[13 \mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 77.0$) $\delta 138.8,132.0,127.7,123.9,96.9,72.8,61.9,59.2,39.0,30.5$, 25.8, 25.4, 19.3, 16.1, 14.0.
(2E,6E)-3,7-Dimethyl-8-[(tetrahydro-2H-pyran-2-yl)-oxy]-2,6-octadienal (6). Dry DMSO ($7.4 \mathrm{~g}, 6.7 \mathrm{~mL}, 94.7$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added to oxalyl chloride (5.8 $\mathrm{g}, 4.0 \mathrm{~mL}, 45.7 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(110 \mathrm{~mL})$ at $-60^{\circ} \mathrm{C}$ over 20 min under N_{2}. After stirring for 5 min , alcohol 5 (10.0 g, 39.4 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise over 5 min and the reaction mixture was stirred for an additional 15 min. $\mathrm{Et}_{3} \mathrm{~N}(20.3 \mathrm{~g}, 28 \mathrm{~mL}, 201 \mathrm{mmol})$ was added at $-60^{\circ} \mathrm{C}$ over 10 min and stirring was continued for 20 min . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, allowed to come to room temperature, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic solution was washed with brine, and after back-washing of the aqueous solution, the organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo at 35 mm and then at 0.4 mm to give 100% of crude 6: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.0(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz})$, $5.89(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=0.9,8.1 \mathrm{~Hz}), 5.35-5.47(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{J}=3.3 \mathrm{~Hz}), 4.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.6 \mathrm{~Hz}), 3.84(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz})$ and $3.80-3.94(\mathrm{~m})[2 \mathrm{H}], 3.44-3.58(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s})$ and $2.27-$ (s) $[4 \mathrm{H}], 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.67$ (s) and 1.45-1.94 (m) [9H]; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 77.0\right) \delta 191.2,163.4,133.4,127.4,125.5,97.6,72.5$, $62.2,40.1,30.6,25.4,25.3,19.5,17.6,14.1$; IR (neat) $1675 \mathrm{~cm}^{-1}$. Crude 6 was not characterized further but submitted directly to the Wittig reaction.
(3E,7E)-4,8-Dimethyl-9-[(2-tetrahydropyranyl)oxy]-3,7-nonadien-1-ol (7). n-BuLi (2.6 M in hexane, 20.5 mL , 53.3 mmol) was added to methyltriphenylphosphonium bromide ($18.7 \mathrm{~g}, 52.3 \mathrm{mmol}$) in dry THF (250 mL) at $-78^{\circ} \mathrm{C}$ under N_{2} over 30 min and the reaction mixture was stirred for 2 h . Crude aldehyde $6(9.9 \mathrm{~g}, 39.3 \mathrm{mmol})$ in dry THF (5 mL) was added over 10 min and stirring was continued at $-78^{\circ} \mathrm{C}$ for 4 h. The reaction mixture was then allowed to warm to room temperature, quenched with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$, and extracted with hexanes. The organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and
brine, and after back-washing of the aqueous solution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuoto give 11.7 g of an oil. Chromatography on silica gel ($80 \mathrm{~g}, 70-230$ mesh) eluting with hexanes and ethyl acetate-hexanes gave $8.1 \mathrm{~g}(83 \%)$ of ($2 \mathrm{E}, 6 \mathrm{E}$)-2,6-di-methyl-1-[(tetrahydro-2H-pyran-2-yl)oxy]-2,6,8-octatriene: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.57(\mathrm{~m}, 1 \mathrm{H}), 5.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.9 \mathrm{~Hz}), 5.42$ $(\mathrm{m}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}), 4.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=11.5 \mathrm{~Hz}), 3.85(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz})$ and $3.81-3.96(\mathrm{~m})[2 \mathrm{H}], 3.43-$ $3.57(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.28(\mathrm{~m}, 4 \mathrm{H}), 1.77(\mathrm{~s}), 1.67(\mathrm{~s})$ and $1.44-$ 1.95 (m) [12H]; ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3$, 77.0) δ 139.0, 133.2, 132.1, 127.3, 125.6, 114.7, 97.3, 72.7, 62.1, 39.4, 30.6, 26.0, 25.4, 19.5, 16.6, 14.0. The triene was not characterized further but submitted directly to the hydroboration oxidation reaction.

Triene ($7.76 \mathrm{~g}, 31.0 \mathrm{mmol}$) in dry THF (9 mL) was added slowly to a freshly prepared solution of disiamyl borane (0.5 M in THF, $137 \mathrm{~mL}, 68.5 \mathrm{mmol}$) at $-10{ }^{\circ} \mathrm{C}$ under N_{2}. The reaction mixture was stirred for 5 h between -5 and $-10^{\circ} \mathrm{C}$ and then carefully quenched with sequential addition of water $(22.9 \mathrm{~mL}), 3 \mathrm{M} \mathrm{NaOH}(22.9 \mathrm{~mL})$, and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ (22.3 mL). The heterogeneous mixture was vigorously stirred for 9 h and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. After back-washing of the aqueous solution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic solution was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo to give an oil. Chromatography on silica gel ($66 \mathrm{~g}, 70-230$ mesh) and elution with ethyl acetate-hexanes gave $7.2 \mathrm{~g}(87 \%)$ of $7:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 5.35-5.48(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.21(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=3.3$ $\mathrm{Hz}), 4.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.5 \mathrm{~Hz}), 3.84(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz})$ and $3.80-$ $3.97(\mathrm{~m})[2 \mathrm{H}], 3.45-3.69(\mathrm{~m}, 3 \mathrm{H}), 2.02-2.36(\mathrm{~m}, 7 \mathrm{H}), 1.65(\mathrm{~s})$ and $1.47-1.91(\mathrm{~m})[12 \mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 77.0\right) \delta 138.2$, 132.0, 127.7, 120.4, 97.3, 72.9, 62.4, 62.1, 39.3, 31.5, 30.6, 26.1, 25.5, 19.4, 16.1, 14.0 ; IR (neat) $3423 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{3}$: C, 71.60; H, 10.52. Found: C, 71.73; H, 10.48 .
