[CONTRIBUTION FROM THE ORGANIC DEPARTMENT, RESEARCH LABORATORIES, THE WM. S. MERRELL COMPANY]

Quaternary Ammonium Salts as Germicides. IV. Quaternary Ammonium Salts Derived from Substituted Pyridines

BY G. H. HARRIS,¹ R. S. SHELTON, M. G. VAN CAMPEN, E. R. ANDREWS AND E. L. SCHUMANN

A series of C-alkyl pyridinium salts has been prepared and tested in a search for more effective germicides. Maximum activity occurs when the sum of the carbon atoms in the C-alkyl and N-alkyl groups is from sixteen to nineteen. Within this range, activity is less dependent upon chain branching, position isomerism or the nature of the anion.

Earlier investigations in this Laboratory^{2a,2b,3} have been concerned with the relation of the molecular structure of quaternary ammonium salts to their germicidal activity. Since it was found that quaternary salts of pyridine and various methylpyridines were active germicides, the study was extended to include alkylpyridines in which the alkyl groups contain two to seventeen carbon atoms and also to include acylpyridines. A rather extensive series of compounds was prepared in which the size and position of the carbon substituent, the N-alkyl group and the anion were varied. These structure changes, together with germicidal activity data, give a ready means of correlating structure with activity. Patents⁴ have been granted covering the compounds described here.

The germicidal activity of a number of quaternary ammonium salts of nicotinamide and N-substituted nicotinamides⁵ was described in a recent publication, but no unusual potency was obtained. Another publication⁶ described quaternary salts of nicotinamide and nicotinic acid but no germicidal data were given. Lo Cicero, Frear and Miller⁷ reported the fungicidal activity of a number of alkylpyridinium salts, some of which were covered by the patents cited above. No germicidal activities were included in the study.

The pyridinium salts were prepared by the well known method of heating a substituted pyridine with an alkyl halide for varying lengths of time at various temperatures. In general, the pyridinium salts were relatively low melting, white, crystalline solids. Most of the salts were hygroscopic, some exceedingly so, and were soluble in five to ten parts of water at room temperature. Most of the compounds were recrystallizable from ether or acetone and ether.

Several of the compounds were isolated as hydrates which is in agreement with the known tendency of 1-alkylpyridinium salts to crystallize as hydrates.⁸ The hydration of a few representative compounds was determined by drying samples *in vacuo* over phosphorus pentoxide for two to three weeks. The loss of weight and the change in halogen content indicated the degree of hydration as shown in Table I.

Properties of the quaternary salts, including (1) Great Western Division, The Dow Chemical Company, Pitts-

(2b) Shelton, et al., ibid., 68, 755 (1946).

- (4) U. S. Patents 2,446,792, 2,446,793 and 2,446,796.
- (5) Zienty, J. Am. Pharm. Assoc., Sci. Ed., 37, 99 (1948).
- (6) Gautier and Renault, Compt. rend., 226, 1736 (1948).

(7) Lo Cicero, Frear and Miller, J. Biol. Chem., 172, 689 (1948).

(8) Kolloff, Wyss, Himelick and Mantele, J. Am. Pharm. Assoc., 31, 51 (1942).

germicidal activity, are summarized in Table I. Since reaction time, reaction temperature and purification procedures varied considerably for the individual compounds, the pertinent information has been compiled in Table II.

Experimental

The alkylpyridines used in this work were obtained from the Reilly Tar and Chemical Corporation. Additional supplies of several of the pyridines were prepared by means of the Chichibabin reaction.⁹ The preparations of 3valerylpyridine and 3-*n*-amylpyridine, new intermediates, are given below.

Quaternary salts of the various substituted pyridines were generally prepared by heating equimolar quantities of an appropriate pyridine with a primary alkyl halide in a closed vessel at temperatures between 60 and 135°. In a few cases the reaction was carried out at room temperature and occasionally a solvent such as methanol or ethanol was used. Alkyl chlorides required higher reaction temperatures than bromides. More drastic conditions were also needed when α -alkylpyridines were used. The products obtained were often very hygroscopic, low melting and soluble in most solvents such as water, alcohol, acetone and ether. Three purification methods are given below.

Method A.—The reaction mixture was merely washed with a cold solvent or recrystallized as indicated in Table II. Usually only two or three volumes of solvent were necessary and extreme cooling was used to precipitate the product. The salts obtained were dried *in vacuo* over phosphorus pentoxide or concentrated sulfuric acid. Occasionally it was necessary to conduct this drying procedure at refrigerator temperatures to preserve the crystalline nature of the product.

