This article was downloaded by: [Tulane University] On: 14 January 2015, At: 08:34 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsyc20

Preparation of N-1 Substituted Thieno[3,4-d]pyrimidine-2,4diones

Ronald K. Russell^a, Caroline E. van Nievelt^a, Richard A. Rampulla^a & Dieter H. Klaubert^a

^a The R. W. Johnson Pharmaceutical Research Institute, Division of Medicinal Chemistry, P. O. Box 300, Route 202, Raritan, N. J., 08869-0602 Published online: 23 Sep 2006.

To cite this article: Ronald K. Russell , Caroline E. van Nievelt , Richard A. Rampulla & Dieter H. Klaubert (1992) Preparation of N-1 Substituted Thieno[3,4-d]pyrimidine-2,4-diones, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 22:22, 3221-3227, DOI: 10.1080/00397919208021136

To link to this article: http://dx.doi.org/10.1080/00397919208021136

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the

Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

PREPARATION OF N-1 SUBSTITUTED THIENO[3,4d]PYRIMIDINE-2,4-DIONES

Ronald K. Russell*, Caroline E. van Nievelt, Richard A. Rampulla and Dieter H. Klaubert

The R. W. Johnson Pharmaceutical Research Institute Division of Medicinal Chemistry P. O. Box 300, Route 202, Raritan, N. J. 08869-0602

Abstract — The preparation of N-1 substituted thieno[3,4-d]pyrimidine-2,4diones is presented. The key feature of this synthesis is the use of a 2,4dimethoxybenzyl protecting group at N-3 that was readily removed in methanesulfonic acid.

Over the last few years we have been interested in the preparation of pharmacologically novel molecules that contain the thieno [3,4-d] pyrimidine-2,4-dione ring system¹⁻³. This synthetic strategy involved the preparation of the suitably substituted urea ester (*e.g.* **1a**, **1b**) followed by ring closure to form the pyrimidine ring system **2**. To further explore the SAR of this interesting ring system, we decided to switch the substituent pattern from the *N*-3 position of **2** to the *N*-1 position. We report here the preparation of **3a** and **3b** as representative examples of the title compounds.

3221

We first attempted the direct approach, *i.e.* selective alkylation of thieno[3,4d]pyrimidine-2,4-dione (4)⁴. This approach produced a mixture of both monoalkylated materials as well as the bisalkylated product. With this failure (and a few others) we turned our attention to finding a suitable protecting group for the *N*-3 position that could be easily removed after *N*-1 derivatization. A 3-benzyl compound was prepared (vida supra); however, removal of this group by hydrogenolysis did not work. A 3-(3,4-dimethoxybenzyl) compound was also prepared but it could not be removed with acid⁵. As a last choice, we prepared the 3-(2,4-dimethoxybenzyl) compound and found that this protecting group could be removed at the appropiate time by mild acid treatment⁶.

The synthesis of the target molecule started with the urethane 5^2 . This material was treated with 2,4-dimethoxybenzylamine in the presence of trimethylaluminum to produce the amide $6^{2,7}$. This intermediate was readily cyclized to the thieno[3,4-d]pyrimidine compound 7 using NaOH/MeOH in nearly quantitative yield. The N-1 position was then alkylated with 1-bromo-2-chloroethane in DMSO/NaH and the chloro moiety of 8 was displaced by arnine a or b in refluxing 2-propanol using NaHCO₃ as the base and a catalytic amount of NaI. The final step was readily accomplished by stirring a methanesulfonic acid solution of 9 at rt for 16 h.

This report demonstrates a general chemoselective method for functionalizing the N-1 position of the pyrimidine-2,4-dione nucleus and specifically the preparation of novel N-1 substituted thieno[3,4-*d*]pyrimidine-2,4-diones.

Experimental

Melting points were taken on a Thomas-Hoover melting point apparatus and are uncorrected. Infrared spectra were recorded on a Perkin-Elmer 1430 instrument. Proton nmr spectra were recorded at 90 MHz on a Varian EM 390 spectrometer with the chemical shifts reported in δ downfield from tetramethylsilane as internal standard. For compounds **3a**, **3b** and **9a**, **9b** the proton nmr spectra were recorded at 300.1 MHz on a Bruker AC 300 spectrometer. The elemental analyses were run on either a Perkin-Elmer 240C or 2400 instruments. All spectra are in agreement with the structures cited. Standard flash column techniques were employed to purify crude reaction mixtures using 230-400 mesh E. Merck silica gel under positive nitrogen pressure. The yields are not optimized and are for isolated product.

Ethyl [4-[[(2,4-dimethoxyphenylmethyl)amino]carbonyl]thiophen-3-yl]carbonate (6).

