Letters to the Editor

Reactions of α,β -dibromo- β -(fluoroalkyl)ketones with ethylenediamine

O. G. Khomutov and K. I. Pashkevich*

Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 20 ul. S. Kovalevskoi, 620219 Ekaterinburg, Russian Federation. Fax: 007 (343 2) 44 0026

It is known that α,β -dibromoketones react with ethylenediamine (EDA) to give 1,4-diazabicyclo[4.1.0]hept-4-enes (1) (Scheme 1).¹ We established that α,β -dibromo-(β -fluoroalkyl)ketones (2) (obtained from the corresponding α,β -enones² and used without purification) react under the same conditions with equimolar amount of EDA in the presence of Et₃N to give ethylenediaziridines (**3a,b**).

, 40

This is apparently due to the fact that the substituent R^F enhances the aziridine ring formation. Thus, in the case of non-fluorinated α,β -dibromoketones, the completion of the reaction requires boiling and prolonged storage, whereas ketones **2** react with EDA almost instanta-

neously. Both aziridine rings in compounds 3 have trans-configuration ($J_{\alpha-H,\beta-H} = 2.50-2.58$ Hz).

N, *N*'- Ethylenedi[2-benzoyl-3-(1,1,2,2-tetrafluoroethyl)aziridine] (3a). Br₂ (0.69 g, 4.31 mmol) was added dropwise to a solution of 1-phenyl-4,4,5,5-tetrafluoropent-2-enone-1 (1 g, 4.31 mmol) in 15 mL of hexane. The reaction mixture was allowed to stand for 2 h and concentrated, and the residue was dissolved in 30 mL of MeOH. Then Et₃N (0.87 g, 8.62 mmol) and EDA (0.26 g, 4.31 mmol) were added, and the mixture was left for 24 h, poured into 100 mL of H₂O, and extracted with CHCl₃. The extract was dried with MgSO₄ and concentrated, and the residue was chromatographed on a column with silica gel (the eluent was CHCl₃). Compound **3a** (0.77 g, 67%) was obtained as a light yellow oil. IR

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 3026-3027, December, 1996.

1066-5285/96/4512-2875 \$15.00 © 1997 Plenum Publishing Corporation

(thin film), v/cm⁻¹: 1672 (C=O). ¹H NMR (CDCl₃), δ : 2.48-3.50 (m, 4 H, 2 CH₂); 3.30 (br.t, 2 H, 2 β -H, ³ $J_{H,F}$ = 9.8 Hz); 3.96 (d, 2 H, 2 α -H, J_{α -H, β -H</sub> = 2.50 Hz); 6.12 (tt, 2 H, 2 HCF₂, ² $J_{H,F}$ = 52.2 Hz, ³ $J_{H,F}$ = 5.1 Hz); 7.30-8.01 (m, 10 H, 2 Ph).

N,N'-Ethylenedi(2-benzoyl-3-perfluorohexylaziridine) (3b) was obtained analogously from 1-benzoyl-2-perfluorohexylethylene (10 g, 22 mmol), Br₂ (3.52 g, 22 mmol), Et₃N (5.06 g, 50 mmol), and EDA (1.5 g, 22 mmol). After recrystallization from hexane, the yield of compound **3b** was 7.79 g (74%), colorless crystals, m.p. 102.5–103.0 °C. Found (%): C, 39.79; H, 2.00; F, 51.53; N, 3.01. $C_{32}H_{18}F_{26}N_2O_2$. Calculated (%): C, 40.18; H, 1.90; F, 51.64; N, 2.93. IR (Vaseline oil), v/cm⁻¹: 1660 (C=O). ¹H NMR (CDCl₃), δ : 2.71–3.26 (m, 6 H, 2 CH₂, 2 β-H); 3.79 (d, 2 H, 2 α-H, ³J_{α-H,β-H} = 2.58 Hz); 7.39–8.09 (m, 10 H, 2 Ph).

References

- 1. H. W. Heine and R. P. Henzel, J. Org. Chem., 1969, 34, 171.
- R. R. Latypov, V. D. Belogai, and K. I. Pashkevich, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1986, 123 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1986, **35**, 108 (Engl. Transl.)].

Received April 1, 1996

Synthesis and optical activation of dimethyl 1-(2,4-dinitrophenyloxy)aziridine-2,2-dicarboxylate

V. V. Rozhkov,^a I. I. Chervin,^b A. V. Prosyanik,^a and R. G. Kostyanovsky^b*

 ^aUkrainian State University of Chemistry and Technology, 6 prosp. Gagarina, 320005 Dnepropetrovsk, Ukraine. Fax: 007 (056 2) 47 7478
^bN. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 ul. Kosygina, 117977 Moscow, Russian Federation. Fax: 007 (095) 938 2156. E-mail: kost@chph.rc.ac.ru

l-Alkoxyaziridine-2,2-dicarboxylates¹ proved to be ideal objects for developing a general procedure for complete resolution into antipodes²⁻⁶ that can be used for various classes of compounds with an asymmetrical nitrogen atom.⁷

In this work, the first representative of 1-aryloxyaziridines, namely, dimethyl 1-(2,4-dinitrophenoxy)aziridine-2,2-dicarboxylate **2**, was synthesized by the reaction of diazomethane with dimethyl mesoxalate O-(2,4-dinitrophenyl)oxime (1) (Scheme 1). We succeeded in obtaining both enantiomerically enriched forms of **2** by crystallization from an optically active solvent. Unlike 1-alkoxyaziridines, an increase in the inversion barrier should be expected for compound **2** because the electronegativity of the sp² carbon atom is higher than that of the sp³ carbon atom. Moreover, aziridine **2** is a promising synthon for preparing 1-hydroxyaziridine-2,2-dicarboxylates.

O-Aryloxime (1). The yield was 42%, m.p. 108–110 °C (from PrⁱOH). Found (%): C, 40.39; H, 2.74; N, 12.86. $C_{11}H_9N_3O_9$. Calculated (%): C, 40.37; H, 2.77; N, 12.84. IR (KBr pellets), v/cm⁻¹: 1740 (CO); 1600, 1542 (C=N, C₆H₃,

NO₂). ¹H NMR (CDCl₃), δ : 4.02 (s, 3 H, MeO); 4.07 (s, 3 H, MeO); 8.03 (d, 1 H, 6'-H, ³J = 9.2 Hz); 8.5 (dd,

Scheme 1

Reagents and conditions: *i.* Chloro-2,4-dinitrobenzene in MeCN in the presence of a catalytic amount of 18-crown-6, boiling for 6 h; *ii.* An ethereal solution of CH_2N_2 in CH_2Cl_2 , -6 °C, 7 days; *iii.* A catalytic amount of CF_3COOH , -6 °C, 5 h.

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 3027-3028, December, 1996.

1066-5285/96/4512-2876 \$15.00 © 1997 Plenum Publishing Corporation