Method B.—When the reaction mixture assumed a dark color during heating, the crude product was dissolved in methanol and decolorized with charcoal. The methanol was removed by heating the mixture on a steam-bath under an air jet and the crude salt was then recrystallized or washed and dried *in vacuo*.

Method C.—If hydrohalides of the substituted pyridines were obtained as by-products, they were removed by the following method. The reaction product was dissolved in methanol and a few drops of phenolphthalein were added. The solution was then titrated with sodium hydroxide solution until a dark color was obtained. The color change was sharp and was not due entirely to the indicator. After decolorization with charcoal, the methanol was removed as described in Method B and the product was recrystallized. It was necessary to remove sodium halide impurities by dissolving the product in acetone, filtering and removing the acetone before recrystallizing. Yields of pure pyridinium salts varied from 5 to 50\%, depending upon side reactions and recrystallization losses.

3-Valerylpyridine.—To 64 g. (1.13 moles) of 95% sodium methoxide was added fairly rapidly a solution of 103 g. (0.75 mole) of methyl nicotinate in 106 g. (1.43 moles) of methyl acetate. The mixture was stirred one-half hour, then refluxed for ten hours. Volatile material was removed under reduced pressure, leaving the crude methyl 3-pyrigyl-3-ketopropionate sodium enolate. Absolute ethanol and a large excess of *n*-propyl bromide were added, and the mixture was allowed to stand for several days until a neutral solution was obtained. After dilution with water, the mixture was acidified with 250 ml. of concentrated hydrochloric acid and refluxed for three hours. The solution was then rendered alkaline and extracted with ether. Two fractional

(9) Chichibabin, Bull. soc. chim., [5] 3, 777 (1936).

burg, California. (2a) Shelton, et al., THIS JOURNAL, 68, 753 (1946).

⁽³⁾ Shelton, et al., ibid., 68, 757 (1946).