A toluene solution (300 ml) of 2,4-dimethoxybenzylamine (20.9 g, 0.125 mmol) at 10°C under nitrogen was slowly treated with 2N Me₃Al in toluene (68.8 ml, 0.138 mmol). The reaction solution was warmed to rt for 30 min and then recooled to 10°C and treated with urethane 5 (28.6 g, 0.125 mmole). After the mixture had been stirred for 3 days at rt, it was cooled to 0°C and carefully quenched with 2N HCl. The aqueous layer was extracted with CH₂Cl₂ and the combined organic phase was washed with 2N HCl, water and brine. The organic layer was dried (MgSO₄) and condensed *in vacuo* to produce 42.5 g of white solid. This material was crystallized from CH₂Cl₂/hexane/ether to afford pure 6 (31.1 g)

as a white solid. The filtrate was purified by flash column chromatography using 50-60% ether in hexane. There was obtained an additional 5.8 g (36.9 g total, 81%) of 6. A portion of 6 was recrystallized from CH₂Cl₂/ether to afford a white solid; mp 123-126°C; IR (KBr) 3400, 1715, 1640, 1530, 1510, 1285, 1225, 1205, 1025, 820, and 775 cm⁻¹; ¹H NMR (CDCl₃) δ 1.27 (t, J = 7 Hz, 3H, CH₂CH₃), 3.75 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 4.15 (q, J = 7 Hz, 2H, CH₂CH₃), 4.47 (d, J = 5.5 Hz, 2H, benzylic CH₂), 6.43-6.63 (m, 3H, H_{arom} and NHCH₂), 7.20 (d, J = 10 Hz, 1H, H6 phenyl), 7.45 (d, J = 3 Hz, 1H, H2 thiophene), 7.60 (d, J = 3 Hz, 1H, H5 thiophene) and 9.90 (s, 1H, NHCO); Anal. calc'd for C₁₇H₂₀N₂O₅S: C, 56.03; H, 5.53; N, 7.69. Found: C, 56.13; H, 5.51; N, 7.70.

3-(2.4-Dimethoxyphenylmethyl)thieno[3.4-d]pyrimidine-2.4-dione (7).

A solution of 12.5 N NaOH (11.5 ml, 0.144 mol) in methanol (475 ml) was treated with urethane 6 and stirred at 50°C for 5 h. The white mixture was cooled in an ice bath and acidified to pH 3 with 2N HCl. The white solid was collected and dried to afford 7 (29 g, 95%). A portion of this material was crystallized from DMF/MeOH to produce 7 as a white solid; mp 276–277°C; IR (KBr) 3200, 1720, 1650, 1505, 1465, 1205, 1030, 830, 770, 750 and 670 cm⁻¹; ¹H NMR (DMSO d_6) δ 3.70 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 4.88 (br s, 2H, benzylic CH₂), 6.37 (dd, J = 3, 7.5 Hz, 1H, H5 phenyl), 6.53 (d, J = 3 Hz, H3 phenyl), 6.67 (d, J = 7.5 Hz, 1H, H6 phenyl), 6.83 (d, J = 3 Hz, 1H, H7 thienopyrimidine), 8.37 (d, J = 3 Hz, 1H, H5 thienopyrimidine) and 11.28 (s, 1H, NH); Anal. calc'd for C₁₅H₁₄N₂O₄S: C, 56.59; H, 4.43; N, 8.80. Found: C, 56.40; H, 4.42; N, 8.93. <u>1-(2-Chloroethyl)-3-(2.4-dimethoxyphenylmethyl)thieno[3.4-d]pyrimidine-2.4dione</u> (8).

To a mixture of 7 (5.09 g, 16 mmol) in DMSO (80 ml) under nitrogen was slowly added 60% NaH (1.28 g, 32 mmol). After the effervescence had stopped, the mixture was treated with 1-bromo-2-chloroethane (4.0 ml, 48 mmol) and warmed to 30°C for 4.5 h. The reaction was quenched with water, and a white precipitate was collected. The filtrate was extracted with EtOAc and this extract was combined with a CH₂Cl₂ solution of the above white solid. This organic phase was washed with water and brine and dried (MgSO₄). Solvent removal afforded **8** (6.26 g, quantitative). A portion of this material was crystallized from CH₂Cl₂/hexane to produce **8** as a white solid; mp 154.5–156°C; IR (KBr) 3120,

1700, 1655, 1570, 1510, 1385, 1210, 1030 and 770 cm-1; 1H NMR (DMSO- d_6) δ 3.66 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃), 3.83 (t, J = 6 Hz, 2H, CH₂Cl), 4.27 (t, J = 6 Hz, 2H, ClCH₂CH₂N), 4.90 (br s, 2H, benzylic CH₂), 6.33 (dd, J = 3, 7.5 Hz, 1H, H5 phenyl), 6.50 (d, J = 3 Hz, H3 phenyl), 6.70 (d, J = 7.5 Hz, 1H, H6 phenyl), 7.30 (d, J = 3 Hz, 1H, H7 thienopyrimidine) and 8.43 (d, J = 3 Hz, 1H, H5 thienopyrimidine); Anal. calc'd for C₁₇H₁₇ClN₂O₄S: C, 53.61; H, 4.50; N, 7.36. Found: C, 53.74; H, 4.49; N, 7.37.