(2E ,6E)-2,6-Dimethyl-2,6-nonadien-1,9-diol (8) p-TsOH. $\mathrm{H}_{2} \mathrm{O}(12.6 \mathrm{~g}, 66.2 \mathrm{mmol})$ was added in several portions to tetrahydropyran $7(21.8 \mathrm{~g}, 81.3 \mathrm{mmol})$ in absolute MeOH (480 mL) and the reaction mixture was stirred at room temperature for $6 \mathrm{~h} .3 \% \mathrm{NaOH}(200 \mathrm{~mL})$ was added and the resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic solution was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give an oil. Chromatography on silica gel ($100 \mathrm{~g}, 70-230$ mesh) eluting with ethyl acetate-hexanes gave 14.6 g (97\%) of 8: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.34(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~s}$, $2 \mathrm{H}), 3.60(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}), 1.84-2.33(\mathrm{~m}, 8 \mathrm{H}), 1.65(\mathrm{~s})$ and 1.63 (s) [6H]; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 77.0$) δ 138.1, 135.2, 125.7, 120.8, 68.8, 62.2, 39.3, 31.2, 25.7, 16.0, 13.7; IR (neat) 3331 cm^{-1}. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 71.70; $\mathrm{H}, 10.94$. Found: C, 71.69; H, 11.15.
(3E,7E)-9-Chloro-4,8-dimethyl-3,7-nonadien-1-ol (9). DMS ($2.37 \mathrm{~g}, 2.8 \mathrm{~mL}, 38.1 \mathrm{mmol}$) was added to NCS (4.72 g , $35.3 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2} over 20 \min. A white suspension was formed after 15 min and the reaction mixture was then cooled to $-20^{\circ} \mathrm{C}$. Diol $8(5.0 \mathrm{~g}$, 27.2 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added over 10 min and after 15 min at $-20^{\circ} \mathrm{C}$ the reaction mixture was warmed to 0 ${ }^{\circ} \mathrm{C}$ and stirred for 2.5 h . Cold brine (200 mL) was added and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give an oil. Chromatography on silica gel ($50 \mathrm{~g}, 70-230$ mesh) eluting with ethyl acetate-hexanes gave $4.6 \mathrm{~g}(84 \%)$ of 9 : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.50(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}), 5.14(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~s}$, $2 \mathrm{H}), 3.62(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.02-2.36(\mathrm{~m}, 7 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$, $1.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 77.0\right) \delta$ 137.9, 131.9, 130.4, 120.5, 62.4, 52.4, 38.9, 31.5, 26.4, 16.1, 14.1; IR (neat) 3355 cm^{-1}. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{OCl}: \mathrm{C}, 65.17 ; \mathrm{H}, 9.45$. Found: C, 65.26; H, 9.79.
Ethyl (6E,10E)-13-Hydroxy-2,10-dimethyl-3-oxo-6,10tridecadienoate (4). Ethyl 2-methylacetoacetate ($23.8 \mathrm{~g}, 165$ mmol) in dry THF (110 mL) was added to a suspension of NaH (60% in mineral oil, $6.75 \mathrm{~g}, 169 \mathrm{mmol}$) in dry THF (380 mL) at $0{ }^{\circ} \mathrm{C}$ under N_{2} over 1 h . n-BuLi (2.6 M in hexanes, 64.9 $\mathrm{mL}, 169 \mathrm{mmol}$) was then added over 45 min and stirring was continued for 1.5 h . Chloride $\mathbf{9}(6.7 \mathrm{~g}, 33.1 \mathrm{mmol})$ in dry THF $(50 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$ over 20 min and stirring was
continued for 2 h followed by neutralization with $10 \% \mathrm{HCl}$. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ and then washed with saturated $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, and brine. The organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give an oil. Chromatography on silica gel ($140 \mathrm{~g}, 70-230$ mesh) eluting with ethyl acetate-hexanes gave 8.8 g (85\%) of 4: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.73(\mathrm{br} \mathrm{s}, 0.15 \mathrm{H}), 4.52-4.60(\mathrm{~m}, 2 \mathrm{H}), 4.19$ $(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.62(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 3.52(\mathrm{q}, 0.85 \mathrm{H}$, J $=7.1 \mathrm{~Hz}), 2.24-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.20(\mathrm{~m}, 4 \mathrm{H}), 1.96-2.08$ $(\mathrm{m}, 4 \mathrm{H}), 1.64(\mathrm{~s}), 1.60(\mathrm{~s})$ and $(\mathrm{HO})[7 \mathrm{H}], 1.33(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz})$ and $1.27(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz})[6 \mathrm{H}]$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 77.0\right) \delta 205.5$, 170.6, 138.3, 133.5, 124.8, 120.2, 62.4, 61.3, 52.9, 40.0, 39.6, 33.2, 31.4, 26.3, 16.1, 16.0, 14.1, 12.7; HRMS calc for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{4}$ $\left(\mathrm{M}^{+}\right) 310.2144$, found 310.2148. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{4}$: C, $69.64 ; \mathrm{H}, 9.74$. Found: C, 69.01; H, 9.93. The carbon value for $\mathbf{4}$ was always slightly lower than the theoretical value.