3960 G. H. HARRIS, R. S. SHELTON, M. G. VAN CAMPEN, E. R. ANDREWS AND E. L. SCHUMANN Vol. 73

TABLE I

					TABLE I			•			
		PROPERTIES OF	SUB	STITUTE	d Py ridine Qu	ATERNARY SA	ALTS	-R ¹			
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		R2	NX			
							10	~	m 1	Geri	nicidal
							~	Soly.	carbons	staph.	$y \times 10^{30}$ E, ty-
No.	R1	$\mathbb{R}^2$	x	$^{\mathbf{M}}.\mathbf{p}.$ $^{\circ}\mathbf{C}.^{a}$	Formula	Halog Calcd.	obsd.	H ₂ Ob	and R ¹	aureus 37°	phosa 37°
					Ethylpyridine	salts					
1	2-Ethyl	Myristyl	Br	70–72	$C_{21}H_{38}NBr$	$20.30^{d}$	20.35	5	16	>100	>90
<b>2</b>	2-Ethyl	Cetyl	Br	88-90	$C_{23}H_{42}NBr$	19.4	19.5	5	18	>100	>75
3	2-Ethyl	Stearyl	Br	95-96	$C_{25}H_{46}NBr$	$17.4^{\circ}$	17.4	10	20		
4	4-Ethyl	n-Octyl	Br	41-44	C ₁₅ H ₂₆ NBr	26.6	26.6	5	10	$<\!50$	< 30
5	4-Ethyl	Lauryl	Br	43-44	C ₁₉ H ₃₄ NBr	22.4	22.3	5	14	<50	50
0 7	4-Etnyl	Myristyl	Br	50-52 67 70	$C_{21}H_{38}NBr$	20.3	20.3	5	16	92	>130
8	4-Ellyi 4-Ethyi	Cetyl		67-60	$C_{23}H_{42}NCI$	9.63	9.04	5 05	18	>100	78.5
9	4-Ethyl	Stearyl	Dr Br	70-81	C.H.NBr	19.4	19.3	25 1	18	>90	82
v	Then	Ottalyi	ы	19-01	C25114611D1	10,14	10.00		20		
10	· ·	~ .	-		Propylpyridine	salts					
10	2-Isopropyl	Lauryl	Br	55-56	C ₂₉ H ₃₆ NBr	21.6	21.6	5	15	<50	<30
11	2-1sopropyl	Cetyl	1	58-62	$C_{24}H_{44}NI$	26.8	26.8	>2000	19	<50	<40
12	4-n-Propyl	n-Octyl	Br	3638	$C_{16}H_{28}NBr$	25.4	25.4	5	11	<50	<30
10 14	4-n-Propyl	n-Decyl	Br	40 49	$C_{18}H_{32}NBr$	23.35	23.55	5	13	<50	<30
15	4- <i>n</i> -Flopyl	Murictul	Dr Dr	40-42	C H NP-	21.0	21.0	0 E	15	< 50	54
16	4-n-Propyl	Cetwl	Br Br	63-66	$C_{22}\Pi_{40}NBr$	20.1	19.9	0 100	17	>140	>130
10	4- <i>n</i> -110py1	Cetyr	ы	00-00	C2411441ND1	10.7	10.7	100	19	50	07
			-	~	Butyipyridine	salts					
17	4-n-Butyl	n-Octyl	Br	Oil	$C_{17}H_{30}NBr$	24.3	24.2	5	12	<50	30
18	4-n-Butyl	n-Decyl	Br	Oil	C ₁₉ H ₃₄ NBr	22.4	22.7	5	14	90	100
19	4-n-Butyl	Lauryl		30	$C_{21}H_{38}NCI$	10.43	10.36	5	16		
20 91	4-n-Butyl	Lauryi Mariatari	Br D-	58-60	C H ND-	20.8	20.7	5	16	>100	90
41 99	4-n-Butellyl	Muricityl	DI Dr	07-09 75-77	$C_{23}H_{40}NBr$	19.40 10.04	10.0	5 5	18	140	150
23	4 - n - Butyl	Cetvl	Br	54-56	CuHuNBr	19.0	19.0	200 200	20	150	>90
	1 // 254691	Cetyr	21	01 00	Amvlovridine s	salts	10.1	000	20	<b>~</b> 00	00
24	2-n-Amvl	n-Octvl	Br	Oil	CuHanNBr	23.3	24 3	5	13	< 50	< 30
25	2-n-Amvl	n-Decvl	Br	Oil	ConHaeNBr	21.6	22.6	5	15	< 50	<30
$\frac{1}{26}$	2 - n - Amyl	Laurvl	Br	6769	CooH40NBr	20.05	20.40	5	17	75	>100
27	2-n-Amyl	Myristyl	Br	69-71	C24H44NBr	18.75	18.85	10	19	130	70
28	2-n-Amyl	Cety1	Br	71-74	C ₂₆ H ₄₈ NBr	17.58	17.53	5	21	70	<30
29	3-n-Amyl	n-Decyl	Br	30	$C_{20}H_{36}NBr$	21.6	21.7	5	15	< 50	50
30	3-n-Amyl	Lauryl	Br	50 - 51	$C_{22}H_{40}NBr$	20.05	20.05	<b>5</b>	17	170	>200
31	3-n-Amyl	Myristyl	Br	38-40	C ₂₄ H ₄₄ NBr	18.75	18.75	5	19	140	50
32	4-Isoamyl	Myristyl	C1	30	$C_{24}H_{44}NCl$	9.28	9.26	5	19	120	130
33	4-n-Amyl	n-Octyl	Br	Oil	C ₁₈ H ₃₂ NBr	23.3	23.4	40	13	< 50	<30
34	4-n-Amyl	n-Decyl	Br	Oil	$C_{20}H_{26}NBr$	21.6	21.7	50	15	<50	<50
35	4-n-Amyl	Lauryl		49-51	$C_{22}H_{40}NCI$	10.01	9.97	30	17	>130	>130
30 97	4-n-Amyl	Lauryi	Br D.	80-87	$C_{22}H_{40}NBr$	20.05	20.00	35	17	140	130
37 38	4-n-Amyl	Cotul	Br	80-90	C H NBr	18.75	19.3	>500	19	170	130
00	<i>4-n-</i> 1111y1	Cetyr	ы	107-108	HexvInvridine s	salts	17.55	575	21	90	<00
30	2.n-Heyyl	n-Octv1	Br	- Oil	C.H. NBr	22 1	<u>99 5</u>	5	14	~ 50	~20
40	2-n-Hexyl	n-Decyl	Br	Oil	CarHaNBr	20.8	22.0	5	14	< 50	<ul> <li>30</li> <li>60</li> </ul>
41	$2 \cdot n$ -Hexvl	Laurvl	Br	76-78	C 33H49NBr	19.38	19 33	5	18	108	94
42	2-n-Hexyl	Myristyl	Br	h	C ₂₅ H ₄₆ NBr	18.1	18.0	5	20	65	57
43	2-n-Hexyl	Cetyl	Br	43-45	C ₂₇ H ₅₀ NBr	16.4"	16.4	5	22	<50	<30
44	4-n-Hexyl	n-Octy1	Br	h	C ₁₉ H ₃₄ NBr	22.4	22.2	130	14	<50	<30
45	4-n-Hexyl	n-Decyl	Br	h	C ₂₁ H ₃₈ NBr	20.8	20.7	5	16	80	110
46	4-n-Hexyl	Lauryl	Br	99-101	$C_{23}H_{42}NBr$	19.40	19.25	15	18	>100	75
47	4-n-Hexyl	Myristyl	Br	36–38	$C_{25}H_{46}NBr$	18.1	18.2	1000	20	55	68
				F	Ieptylpyridine	salts					
48	4-n-Heptyl	n-Octyl	Br	111–113	C ₂₉ H ₃₆ NBr	21.6	21.5	175	15	<50	50
49	4-n-Heptyl	n-Decyl	Br :	108-110	C ₂₂ H ₄₀ NBr	20.0	19.9	240	17	180	>200
00	4-n-Heptyl	Lauryl	Br	105-108	C ₂₄ H ₄₄ NBr	18.7	18.6	375	19	120	<50