General Procedure for the Preparation of Compound 9.

A mixture of the chloroethyl compound 8 (1 eq), NaHCO₃ (4-5 eq), NaI (0.5-0.75 eq) and amine in 2-propanol (2.6 *M*) was warmed to reflux for 12 to 17 h under nitrogen. Water was added and the 2-propanol was removed *in vacuo*. The aqueous mixture was extracted with CH₂Cl₂ and the combined extract was washed with brine and dried (MgSO₄). Solvent removal produced the crude product which was purified by flash silica gel chromatography using 0.5-3% MeOH in CH₂Cl₂. 3-(2.4-Dimethoxyphenylmethyl)-1-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-thieno[3.4-d]pyrimidine-2.4-dione (9a).

Isolated as a tan foam in 78% yield after column chromatography. A portion of this material was dissolved in acetone and converted to its oxalate salt. This white solid was recrystallized from CH₂Cl₂/ether; mp 114–117°C; IR (KBr) 3450, 3105, 1700, 1660, 1580, 1500, 1390, 1210, 1025 and 750 cm⁻¹; ¹H NMR (DMSO- d_6) δ 3.03 (br s, 10H, CH₂N), 3.67 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 4.24 (m, 2H, CH₂NCO), 4.96 (s, 2H, benzylic CH₂), 6.35 (dd, J = 2.2, 8.4 Hz, 1H, H5 dimethoxyphenyl), 6.56 (d, J = 2.2 Hz, 1H, H3 dimethoxyphenyl), 6.77 (d, J = 8.4 Hz, 1H, H6 dimethoxyphenyl), 6.87-6.98 (m, 4H, methoxyphenyl), 7.38 (d, J = 3.2 Hz, H7 thienopyrimidine) and 8.53 (d, J = 3.1 Hz, 1H, H5 thienopyrimidine) (Note: (CO₂H)₂ was a slight rise in the baseline δ 4.5-6.0); Anal. calc'd for C₂₈H₃₂N₄O₅S·C₂H₂O₄: C, 57.50; H, 5.47; N, 8.94. Found: C, 57.52; H, 5.56; N, 8.85.

<u>1-[2-[4-(4-Fluorobenzoyl)piperidin-1-yl]ethyl]-3-(2.4-dimethoxyphenylmethyl)-</u> thieno[3.4-d]pyrimidine-2.4-dione (9b).

Isolated as a tan oil in 80% yield after column chromatography. This material was twice crystallized from CH₂Cl₂/ether/hexane to produce 9b as a cream-colored solid; mp 86–88°C; IR (KBr) 3060, 2900, 1675, 1630, 1550, 1360, 1180, 1000, 830 and 800 cm⁻¹; ¹H NMR (CDCl₃) δ 1.77-1.85 (m, 4H, piperidine CH₂), 2.20-

2.27 (m, 2H, piperidine CH₂), 2.72 (t, J = 7.0 Hz, 2H, CH₂CH₂-N piperidine), 3.04-3.08 (m, 2H, piperidine CH₂), 3.13-3.25 (m, 1H, piperidine CH), 3.77 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 4.12 (t, J = 7.0 Hz, 2H, CH₂NCO), 5.18 (s, 2H, benzylic CH₂), 6.40 (dd, J = 2.4, 8.3 Hz, 1H, H5 dimethoxyphenyl), 6.45 (d, J = 2.3 Hz, 1H, H3 dimethoxyphenyl), 6.70 (d, J = 3.3 Hz, 1H, H7 thienopyrimidine), 6.93 (d, J = 8.3 Hz, 1H, H6 dimethoxyphenyl), 7.13 (t, J =8.6 Hz, 2H, H3 and H5 benzoyl), 7.95 (dd, J = 5.4, 8.9 Hz, 2H, H2 and H6 benzoyl) and 8.25 (d, J = 3.3 Hz, 1H, H5 thienopyrimidine); Anal. calc'd for C₂₉H₃₀FN₃O₅S·0.5 H₂O: C, 62.13; H, 5.57; N, 7.50. Found: C, 62.07; H, 5.61; N, 7.24.