(d,I)-[1R-(1 $\alpha, 4 \mathrm{a} \alpha, 8 \mathrm{a} /$)]-5-(2-Hydoxyethyl)-1,4a-dimethyl-6-methylene-2-oxo-1,4,4a,5,8,8a-hexahydro-1-naphthylcarboxylic Acid, Ethyl Ester (3). $\mathrm{Mn}(\mathrm{OAC})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(7.54 \mathrm{~g}$, $28.1 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(2.81 \mathrm{~g}, 14.1 \mathrm{mmol})$ were added to keto ester $4(4.36 \mathrm{~g}, 14.1 \mathrm{mmol}$) in deaerated HOAc (140 mL) at room temperature under Ar. The reaction mixture was stirred for 14 h and then passed through a Celite pad by washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. The organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and then back-washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic sol ution was neutralized with 0.1 N NaOH $(400 \mathrm{~mL})$ and then washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuoto give an oil. Chromatography on silica gel ($50 \mathrm{~g}, 70-230$ mesh) eluting with ethyl acetate-hexanes gave $2.5 \mathrm{~g}(58 \%)$ of $3:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~s}$, $1 \mathrm{H}), 4.00-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.58(\mathrm{~m}, 1 \mathrm{H})$, 2.96 (6 line ddd, $1 \mathrm{H}, \mathrm{J}=6.2,14.8,14.8 \mathrm{~Hz}$), $2.34-2.52$ (m , 2 H), 2.13 (ddd, $1 \mathrm{H}, \mathrm{J}=2.6,6.2,13.2 \mathrm{~Hz}$), $1.34(\mathrm{~s}, 3 \mathrm{H}), 1.23$ (t, $3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$), $0.82(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 77.0$) $\delta 208.7$, 173.2, 146.7, 107.7, 61.8, 61.1, 57.5, 57.2, 51.0, 39.5, 38.8, 38.0, 37.1, 27.4, 26.1, 21.2, 13.6, 12.5. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4}$: C, 70.10; H, 9.15. Found: C, 70.29; H, 9.48.
(d,I)-Ethyl $8 \alpha, 12-E$ poxy-3-oxo-13,14,15,16-tetranorlab-dan-19-oate (2). From Acid-Catalyzed Cyclization. Keto ester $\mathbf{3}(483 \mathrm{mg}, 1.57 \mathrm{mmol})$ in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(12 \mathrm{~mL})$ was stirred at room temperature for 1 h and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL). The solution was washed with $\mathrm{H}_{2} \mathrm{O}$, neutralized with saturated $\mathrm{NaHCO}_{3}(\mathrm{pH} 7)$, and washed with brine. After backwashing, the organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give a thick oil. Chromatography on silica gel ($20 \mathrm{~g}, 230-400$ mesh) el uting with ethyl acetate-hexanes gave 264 mg of $\mathbf{2}\left[\mathrm{mp} 54-56^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}\right.$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 4.15(\mathrm{~m}, 2 \mathrm{H}), 3.94\left(\mathrm{~m}, \mathrm{H}_{122 x}, 1 \mathrm{H}\right), 3.85$ (apparent dd, $\mathrm{H}_{12 e q}$, $1 \mathrm{H}, \mathrm{J}=8.2,16.5 \mathrm{~Hz}$), 2.99 (6 line ddd, $\mathrm{H}_{2 a x}, 1 \mathrm{H}, \mathrm{J}=6.6,14.7$, $14.7 \mathrm{~Hz}), 2.43\left(\mathrm{dq}, \mathrm{H}_{\text {2eq, }}, 1 \mathrm{H}, \mathrm{J}=\sim 2.2,15 \mathrm{~Hz}\right), 2.07\left(\mathrm{~m}, \mathrm{H}_{6 a x}\right.$, $1 \mathrm{H}), 2.00\left(\mathrm{dt}, \mathrm{H}_{\text {7eq }}, 1 \mathrm{H}, \mathrm{J}=\sim 3.2,11.9 \mathrm{~Hz}\right), 1.95\left(\mathrm{dq}, \mathrm{H}_{6 \mathrm{eq}}, 1 \mathrm{H}\right.$, $J=\sim 3.2,14.4 \mathrm{~Hz}), \sim 1.85\left(\mathrm{~m}, \mathrm{H}_{\text {leq }}, 1 \mathrm{H}\right), \sim 1.81\left(\mathrm{~m}, \mathrm{H}_{11 \mathrm{ax}}, \mathrm{H}_{11 \mathrm{eq}}\right.$, 2H), 1.48 (6 line ddd, $1 \mathrm{H}, \mathrm{H}_{1 \text { ax }} \mathrm{J}=\sim 4.7,13.8,13.8 \mathrm{~Hz}$), 1.38 ($\mathrm{s}, \mathrm{C}-4 \mathrm{Me}$) and 1.32-1.41 (m, $\mathrm{H}_{7 \mathrm{ax}}, \mathrm{H}_{\text {9ax }}, \mathrm{H}_{5 a x}$) [6H], 1.27 (t, $3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$), $1.15(\mathrm{~s}, \mathrm{C}-8 \mathrm{Me}, 3 \mathrm{H}), 0.99(\mathrm{~s}, \mathrm{C}-10 \mathrm{Me}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}, 77.0$) $\delta 207.74$ (C3), 173.43 (ester CO), 79.43 (C8), 64.74 (C12), 61.13 (ethyl CH_{2}), 59.17 (C9), 57.61 (C4), 57.55 (C5), 40.21 (C1), 39.05 (C7), 36.48 (C10), 36.39 (C2), 22.81 (C1), 22.47 (C6), 21.07 (4 Me), 20.73 (8 Me), 13.94 (ethyl Me), 12.52 (10 Me); IR (KBr) 1713 (br) cm^{-1}. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4}$: C, 70.10; H, 9.15. Found: C, $69.98 ; \mathrm{H}$, 9.31.] and 243 mg of crude $\mathbf{1 0}$ along with a small amount of isomeric material. Anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(249 \mathrm{mg}, 1.8 \mathrm{mmol})$ was added to $\mathbf{1 0}(243 \mathrm{mg})$ in absolute EtOH (5 mL) and the reaction mixture was stirred for 30 min at room temperature and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and after back-washing, the organic sol ution was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo at 35 mm and then at 0.5 mm to give 185 mg of crude alcohol(s), which was submitted directly to cyclization. The alcohol(s) (185 mg) in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ $(4.5 \mathrm{~mL})$ was stirred at room temperature for 1 h . Workup as described above and chromatography on silica gel ($8 \mathrm{~g}, 70-$ 230 mesh) eluting with ethyl acetate-hexanes gave an additional 85 mg of $\mathbf{2}$. The total yield of $\mathbf{2}$ was 72%.