## TABLE I (Continued)

			1 11		04)				Geri	micidal
No.	R	R²	X °C.ª	Formula	Halog Caled.	gen, % Obsd.	Soly. in H2Ob	Total carbons in R ¹ and R ²	activity Staph. aureus 37°	r X 1030 E. ly- phosa 37°
~ 1	1 Ostarl		0 Doi:117.190	ctylpyridine salt	.S	10.95	497	10	> 900	900
51	4-n-Octyl	n-Decyl	Br 117-120	$C_{23}H_{42}NBr$	18.39	19.35	425	18	>200	200
50	9 (9 Matherlaster)	u Hourst	IN 16 19	O U ND-		<u></u>	=	15	<=0	~ 20
02 53	$2 \cdot (2 \cdot \text{Methyloctyl})$ $2 \cdot (2 \cdot \text{Methyloctyl})$	n-Hexyl	Br 40-48 Br 50-61	C ₂₀ H ₃₆ NBr	21.0	22.2	9 5	10 16	< 50 50	<30 50
54	$2 \cdot (2 \cdot \text{Methyloctyl})$ $2 \cdot (2 \cdot \text{Methyloctyl})$	n-freptyf n-Octyl	Br 65-67	$C_{21}H_{38}NBr$	20.8	20.8 10.0	5	10	80	105
55	$2 \cdot (2 \cdot Methyloctyl)$ $2 \cdot (2 \cdot Methyloctyl)$	n-Nonvl	Br 62-64	Co2H40NBr	19.4	19.4	10	18	140	125
56	2-(2-Methyloctyl)	n-Decv1	Br 65-67	C ₂₄ H ₄₄ NBr	18.7	18.8	30	19	150	>90
57	2-(2-Methyloctyl)	Lauryl	Br ^h	C ₂₆ H ₄₈ NBr	17.6	17.6	10	21	50	30
58	4-(2-Methyloctyl)	n-Hexyl	Br Oil	$C_{20}H_{36}NBr$	21.6	21.5	60	15		
59	4-(2-Methyloctyl)	n-Heptyl	Br Oil	$C_{21}H_{38}NBr$	20.8	20.9	150	16	< 50	
60	4-(2-Methyloctyl)	n-Octyl	Br Oil	$C_{22}H_{40}NBr$	20.0	20.2	300	17	125	95
61	4-(2-Methyloctyl)	n-Nonyl	Br Oil	$C_{23}H_{42}NBr$	19.4	19.4	400	18	>200	175
62	4-(2-Methyloctyl)	n-Decyl	B- Oil	$C_{24}H_{44}NBr$	18.7	18.8	600	19	110	>90
63	4-(2-Methyloctyl)	Lauryl	Br Oil	C ₂₆ H ₄₈ NBr	17.6	17.55	1400	21	180	35
64	4-(5-Nonyl)	n-Hexyl	Br Oil	$C_{20}H_{36}NBr$	21.6	21.6	70	15	< 50	<30
65	4-(5-Nonyl)	n-Heptyl	Br Oil	$C_{21}H_{38}NBr$	20.8	20.6	130	16	< 50	<30
66	4 - (5 - Nony1)	<i>n</i> -Octyl	Br Oil	$C_{22}H_{40}NBr$	20.0	20.0	230	10	< 50	< 50
01 69	4 - (5 - 100  myl)	<i>n</i> -Nonyi		C $H$ NP ²	19.4	19.4	400	10	110	70
60	4 - (5 - Nony1)	<i>n</i> -Decyl		$C_{24}\Pi_{44}NBr$	17.6	10.7 17 B	2000	19 91	×100	80 60
70	4-(5-Nony1)	Muristvi	Br Oil	CasHraNBr	16.6	16.4	>3000	23	>100 50	< 50
71	4-n-Nonvl	n-Hentyl	Br = 103 - 105	CarHa NBr	20.8	20.8	200	16	00	100
72	4-n-Nonvl	n-Octvl	Br 113-115	CooH40NBr	20.05	20.05	225	17	160	205
73	4-n-Nonvl	n-Nonvl	Br 119–120	C ₂₂ H ₄₀ NBr	19.4	19.4	375	18	180	181
74	4-n-Nonyl	n-Decyl	Br 65-68	C ₂₄ H ₄₄ NBr	18.7	18.9	500	19	150	>90
	•	2	Un	decvlovridine sa	.lts					