General Procedure for the Preparation of Compound 3.

The dimethoxybenzyl compound 9 (1 eq.) was dissolved in methanesulfonic acid (0.03–0.07 *M*) at rt. The solution slowly turned a purple color and after stirring at ambient temperature for 16 h the solution was poured into ice-water. The pH of the aqueous mixture was adjusted to 10 with concentrated NH₄OH. The white precipitate was collected and redissolved in CH₂Cl₂/MeOH. This organic solution was quickly washed with water and brine and dried (MgSO4). Solvent removal produced a quantitative amount of crude product.

<u>1-[2-[4-(2-Methoxyphenyl)piperazin-1-yl]ethyl]-thieno[3,4-d]pyrimidine-2,4-dione</u> (3a).

Isolated as a tan solid (26%) after crystallization from MeOH/CH₂Cl₂; mp 244–247°C; IR (KBr) 3200, 3070, 1710, 1675, 1580, 1500, 1240, 1030, and 760 cm⁻¹; ¹H NMR (DMSO- d_6) & 2.62 (br s, 6H, methylene), 2.93 (br s, 4H, methylene), 3.77 (s, 3H, OCH₃), 4.01 (t, J = 7.0 Hz, 2H, CH₂NCO), 6.86-6.94 (m, 4H, H_{arom}), 7.21 (d, J = 3.2 Hz, H7 thienopyrimidine), 8.43 (d, J = 3.2 Hz, 1H, H5 thienopyrimidine) and 11.21 (s, 1H, NH); Anal. calc'd for C₁₉H₂₂N₄O₃S: C, 59.05; H, 5.74; N, 14.50. Found: C, 59.03; H, 5.69; N, 14.01.

<u>1-[2-[4-(4-Fluorobenzoyl)piperidin-1-yl]ethyl]thieno[3,4-d]pyrimidine-2,4-dione</u> (3b).

Isolated as a tan solid (28%) after column chromatography using 0.5-5% MeOH in CH₂Cl₂. This material was crystallized from MeOH/CH₂Cl₂; mp 205.5–209°C; IR (KBr) 3050, 1680, 1580, 1580, 1485, 1285, 1205, 1170, 975, 855 and 750 cm⁻¹; ¹H NMR (CDCl₃) δ 1.80-1.88 (m, 4H, piperidine CH₂), 2.23-

2.31 (m, 2H, piperidine CH₂), 2.73 (t, J = 7.2 Hz, 2H, CH₂CH₂-N piperidine), 3.04-3.13 (m, 2H, piperidine CH₂), 3.16-3.30 (m, 1H, piperidine CH), 4.10 (t, J = 7.2 Hz, 2H, CH₂NCO), 6.76 (d, J = 3.2 Hz, 1H, H7 thienopyrimidine), 7.14 (t, J = 8.6 Hz, 2H, H3 and H5 benzoyl), 7.96 (dd, J = 5.4, 8.9 Hz, 2H, H2 and H6 benzoyl), 8.26 (d, J = 3.3 Hz, 1H, H5 thienopyrimidine) and 8.45 (s, 1H, NH); Anal. calc'd for C₂₀H₂₀FN₃O₃S: C, 59.84; H, 5.02; N, 10.47. Found: C, 59.90; H, 5.13; N, 10.34.

Acknowledgements — The authors would like to thank Dr. M. L. Cotter and her staff for microanalytical and spectra data.

References

- Russell, R. K., Press, J. B., Rampulla, R. A., McNally, J. J., Falotico, R., Keiser, J. A., Bright, D. A. and Tobia, A., J. Med. Chem., 1988, <u>31</u>, 1786.
- Russell, R. K., Rampulla, R. A., van Nievelt, C. E. and Klaubert, D. H., J. Heterocycl. Chem., 1990, <u>27</u>, 1761.
- Press, J. B., Russell, R. K., McNally, J. J., Rampulla, R. A., Falotico, R., Scott, C., Moore, J. B., Jr., Offord, S. J. and Tobia, J., Eur. J. Med. Chem., 1991, <u>26</u>, 807.
- 4. Ziegler, D. and Brossmer, R., Tetrahedron Lett., 1973, 2055.
- Greene, T. W., "Protective Groups in Organic Synthesis,", John Wiley & Sons, New York, 1981; pp. 267-287.
- 6. Weygand, F., Steglich, W., Bjarnason, J., Akhtar, R. and Khan, N. M., Tetrahedron Lett., 1966, 3483.
- 7. Basha, A., Lipton, M. and Weinreb, S. M., Tetrahedron Lett., 1977, 4171.

(Received in USA 2 July, 1992)