(d,I)-Ethyl 8 $\alpha, 12$-E poxy-3 β-hydroxy-13,14,15,16-tetra-norlabdane-19-oate (11). $\mathrm{NaBH}_{4}(91.1 \mathrm{mg}, 2.40 \mathrm{mmol})$ was added in small portions to keto ester $2(246 \mathrm{mg}, 0.799 \mathrm{mmol})$ in $\mathrm{EtOH}(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ over 10 min . The reaction mixture was stirred for 30 min and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. After separation of the two phases, the aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give a solid. Trituration of the solid with hexanes gave 205 mg of 11: $\mathrm{mp} 139-140{ }^{\circ} \mathrm{C}$. Recrystallization of the solid from the filtrate with a 1:1 mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexanes gave an additional 21 mg of $\mathbf{1 1}$ (mp $139.5-140.6^{\circ} \mathrm{C}$) for a total yield of 91%. For 11 : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.15(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.76-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}$), 3.10 (6 line ddd, $1 \mathrm{H}, \mathrm{J}=4.8,12.0,12.0 \mathrm{~Hz}$), $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.73(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 77.0\right) \delta 177.6,79.3,78.4,64.8,60.3,59.6$, $56.3,58.7,39.3,38.8,36.3,28.0,23.6,22.7,22.2,20.6,14.0$, 12.6; IR (KBr) 3524, $1711 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{4}$: C, 69.64; H, 9.74. Found: C, 69.55; H, 9.83.
(d,I)-Ethyl 13,14,15,16-Tetranor-8 $\alpha, 12$-epoxy-4-labden-19-oate (12). Trifluoromethanesulfonyl chl oride ($201 \mathrm{mg}, 127$ $\mathrm{uL}, 1.20 \mathrm{mmol}$) was added dropwise to alcohol 11 (149 mg , 0.481 mmol) and 4-DMAP ($352 \mathrm{mg}, 2.88 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2}. The reaction mixture was stirred for 9 h at $0^{\circ} \mathrm{C}$ and then washed with saturated NaHCO_{3} and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give an oil. 4-DMAP ($180 \mathrm{mg}, 1.48 \mathrm{mmol}$) was added to the oil in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and the reaction mixture was refluxed overnight. TLC analysis showed that the reaction was incomplete. 4-DMAP (180 mg) was then added and refluxing was continued for 10 h . The reaction mixture was washed with $\mathrm{H}_{2} \mathrm{O}$, saturated NaHCO_{3}, and brine. After back-washing of the aqueous solutions, the organic solution was dried ($\mathrm{Na}_{2}-$ SO_{4}) and concentrated in vacuo to give an oil. Chromatography on silica gel ($8 \mathrm{~g}, 230-400$ mesh) eluting with hexanes and ethyl acetate-hexanes gave 116 mg (83\%) of 12: $\mathrm{mp} 46.5-$ $47.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.63(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1$ $\mathrm{Hz}), 3.78-4.01(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz})$ $1.09(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl $\left.3,77.0\right) \delta 175.3,132.0$, 123.6, 79.4, 64.8, 60.3, 58.7, 53.8, 44.8, 40.9, 39.1, 35.1, 27.8, 22.9, 22.4, 20.0, 14.1, 13.9; IR (KBr) 1725, $1458 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3}$: C, 73.93 ; $\mathrm{H}, 9.65$. Found: C, 73.88 ; H , 9.80.
(d,l)-13,14,15,16-Tetranor-8 α-12-epoxy-2-labden-19-ol (13). Ester 12 ($99.6 \mathrm{mg}, 0.341 \mathrm{mmol}$) in dry THF (6 mL) was added dropwise to a suspension of LAH ($19.4 \mathrm{mg}, 0.511 \mathrm{mmol}$) in dry THF (6 mL) at room temperature. The reaction mixture was refluxed for 40 min and cooled to $0^{\circ} \mathrm{C}$, and excess LAH was destroyed with saturated $\mathrm{Na}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL})$. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, back-washing, and drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the combined organic solution was concentrated in vacuo. Chromatography on silica gel ($2.5 \mathrm{~g}, 230-400$ mesh) eluting with ethyl acetate-hexanes gave 81.2 mg (95\%) of 13: $\mathrm{mp} 116.0-$ $117.5^{\circ} \mathrm{C}$; ${ }^{1 \mathrm{H}}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.61(\mathrm{~s}, 2 \mathrm{H}), 3.78-4.01(\mathrm{~m}, 2 \mathrm{H})$, $3.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}), 3.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}), 1.68-$ $2.05(\mathrm{~m}, 6 \mathrm{H}), 1.18-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.11(\mathrm{~s})$ and $1.10(\mathrm{~s})[6 \mathrm{H}]$, 0.91 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 77.0$) $\delta 133.1,124.2,79.6,66.6$, $64.8,58.9,53.3,40.7,39.3,39.3,35.1,25.7,22.8,21.2,20.5$, 15.8. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2}$: C, $76.75 ; \mathrm{H}, 10.47$. Found: C, 76.51; H, 10.65 .
(d,I)-S-Methyl 13,14,15,16-Tetranor-8 α,12-epoxy-2-lab-den-19-dithiocarbonate (14). Carbon disulfide (1.6 mL) was added dropwise to alcohol 13 ($70 \mathrm{mg}, 0.28 \mathrm{mmol}$) and DBN $(121.7 \mathrm{mg}, 0.98 \mathrm{mmol})$ in dry DMF (2.5 mL) at room temperature under N_{2}. The red-orange reaction mixture was stirred at room temperature for 30 min . Methyl iodide (2.7 mL) was added dropwise and stirring was continued for 30 min . The reaction mixture was concentrated in vacuo and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentration in vacuo gave an oil. Chromatography on silica gel ($3 \mathrm{~g}, 230-400$ mesh) eluting with hexanes and ethyl acetate-hexanes gave 89 mg (94\%) of 14: mp $105.1-106.8^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.25-$ $5.71(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}), 4.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8$
$\mathrm{Hz}), 3.77-4.10(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.70-2.07(\mathrm{~m}, 6 \mathrm{H}), 1.31-$ $1.54(\mathrm{~m}, 4 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 77.0\right) \delta 215.9,132.3,124.8,79.4,64.8,58.8,53.2,40.5$, 39.2, 38.1, 35.0, 26.5, 22.7, 21.4, 20.5, 18.9, 15.6. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 63.49; $\mathrm{H}, 8.29$. Found: C, $63.66 ; \mathrm{H}, 8.42$.