75	2-n-Undeevl	n-Amyl	Br 55-58	CarHaeNBr	20.8	21 2	5	16	110	140
76	2-n-Undeevi	<i>n</i> -Hexyl	Br 70-72	CooHanNBr	20.0	20.0	5	17	165	150
77	2-n-Undecyl	<i>n</i> -Heptyl	Br 65-68	Co2H40NBr	19.4	19.7	5	18	>200	>120
78	2-n-Undecvl	n-Octv1	Br 73-75	C ₉₄ H ₄₄ NBr	18.75	18.70	5	19	200	130
79	4-n-Undecyl	n-Butyl	Br 57-59	C ₂₀ H ₃₆ NBr	21.60	21.65	5	15	70	60
80	4-n-Undecyl	n-Amyl	Br 62-64	C ₂₁ H ₃₈ NBr	20.8	21.1	5	16	85	130
81	4-n-Undecyl	n-Hexyl	Br 81-83	$C_{22}H_{40}NBr$	20.05	19.95	25	17	140	130
82	4-n-Undecyl	n-Heptyl	Br 102–105	$C_{23}H_{42}NBr$	19.4	19.4	100	18	>200	>200
83	4-n-Undecyl	n-Octyl	Br 105–107	C ₂₄ H ₄₄ NBr	18.75	18.95	1000	19	180	170
84	4-n-Undecyl	n-Decyl	Br 101–104	C ₂₆ H ₄₈ NBr	17.6	17.6	2000	21	150	<b>70</b>
			Tri	decylpyridine sa	alts					
85	2-n-Tridecyl	n-Butyl	Br 70–71	$C_{22}H_{40}NBr$	20.05	20.4	5	17	170	
86	4-(7-Tridecyl)	n-Butyl	Br Oil	$C_{22}H_{40}NBr$	20.05	20.05	250	17	50	<50
87	4-(7-Tridecyl)	<i>n</i> -Hexyl	Br Oil	$C_{24}H_{44}NBr$	18.75	18.6	350	19	>150	100
88	4-n-1 ridecyl	Allyl	CI 04-00	$C_{21}H_{36}NCI$	10.49	10.45	ວ ຮ	10	107	> 200
09 09	4-n-Tridecyl	n-Propyl	Br 60-70	C.H.NBr	20.8	20.8	0 5	10	150	►200 115
90 01	4-n-Indecyl	n-Bulyi n Amvi	Br 43-45	C ₂₂ H ₄₀ NBr	20.05 19.55°	18 55	5	18	>100	>00
92	4-n-Tridecyl	n-Heyyl	$B_r = 97 - 98$	CaHuNBr	18.00	18.55	20	19	100	>90
93	4-n-Tridecyl	<i>n</i> -Heptyl	Br 112-114	CorH40NBr	18.2	18.2	450	20	< 50	< 50
00	1 // 11400/1	<i>W</i> 210p 091	Pent	adecylovridine s	alts	201		_0		100
0.1	A.n.Pentadeoul	Methyl	Br 112_115	C.H. NBr	20.8	20.8	20	16	100	80
95	4-n-Pentadecyl	Ethvi	Br 86-88	CooH to NBr	20.0 20.0	20.0	20 5	17	100	90
00	1 // 2 0///24005/1		Hent	adeculovridine	alte	-0.0	0		100	00
96	4-n-Heptadecvl	Methvl	Br 114–116	Co.HaoNBr	19.4	19.3	425	18	< 50	<50
97	4-n-Heptadecyl	Ethyl	Br 91-93	C ₂₄ H ₄₄ NBr	18.7	18.7	1600	19	50	30
			A	cylpyridine salts	3					
98	3-Acety1	Lauryl	Br 110-111	C ₁₉ H ₃₂ NOBr	21.6	21.4	<b>5</b>	14	<50	<50
99	3-Acety1	Myristyl	Br 101–103	C ₂₁ H ₃₆ NOBr	$19.2^{\circ}$	19.4	5	16	<b>8</b> 0	140
100	3-Acetyl	Cetyl	Br 65-69	C ₂₃ H ₄₀ NOBr	18.7	18.8	10	18	70	85
101	3-Valeryl	Lauryl	Br 123–125	C ₂₂ H ₃₈ NOBr	19.4	19.4	30	17	90	1 <b>2</b> 0
102	3-Carbamido	Cetyl	Br 213–216	C ₂₂ H ₃₉ N ₂ OBr	18.7	19.2	•	; i	135	80
103	3-Carbethoxy	Myristyl	Br Uil	$C_{22}H_{38}NO_2Br$	18.6	18.5	5	•	75	75