(d,l)-13,14,15,16-Tetranor-8 $\alpha, 12$-epoxy-2-labdene (15). From Tin Hydride Reduction. Thionoester 14 (81.2 mg , 0.239 mmol) in dry, deaerated xylene (9 mL) was added to a refluxing solution of $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}(105 \mathrm{mg}, 0.36(\mathrm{mmol})$ in dry, deaerated xylene (15.8 mL) under Ar over 30 min . The reaction mixture was refluxed for 4.5 h and then concentrated in vacuo to give an oil. Chromatography on silica gel (5 g, 230-400 mesh) eluting with ethyl acetate-hexanes gave 29 $\mathrm{mg}(52 \%)^{18}$ of $15\left[\mathrm{mp} 63.0-63.6^{\circ} \mathrm{C}\right.$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.37-$ $5.52(\mathrm{~m}, 2 \mathrm{H}), 3.78-4.01(\mathrm{~m}, 2 \mathrm{H}), 1.94-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.68-$ 1.87 (m,5H), 1.22-1.51 (m, 4H), $1.11(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.90$ $(\mathrm{s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 77.0$) $\delta 138.6,121.2$, $79.8,64.9,58.8,52.8,40.5,39.1,35.2,34.5,31.9,22.7,22.2$, 21.5, 20.5, 15.2. HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}\left(\mathrm{M}^{+}\right)$234.1983, found 234.1969.], 10 mg of recovered $\mathbf{1 4}$ along with 6.9 mg of al cohol 13, and a trace amount of a bicyclic compound. ${ }^{19}$

A similar experiment using thionoester 14 ($17.6 \mathrm{mg}, 0.052$ mmol) and $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}(22.6 \mathrm{mg}, 0.078 \mathrm{mmol})$ in xylene gave $9.4 \mathrm{mg}(78 \%)$ of 15 , after general workup, careful removal of the xylene in vacuo, and chromatography.
(d,l)-8 $\mathbf{c}, 12$-E poxy-13,14,15,16-tetranorlabdane (1). From Catalytic Hydrogenation. Pd/C ($5 \%, 1.4 \mathrm{mg}$) was added to 15 ($8.0 \mathrm{mg}, 0.0342 \mathrm{mmol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ and the resulting heterogeneous mixture was treated with H_{2} at 1 atm. The reaction mixture was filtered through Celite and the residue was washed with additional MeOH . After removal of the MeOH in vacuo, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent gave 8.0 mg (100%) of d,l1: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.75-3.99(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}$, $\left.3 \mathrm{H}), 0.83(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 77.00\right) ~ \delta 39.91$ (C-1 or C-7), 18.38 (C-2), 42.40 (C-3), 33.05 (C-4), 57.21 (C-5), 20.63 (C-6), 39.70 (C-7 or C-1), 79.90 (C-8), 60.08 (C-9), 36.15 (C-10), 22.61 (C-11), 64.97 (C-12), 21.12 (C-17or C-19), 33.57 (C-18), 21.12 (C-19 or C-17), 15.03 (C-20). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{d}, \mathrm{l}-1$ was identical to the proton spectrum of (-)-ambroxide purchased from Aldrich. The ${ }^{13} \mathrm{C}$ NMR spectrum d,I-1 was identical to the ${ }^{13} \mathrm{C}$ NMR spectrum reported for ambrox. ${ }^{6 e}$
(d,I)-13,14,15,16-Tetranor-8 $\alpha, 12$-epoxy-3,19-labdanediol (16). Keto ester $2(102 \mathrm{mg}, 0.33 \mathrm{mmol})$ in dry THF (3.5 mL) was added dropwise to a suspension of LAH (37.8 mg , 0.99 mmol) in dry THF (3.5 mL) at room temperature. The reaction mixture was refluxed for 40 min . Excess LAH was destroyed by addition of saturated $\mathrm{Na}_{2} \mathrm{SO}_{4}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was diluted with $\mathrm{H}_{2} \mathrm{O}$ and then extracted with CHCl_{3}. The organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentration in vacuo gave a solid. Trituration with hexanes gave 84 mg (95\%) of 16: $\mathrm{mp} 184-184.5^{\circ} \mathrm{C}\left(1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}\right){ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 4.19$ (H-19, d, 1H, J = 11.1 Hz), 3.76-3.99 (H-12, m, 2H), 3.30-3.53 (H-19, H-3, m, 2H), 2.78 (OH, br d, 1H), $2.53(\mathrm{OH}$, br d, 1H), 1.25 ($8-\mathrm{Me}, \mathrm{s}, 3 \mathrm{H}$), 1.06 ($4-\mathrm{Me}, \mathrm{s}, 3 \mathrm{H}$), 0.80 ($10-\mathrm{Me}$, $\mathrm{s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C} N \mathrm{NR}\left(\mathrm{CDCl}_{3}, 77.0\right) \delta 80.9,79.6,64.9,64.0,59.9$, 56.4, 42.7, 39.6, 37.8, 35.6, 27.5, 22.8, 22.7, 20.9, 20.4, 15.4. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{3}: \mathrm{C}, 71.60 ; \mathrm{H}, 10.52$. Found: $\mathrm{C}, 71.28$; H, 10.69.