^a All temperatures are uncorrected. ^b The values indicate the approximate parts of water required to dissolve one part of the salt at room temperature. Solubilities were not determined for concentrations greater than 1:5. ^c The values given,  $\times 10^3$ , represent Critical Killing Dilutions. A value of 100, for example, means that the C. K. D. is 1:100  $\times 10^8$ . C. K. D. is that dilution of the substance which will kill organisms of standard phenolic resistance in 10 minutes, but not in 5, by the technique described for the determination of phenol coefficients in Circular 198 of the U. S. Department of Agriculture. ^d Hemihydrate. ^e Monohydrate. ⁱ Very insoluble. ^e Semisolid. ^h The compound was too hygroscopic for a m.p. determination. ⁱ Slightly soluble. ⁱ Total is 18, counting oxygen and nitrogen atoms in line with carbon chain.

			Т	able 11		56	216	80	94	в	$Et_2O$	
R	FACTIO	N COND	TIONS	AND PR	EPARATION DETAILS	57	72	110	91	Α	$Et_2O$	
	isnerio.			Dunit		58	113	85	91	С	Et₂O wash	
	Time, ^a	Temp., b	acted	, cation	Recrystn.	59	89	85		А	Abs. Et ₂ O wash	
No.n	hr.	°C,	% °	method	solvent	60	89	85	100	Α	Abs. Et ₂ O wash	
1	82	110	90	А	$Et_2O$	61		75		A	Abs. $Et_2O$ wash	
2	67	110	89	Α	$\mathrm{Et}_{2}\mathrm{O}$	62	117	70	95	А	Abs. Et ₂ O wash	
3	95	110	88	Α	Et ₂ O–acetone	63	123	70	95	А	Abs. Et ₂ O wash	
4	$48^d$	105	100	А	Acetone	64	72	80	97	Α	Et ₂ O	
5	$48^d$	105	100	Α	$Et_2O$ -acetone	65	74	80	100	A	Abs. Et ₂ O wash	
6	45	110	94	А	$Et_2O$ -acetone	66	80	80	95	A	Et ₂ O wash	
7	34	1.35	100	в	Et ₂ O	67	144	80		Α	Et ₂ O wash	
8	31	105	96	A	$Et_2O$	68	90	80	98	А	Et₂O	
9	117	110	98	Α	Et ₂ Oacetone	69	123	70	98	А	Et ₂ O wash	
10	e	110		A	Et ₂ O-acetone	70	144	80	00	A	Et ₂ O wash	
11	98	95	96	Α	Et ₂ O-acetone	71	68	80		A	Et ₂ O-acetone	
12	48	105	98	А	Et ₂ O wash	72	66	80		A	Et ₂ O-acetone	
13	49	110	92	Α	Et ₂ O wash	72	66 66	80		Ĉ	Et ₂ O wash	
14	50	105	99	А	Et ₂ O	74	- 00 - 00	75	96	A	Et ₀ O	
15	40	110		A	Et ₂ O-acetone	75	20 916	80	00	A	Etan-abs Etan	
16	31	105	96	A	Et ₂ O	70	210 00	65		ĉ	$E_{2}O$ ups. $E_{2}O$	
17	48	105	97	A	Et ₂ O wash	70	90 916	00	02	4	Et ₂ O accione	
18	21	110	100	A	Et ₀ O wash	11	210	00 65	90	а л	Et.O	
10	21	.110	03	ĉ	Et ₂ O wash	78 70	90	63		A C	Et20-acetone	
20	.18	105	00	Δ	Et ₂ O wash	79	97	60 07			$El_2O$	
ل) شر 10 1	40	75	99	Δ	Et ₂ O	80	77	85		A	Et ₂ O-acetone	
21 00	30 40	110	06	Λ Λ	Et O acutotra	81	77	85		C	Et ₂ O	
44 59	40	105	90	A	Et ₂ O-acetone	82	72	85	99	U.	Et ₂ O-acetone	
23 ೧೯	31	105	94	A D	$Et_2O$	83	97	65		A	Et ₂ O wash	
24	64	105	99	В D	Et ₂ O wash	84	72	75		C	Et ₂ O-acetone	
25	42	110	90	B	Et ₂ O wash	85		60		C	Et ₂ O-acetone	
26	50	110	- 92	Ċ,	Et ₂ O	<b>8</b> 6	120	75		С	$Et_2O$ wash	
27	67	110	100	A	Et ₂ O	87	120	75		С	$Et_2O$ wash	
28	75	110	94	A	Et ₂ O	88	0			Α	Et ₂ O	
29	168	80		A	$Et_2O$ wash	89	h			С	$Et_2O$	
30	168	80		A	Et ₂ O-acetone	90		70		C	$Et_2O$ wash	
31	168	80	95	A	Et ₂ O–acetone	91	40	75	96	С	$Et_2O$	
32	137	110	85	Α	Et₂Oacetone	92	22	75	81	С	Et ₂ O	
33	49	110	99	Α	Et ₂ O-acetone	93	96	75		С	Et ₂ O-acetone	
34	65	105	100	А	$Et_2O$ wash	94	3 wks.	i		С	Et ₂ O-acetone; acetor	ıe
35	22	135	93	С	Et ₂ O-acetone	95	168	i		Α	Butanone; acetone	
36	47	110	100	А	Et ₂ O–acetone	$96^{i}$	3 wks.	i		C	Butanone	
37	48	110		А	Et ₂ O	$97^{k}$	120	ŧ,		Α	Acetone	
38	47	110	100	Α	$Et_2O$	98	24	75		А	Et ₂ O-acetone	
39	44	110	95	А	Et ₂ O wash	99	25	75		$\mathbf{A}$	$Et_2O$	
40	67	110	95	В	$Et_2O$ wash	100	40	75		С	Et ₂ O	
41	70	110		Α	Et ₂ O	101	48	70		Α	Wet Et ₂ O	
42	96	110	93	в	$Et_2O$ -petr. ether	102	l	70		Α	Butanone	
43	70	105	90	Α	Acetone, then Et ₂ O	103	nı			в	$Et_2O$ wash	
44	48	110	97	В	$Et_2O$ wash	a 1	Reaction	time	^b Rea	ction t	emperature. ^c Based	on
45	24	110	- 99	в	$\rm Et_2O$	dete	rminatio	n of io	nizable	haloge	n in a weighed sample	of
46	50	110	100	Α	Et ₂ O-acetone	the	reaction	mixtu	re. ^d l	Methan	ol solvent for reactant	s.
47	49	110	100	А	$Et_2O$	" Sev	eral day	s. 148	shr.at	75, th	en $\delta$ hr. at 110°. ^{$\theta$} Roo	ş
48	ſ			С	Et ₂ O wash	tem	7 dave o	10r 6 da + 110°	iys, the	:11 20 111 5m tems	nerature. <i>i</i> Eleven orat	, ns
49	ſ			С	$Et_2O$ wash	then of 4	∩uaysa -n-henta	decvlp	vridine	and 5	0 g. of neutralized 25	%
50	f		86	С	$Et_2O$ wash	metl	iyl brom	ide in	methan	ol were	used. ^k A 2-mole exce	ss
51	72	75		A	$Et_2O$ -acetone	of et	hyl bron	ide wa	s used.	' Abs	. ethanol solvent. "Fo	ur
52	269	80	86	В	Et ₂ O-abs. Et ₂ O	days	at 75°,	then 2	24 hr. a	at 110°.	ⁿ The numbers refer	τo
53	216	80	96	В	$Et_2O$ -abs. $Et_2O$	com	pounds I	isted m	radie	1.		
54	72	110		A	Et ₂ O	disti	Ilations	of the e	ether ex	tract v	ielded 20.5 g. of 3-valer	v1-
10.00						11213		~ ·				

93

80

216

55

C

 $Et_{s}O$ 

distillations of the ether extract yielded 20.5 g. of 3-valerylpyridine; b.p.  $106-112^{\circ}$  (3.5 mm.),  $n^{25}$ D 1.5118. Anal. Caled. for  $C_{10}H_{13}ON$ : N, 8.58. Found: N, 8.55.

3-n-Amylpyridine.—To 55 g. (0.337 mole) of 3-valerylpyridine was added 0.675 mole of semicarbazide hydrochloride and 0.7 mole of sodium acetate. The mixture was refluxed for one hour, then diluted with a large volume of water and chilled. The resulting solid semicarbazone was filtered and dried *in vacuo* over concentrated sulfuric acid to yield 53 g., m.p. 177-179°.

The semicarbazone was added to a mixture of 45 g. of 85% aqueous hydrazine hydrate and 80 g. of sodium methoxide in 1250 ml. of methanol. The mixture was heated at 200° for 8 hr. in an autoclave, acidified with aqueous hydrochloric acid, and then heated on a steam-bath to remove the methanol. The last traces of methanol were removed by gentle warming over a flame. The residue was cooled and a cold solution of sodium hydroxide was added until the mixture was alkaline. The 3-n-amylpyridine was extracted with ether, dried over potassium hydroxide pellets and distilled to give 29 g. (81%) of product boiling at 224-226° (748 mm.);  $n^{25}$ p 1.4892.