(d,I)-S-Methyl 8 $\alpha, 12-$ p poxy-3 β-hydroxy-13,14,15,16-tet-ranorlabdan-19-yl Dithiocarbonate (17), (d,I)-S-Methyl 8 $\alpha, 12$-E poxy-19-hydroxy-13,14,15,16-tetranorlabdan-3 β yl Dithiocarbonate (18), and (d,I)-8 $\alpha, 12-$ poxy-3 β-[(S-

[^4]
methyl) dithiocarbonoxy]-19-[(S-methyl) dithiocarbon-oxy]-13,14,15,16-tetranorlabdane (19). $\mathrm{CS}_{2}(1.14 \mathrm{~g}, 0.9 \mathrm{~mL}$, 15.0 mmol) was added to diol 16 ($48 \mathrm{mg}, 0.18 \mathrm{mmol}$) and DBN ($38 \mathrm{mg}, 0.306 \mathrm{mmol}$) in dry DMF (1 mL) at room temperature under N_{2} over 5 min . The red-orange reaction solution was stirred for an additional $30 \mathrm{~min} . \mathrm{CH}_{3}(4.1 \mathrm{~g}, 1.8 \mathrm{~mL}, 29 \mathrm{mmol})$ was added over 5 min and stirring was continued for 15 min . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with $1 \% \mathrm{HCl}$, saturated NaHCO_{3}, and brine. After back-washing, the organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give a solid. Chromatography on silica gel ($3 \mathrm{~g}, 230-400$ mesh) eluting with ethyl acetatehexanes gave $10.6 \mathrm{mg}(13 \%)$ of $19\left[\mathrm{mp} 183.0-184.5^{\circ} \mathrm{C}\right.$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.49(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.8,11.7 \mathrm{~Hz}), 4.87(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=11.6 \mathrm{~Hz}), 4.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.6 \mathrm{~Hz}), 3.78-4.01(\mathrm{~m}, 2 \mathrm{H}), 2.59$ $(\mathrm{s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 77.0$) $\delta 215.9,215.8,89.5,79.5,75.1,64.9,59.9$, $56.6,42.4,39.7,37.8,35.8,22.9,22.8,22.6,21.5,20.6,19.0$, 19.0, 14.8; Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{~S}_{4}$: C, 53.53; $\mathrm{H}, 7.19$. Found: C, $53.26 ; \mathrm{H}, 7.36$.] and 53 mg (82\%) of an approximate 77:23 mixture of 17:18 as determined by ${ }^{1} \mathrm{H}$ NMR from integration of the $\delta 5.49$ and $\delta 3.38$ resonance signals. Recrystallization of the mixture gave 40 mg (62\%) of 17: mp $168.5-170.8^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.6 \mathrm{~Hz})$, $4.71(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.6 \mathrm{~Hz}), 3.77-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.47(\mathrm{~m}$, $1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 77.0\right) \delta 215.9,79.5,79.0,75.7,64.9,60.1,56.3$, 42.6, 39.8, 38.1, 35.8, 27.1, 22.9, 22.8, 21.4, 20.8, 19.0, 14.9. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~S}_{2}: \mathrm{C}, 60.30 ; \mathrm{H}, 8.43$. Found: C, 60.02; H, 8.56. For 18 (approximately 85% pure): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H})$.

A similar experiment using diol $\mathbf{1 6}(54 \mathrm{mg}, 0.20 \mathrm{mmol})$, DBN $(97 \mathrm{mg}, 0.78 \mathrm{mmol})$ in DMF (1 mL), $\mathrm{CS}_{2}(1 \mathrm{~mL})$, and $\mathrm{Mel}(2$ mL) gave 27 mg (30%) of 19: mp 182.2-183.5 ${ }^{\circ} \mathrm{C}$ (from chromatography). A second chromatography and recrystallization of a mixture of $\mathbf{1 7}$ and $\mathbf{1 8}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes gave 19.2 mg (27\%) of pure 17 and 20.2 mg of a 51:49 mixture of 17 and 18.
(d,I)-8 α,12-E poxy-3 β-hydroxy-13,14,15,16-tetranorlabdane (20). Thionoester 17 ($35.1 \mathrm{mg}, 0.098 \mathrm{mmol}$) in dry, deaerated xylene (3 mL) was added to a refluxing solution of $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}$ ($45.6 \mathrm{mg}, 0.157 \mathrm{mmol}$) in deaerated xylene (6.7 mL) over 10 min under Ar. The reaction mixture was refluxed for 4.5 h with stirring and then concentrated in vacuo to give a solid. The solid was washed with hexanes to give 22.5 mg (91\%) of 20: mp $164.0-165.5^{\circ} \mathrm{C}$; lit. ${ }^{11} \mathrm{mp} 162.0-163.5^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.75-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.33(\mathrm{~m}, 1 \mathrm{H}), 1.09$ $(\mathrm{s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3$, 77.0) $\delta 79.7,79.0,64.9,60.0,56.0,39.5,38.7,38.1,35.9,28.2$, 27.2, 22.6, 21.1, 20.4, 15.2, 15.1.
(d,I)-13,14,15,16-Tetranor-8 $\alpha, 12$-epoxy-2-Iabdene (15). Trifluoromethanesulfonyl chloride ($22.8 \mathrm{mg}, 14.4 \mu \mathrm{~L}, 0.135$ mmol) was added dropwise to al cohol 20 ($13.6 \mathrm{mg}, 0.054 \mathrm{mmol}$) and 4-DMAP ($39.5 \mathrm{mg}, 0.324 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under N_{2}. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 7 h and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give an oil. Chromatography on silica gel ($2.5 \mathrm{~g}, 230-400$ mesh) eluting with hexanes and ethyl acetate-hexanes gave $12.3 \mathrm{mg}(98 \%)$ of 15 . The ${ }^{1} \mathrm{H}$ NMR spectrum of 15 was identical to the spectrum of $\mathbf{1 5}$ obtained from tin hydride reduction of 14.
(d,I)-Ethyl 8 α,12-E poxy-3-oxo-13,14,15,16-tetranorlab-dan-19-oate (2), (d,I)-Ethyl 13,14,15,16-Tetranor-3-oxo-7and -8- (17)-labden-19-oates (3 and 24), and (d,I)-Ethyl 13,14,15,16-Tetranor-8-acetoxy-12-hydroxy-3-oxolabdan-19-oates (25). Cyclization with Excess Mn(III). Mn$(\mathrm{OAC})_{3} \cdot \mathrm{H}_{2} \mathrm{O}(3.61 \mathrm{~g}, 13.5 \mathrm{mmol})$ was added to keto ester 4 (1.4 $\mathrm{g}, 4.5 \mathrm{mmol}$) in deaerated $\mathrm{HOAc}(45 \mathrm{~mL})$ at room temperature under Ar. The reaction mixture was stirred overnight and general workup followed by chromatography on silica gel (32 $\mathrm{g}, 70-230$ mesh) eluting with ethyl acetate-hexanes gave 146 $\mathrm{mg}(11 \%)$ of $\mathbf{2}\left(\mathrm{mp} 54-56^{\circ} \mathrm{C}\right), 487 \mathrm{mg}(35 \%)$ of an approximate 87:13 ratio of 3 and isomer 24, and 202 mg (10\%) of acetate 25. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ was identical to the proton
spectrum of $\mathbf{2}$ obtained from the acid-catalyzed cyclization of 3. For 25: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.02-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.71$ (distorted $\mathrm{t}, 2 \mathrm{H}$), 2.92 (6 line ddd, $1 \mathrm{H}, \mathrm{J}=6.3,14.8 \mathrm{~Hz}$) and $2.71-3.02(\mathrm{~m})[2 \mathrm{H}], 2.38$ (ddd, 1H, J $=3.3,12.5 \mathrm{~Hz}$), 1.93 (s, $3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H})$.
Anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (182 mg) was added to acetate 25 (155 mg) in $\mathrm{EtOH}(1.5 \mathrm{~mL}$) and the reaction mixture was stirred for 6 h . General workup and chromatography on silica gel (6 g, 70-230 mesh) eluting with ethyl acetate-hexanes gave 83 mg of a diol: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.03-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.79$ (distorted dt, $1 \mathrm{H}, \mathrm{J}=4.4, \sim 9.0 \mathrm{~Hz}$), 3.45 (6 line ddd, $1 \mathrm{H}, \mathrm{J}=$ $4.3,9.8 \mathrm{~Hz}$), 3.23 (br s, OH, 1H), 2.94 (6 line ddd, 1 H , J = 6.4, $14.8,14.8 \mathrm{~Hz}), 2.39$ (ddd, $1 \mathrm{H}, \mathrm{J}=2.4,4.7,15.0 \mathrm{~Hz}$), 1.36 (s, $3 \mathrm{H}), 1.25(\mathrm{~s})$ and $1.25(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz})[6 \mathrm{H}], 0.94(\mathrm{~s}, 3 \mathrm{H})$. $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(16.4 \mathrm{mg})$ was added to the diol $(83 \mathrm{mg}, 0.254$ mmol) in dry $\mathrm{CH}_{3} \mathrm{NO}_{2}(4.8 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 20 h and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL). The organic solution was washed with saturated $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, and brine, and after back-washing of the aqueous solutions, the organic sol ution was dried ($\mathrm{Na}_{2}-$ SO_{4}) and concentrated in vacuo to give 55 mg (70%) of $\mathbf{2}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of 2 was identical to the proton spectrum of $\mathbf{2}$ obtained from the radical cyclization of $\mathbf{4}$ and that of $\mathbf{2}$ obtained from the acid $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ catalyzed cyclization of 3.
A reaction using keto ester 4 ($295 \mathrm{mg}, 0.95 \mathrm{mmol}$), Mn(OAc$)_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(765 \mathrm{mg}, 2.86 \mathrm{mmol}$), and NaOAc (312 mg , 3.81 mmol) in HOAc (9.5 mL) under Ar with stirring overnight gave $20 \mathrm{mg}(7 \%)$ of $\mathbf{2}, 103 \mathrm{mg}$ (35\%) of a mixture of $\mathbf{3}$ and $\mathbf{2 4}$, and $35 \mathrm{mg}(12 \%)$ of 25, after chromatography on silica gel (12 g, 70-230 mesh) eluting with ethyl acetate-hexanes.

Keto Ester 2. From Attempted Cyclization of $\mathbf{3}$ with $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in Nitromethane. $\mathrm{p}-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (13.1 mg , 0.069 mmol) was added to alcohol $\mathbf{3}(63 \mathrm{mg}, 0.205 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(3.8 \mathrm{~mL})$ and the reaction mixture was stirred at room temperature for 3 h and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The organic solution was washed with saturated NaHCO_{3}, and after back-washing, the combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo to give an oil. Chromatography on silica gel ($3 \mathrm{~g}, 230-400$ mesh) eluting with ethyl acetate-hexanes gave $4.2 \mathrm{mg}(7 \%)$ of $\mathbf{2}$ and 20.3 mg of an unidentified faster moving compound(s) along with 37 mg (59\%) of recovered 3.

Acknowledgment. One of us (H.F.) would like to thank the Burroughs Wellcome Foundation for a research fellowship. The Duke University NMR Spectroscopy Center was established with grants from the NIH, the NSF, and the North Carolina Biotechnology Center, which are gratefully acknowledged.

Supporting Information Available: ${ }^{1} \mathrm{H}$ NMR spectra of 4, 6, 25, the intermediate triene and diol, and the ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4}, \mathbf{6}$, and triene (8 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.
J O980211A

[^0]: (1) Ohloff, G. FragranceChemistry. TheScience of theSense of Smell; Theimer, E. T.; Academic Press: New York, 1982; pp 535. Sell, C. Chem. Ind. 1990, 20, 516.
 (2) (-)-Norlabdane oxide is commonly known under the trade names: Ambrox (Firmenich), Amberlyn (Quest), and Ambroxan (Henkel).
 (3) Ohloff, G.; Giersch, W.; Pickenhagen, W.; Furrer, A.y; Frei, B. Helv. Chim. Acta 1985, 68, 2022.
 (4) Stoll, M.; Hinder, M. Helv. Chim. Acta 1950, 33, 1251. Hinder, M.; Stoll, M. Helv. Chim. Acta 1950, 33, 1308.