Anal. Caled. for C₁₀H₁₅N: N, 9.39. Found: N, 9.29.

#### Discussion

The data in Table I show that the most important factor determining germicidal activity is the total number of carbon atoms in  $\mathbb{R}^1$  and  $\mathbb{R}^2$ , the C-alkyl and N-alkyl groups, and not the length of the higher molecular weight chain alone. Maximum activity was obtained in all series when the carbon total was 16 to 19. Above and below this critical carbon total, activity decreased sharply. In general, 4substituted pyridinium salts are more active, at peak activity, than the corresponding 2-substituted compounds. The 4-substituted isomers are also much less soluble than the 2-substituted compounds.

In the single series of 2-, 3- and 4-amylpyridine salts, the most active 3-substituted compound, No. 30, showed approximately the same germicidal activity as the most active 4-substituted compound, No. 37. The 3-acylpyridinium salts appear to be less active than comparable 3-alkylpyridine compounds.

Branching of the carbon substituent influenced germical activity according to the degree of branching. Slightly branched chains, such as the 4-(2methyloctyl) group, showed a peak activity comparable with that of the unbranched 4-*n*-nonyl group, while the more highly branched 4-(5-nonyl) group gave a definitely lower peak. An unsaturated sidechain, No. 21, gave a peak activity approximately equal to the corresponding saturated compound, No. 22.

The nature of the anion did not greatly influence germicidal activity, as is demonstrated by a comparison of compounds No. 7 and No. 8 or No. 35 and No. 36. Similar compounds containing sulfate, nitrate and benzoate anions, also prepared in this Laboratory, were found to be of the same order of activity.

In the range of peak activity for each series of salts, the germicidal activity against Gram-negative organisms (*E. typhosa*) approaches or equals potency against Gram-positive organisms (*Staph. aureus*), although with quaternary ammonium salts in general the Gram-negative activity is somewhat lower. Other advantages of the ring-substituted pyridinium compounds are the retention of high germicidal activity at room temperature, a surprising immunity to the presence of serum,⁴ and a general lack of increase of intraperitoneal toxicity in rats with an increase in germicidal potency.

Acknowledgment.—The authors wish to acknowledge the assistance of the Department of Bacteriology for germicidal tests and to express their thanks to Dr. F. E. Cislak of the Reilly Tar and Chemical Corporation for generous samples of alkylpyridines.

Cincinnati, Ohio

RECEIVED NOVEMBER 8, 1950

[CONTRIBUTION FROM THE ORGANIC DEPARTMENT, RESEARCH LABORATORIES, THE WM. S. MERRELL COMPANY]

## Quaternary Ammonium Salts as Germicides. V. Quaternary Ammonium Salts Derived from Substituted Piperidines

### By G. H. Harris,¹ R. S. Shelton, M. G. Van Campen and E. L. Schumann

Investigations of the germicidal properties of quaternary ammonium compounds have been extended to include C-alkyl piperidinium salts. Results of germicidal tests with these compounds show that peak activity occurs when the sum of the carbon atoms in the C-alkyl and N-alkyl groups is in the region of seventeen to nineteen and indicate a definite relationship between molecular size and germicidal activity analogous to that found with C-alkyl pyridinium salts.

The preceding paper² in this series described the relation of structure to germicidal activity of a series of substituted pyridinium salts. As an extension of this work, the present report is concerned with quaternary ammonium salts of C-substituted piperidines and their germicidal activity. A series of piperidinium salts has been prepared in which the C-alkyl group size has been varied in length from two to thirteen carbon atoms. The position of the carbon substituent, the size of the N-alkyl groups and, in one case, the anion have also been varied.

(1) Great Western Division, The Dow Chemical Company, Pittsburg, California.

Physical properties and germicidal activity data for the piperidinium salts are compiled in Table II. Reaction conditions and recrystallization solvents are given in Table III and new piperidine intermediates are listed in Table I. Several piperidinium salts were isolated as hydrates, as shown in Table II. The degree of hydration was proved as described in the preceding paper.²

### Experimental

Alkylpiperidine intermediates were prepared by two methods. In the first, alkylpyridines were catalytically hydrogenated and the resulting alkylpiperidines were then N-alkylated by means of formaldehyde and formic acid or a suitable alkyl halide. In the second method, alkylpyridine

⁽²⁾ Shelton, et al., THIS JOURNAL, 73, 3959 (1951).