 (5) (a) Kutney, J. P.; Chen, Y.-H. Can. J. Chem. 1994, 72, 1570. (b) Verstegen-Haaksma, A. A.; Swarts, H. J.; J ansen, B. J. M.; de Groot, A. Tetrahedron 1994, 50, 10095. (c) Barrero, A. F.; Sanchez, J. F.; Alvarez-Manzaneda, E. J.; Altarejos, J.; Munoz, M.; Haidour, A. Tetrahedron 1994, 50, 6653. (d) Gonzalez-Sierra, M.; Ruveda, E. A.; Lopez, J. T.; Cortes, M. J. Heterocycles 1987, 26, 2801. (e) Schenk, H. R.; Gutman, H.; J eger, O.; Ruzicka, Helv. Chim. Acta 1954, 37, 543. (f) Cambie, R. C.; J oblin, K. N.; Preston, A. F. Aust. J. Chem. 1971, 24, 583. (g) K oyama, H.; Kaku, Y.; Ohno, M. Tetrahedron Lett. 1987, 28, 2863. (h) Nishi, Y.; Ishihara, H. J. J pn. Oil Chem. Soc. 1989, 38, 276. (i) Urones, J . G.; Basabe, P.; M arcos, I. S.; Gonzalez, J . L.; J imenez, V.; Sexmero, M. J .; Lithgow, A. M. Tetrahedron 1992, 48, 9991. (j) J . de Pascual-Teresa; Urones, J. G.; Pedrero, A. M.; Barcala, P. B. Tetrahedron Lett. 1985, 26, 5717.
 (6) (a) Barton, D. H. R.; Parekh, S. I.; Taylor. D. K.; Tse; C.-I. Tetrahedron Lett. 1994, 35, 5801. (b) Barton, D. H. R.; Taylor, D. K.; Tse, C-I. Tetrahedron Lett. 1994, 35, 9505. (c) Martres, P.; Perfetti, P.; Zahra, J. P.; Waegell, B. Tetrahedron Lett. 1994, 35, 97. (d) Martres, P.; Perfetti, P.; Zahra, J. P.; Waegell, B.; Giraudi, E.; Petrzilka, M. Tetrahedron Lett. 1993, 34, 629. (e) Barrero, A. F.; Alvarez-Manzaneda, E. J.; Altarejos, J.; Salido, S. Ramos, J. M. Tetrahedron 1993, 49, 10405. (f) M artres, P.; Perfetti, P.; Zahra, J. P.; Waegell, B. Tetrahedron Lett. 1991, 32, 765. (g) Christenson, P. A. Tetrahedron, 1988, 44, 1925. (h) Coste-Maniere, I. C.; Zahra, J . P.; Waegell, B. Tetrahedron Lett. 1988, 29, 1017. (i) Decorzant, R.; Vial, C.; Naf, F.; Whitesides, G. M. Tetrahedron, 1987, 43, 1871.

[^1]: (7) (a) Barrero, A. F.; Altarejos, J .; Alvarez-Manzaneda, E. J .; Ramos, J. M.; Salido, S. Tetrahedron 1993, 49, 6251. (b) Barrero, A. F.; Altarejos, J.; Alvarez-Manzaneda, E. J.; Ramos, J. M.; Salido, S. Tetrahedron 1993, 49, 9525.
 (8) Mori, K.; Tamura, H. Liebigs Ann. Chem. 1990, 361.
 (9) (a) Barrero, A. F.; Altarejos, J.; Alvarez-M anzaneda; Ramos, J. M.; Salido, S. J . Org. Chem. 1996, 61, 2215. (b) Barco, A.; Benetti, S.; Bianchi, A.; Casolari, A.; Guarmeri, M., Pollini, G. P. Tetrahedron 1995, 51, 8333. (c) Buchi, G.; Wuest, H. Helv. Chim. Acta 1989, 72, 996. (d) Snowden, R. L.; Linder, S. M. Tetrahedron Lett. 1991, 32, 4119.
 (10) (a) Snowden, R. L.; Eichenberger, J . C.; Linder, S. M.; Sonnay, P.; Vial, C.; Schulte-Elite, K. H. J. Org. Chem. 1992, 57, 955. (b) Neumann, S.; Simon, H. Biol. Chem. Hoppe Seyler 1986, 367, 723. (c) Tanimoto, H.; Oritani, T. Tetrahedron Asymmetry, 1996, 7, 1695.
 (11) Barnes, A. G.; Bevan, P. C. Ger. Offen. CODEN: GWXXBX. DE 3439564 A1 850515; Chem. Abstr. 1985, 103, 85328. For the synthesis of $(-)$-norlabdane- 2β-ol oxide and the 2 -oxo derivative from 2-oxomanoyl oxide, see: Cambie, R. C.; J oblin, K. N.; McCallum, N. K. Aust. J. Chem. 1970, 23, 1439.

[^2]: (12) Marshall, J . A.; Andrews, R. C. J. Org. Chem. 1985, 50, 1602.
 (13) Corey, E. J.; Kim, C. U.; Takeda, M. Tetrahedron Lett. 1972, 42, 4339.
 (14) For recent radical reviews, see: (a) Snider, B. B. Chem. Rev. 1996, 96, 339. (b) Ryu, I.; Sonoda, N.; Curran, D. P. Chem. Rev. 1996, 96, 177. (c) Malacria, M. Chem. Rev. 1996, 96, 289. (d) I qbal, J.; Bhatia, B.; Nayyar, N. K. Chem. Rev. 1994, 94, 519. (e) Melikyan, G. G. Synthesis 1993, 833.

[^3]: (16) Barton, D. H. R.; M otherwell, W. B.; Stange, A. Synthesis 1991, 743.
 (17) K ochi. J. K.; Bemis, A.; J enkins, C. L. J . Am. Chem. Soc. 1968, 90, 4616.

[^4]: (18) Compound 15 is quite volatile and care must be exercised on removal of the sol vent. Here the moderate yield (52\%) was due to loss of product under vacuum.
 (19) A trace amount of a bicyclic compound was also isolated. It has not been fully characterized and has been tentatively assigned as structure \mathbf{i}.

