Transformation of homoallylic alcohol oxides into 3-hydroxytetrahydrofurans in aqueous HClO_{4}

M. V. Chirskaya, ${ }^{a}$ A. A. Vasil'ev, ${ }^{b \star}$ S. V. Shorshnev, ${ }^{a}$ and S. I. Sviridov ${ }^{a}$
${ }^{a}$ Chem Bridge Corporation, 1 ul. Malaya Pirogovskaya, 119435 Moscow, Russian Federation ${ }^{b}$ N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. Fax: +7(495) 135 5328. E-mail: vasiliev@ioc.ac.ru

Abstract

Hydrolysis of allyl carbinol oxides in aqueous HClO_{4} gave the corresponding 1,2,4-triols. On heating in the same reaction medium, they underwent cyclization into 3-hydroxytetrahydrofurans. The method is restricted to substrates that can generate stable carbocations via elimination of the hydroxy group from position 4 in intermediate 1,2,4-triols.

Key words: tetrahydrofuran-3-ols, allyl carbinols, epoxides, triols, heterocyclization.

The tetrahydrofuran fragment is found in some natural ${ }^{1}$ and pharmacologically active compounds. ${ }^{2}$ Among a variety of routes to tetrahydrofurans, cyclization of olefinic alcohols ${ }^{\mathbf{3}}$ in the presence of electrophilic (including oxidizing) reagents is of particular importance. Cyclization of alk-4-en-1-ols (homoallyl carbinols) usually presents no problem, while reactions of alk-3-en-1-ols (allyl carbinols) leading to 3 -substituted tetrahydrofurans should proceed through the generation of primary carbocations and therefore are kinetically unfavorable. To make the reaction follow a desired pathway, the cyclization of allyl carbinols is usually carried out indirectly (most often, by two-step methods). Recently, we have proposed a simple and convenient route to 3-bromotetrahydrofurans via bromination of allyl carbinols followed by cyclization of the resulting 1,2-dibromoalkan-4-ols with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol. ${ }^{4}$ A simple method for the synthesis of 3-hydroxytetrahydrofurans by isomerization of allyl carbinol oxides in the presence of magnesium halides in ether has been reported. ${ }^{5}$ Direct oxidative cyclization of allyl carbinols with $\mathrm{H}_{2} \mathrm{O}_{2}$-titanium silicate ${ }^{6}$ or $\mathrm{NaIO}_{4}-\mathrm{NaHSO}_{3}$ (the latter cyclization occurs through the formation of 1-iodoalkane-2,4-diols) ${ }^{7}$ affords 3-hydroxytetrahydrofurans in acceptable yields. Related modern approaches ${ }^{8}$ are effective but involve expensive reagents and complex synthetic procedures. Under certain conditions, the cyclization of allyl carbinols or their oxides can lead to oxetane derivatives. ${ }^{9}$ Iodocyclization of crotyl alcohol and higher alk-2-enyl carbinols proceeds through the generation of a secondary carbocation and thus is not difficult. ${ }^{\mathbf{9 c}, 10}$

Here we present a simple method of transforming some allyl carbinols $\mathbf{1}$ through their oxides 2 into 3-hydroxytetrahydrofurans 3 (Scheme 1) in aqueous perchloric acid medium. When stirred at room temperature in water containing $1.5-2 \% \mathrm{HClO}_{4}$, compounds 2 underwent opening of the epoxide ring to give water-soluble triols 4 (triol 4a was isolated and identified from the ${ }^{1} \mathrm{H}$ NMR spectrum). Subsequent heating of the reaction mixture resulted into intramolecular dehydration accompanied by the formation of 3-hydroxytetrahydrofurans 3 in 49-85\% yields. In the case of unsymmetrical compounds ($\mathrm{R}^{1} \neq \mathrm{R}^{2}$), mixtures of two diastereomers were obtained (e.g., $\left(3 R^{*}, 5 R^{*}\right)$ - and $\left.\left(3 R^{*}, 5 S^{*}\right)-\mathbf{3 a}, \mathbf{b}\right)$. The structures of these products were additionally confirmed by oxidation of the diastereomeric mixtures of alcohols $\mathbf{3 a}, \mathbf{b}$ into the corresponding individual ketones $\mathbf{5 a , b}$ (in the alternative formation of 2-hydroxymethyloxetane derivatives with the primary alcohol group, this oxidation would give diastereomeric mixtures of aldehydes well identifiable from ${ }^{1} \mathrm{H}$ NMR spectra).

Individual diastereomers ($3 R^{*}, 5 R^{*}$)- and ($3 R^{*}, 5 S^{*}$)-3a have been obtained earlier by a stereoselective synthesis (see Refs 8b, 11). This allowed us to assign the characteristic signals in the ${ }^{1} \mathrm{H}$ NMR spectrum of their mixture. To determine the configurations of tetrahydrofuranols $\mathbf{3 b}$ and $\mathbf{3 b}^{\prime}$, these isomers were separated by column chromatography and studied by a NOESY experiment in DMSO- d_{6}. The NOESY spectrum of diastereomer ($3 R^{*}, 5 R^{*}$)-3b shows cross peaks between the methyl protons ($\delta 1.38$, s) and the $\mathrm{H}(3)$ proton $(\delta 4.43, \mathrm{~m})$, while for diastereomer $\left(3 R^{*}, 5 S^{*}\right)-\mathbf{3 b}$, these cross peaks were absent. However, its

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1252-1255, July, 2006.

Scheme 1

Reagents and conditions: i, MCPBA, CHCl_{3}, reflux, 2 h ; $i \mathrm{i}, \mathrm{HClO}_{4}-\mathrm{H}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}$; iii, $\mathrm{HClO}_{4}-\mathrm{H}_{2} \mathrm{O}, 100{ }^{\circ} \mathrm{C}$; $i v, \mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 2

Reagents and conditions: i, $\mathrm{Br}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; i i, \mathrm{~K}_{2} \mathrm{CO}_{3}$ (4 equiv.), $\mathrm{MeOH}, 20{ }^{\circ} \mathrm{C}$; iii, AcOK , DMSO, $70{ }^{\circ} \mathrm{C}$; iv, $\mathrm{K}_{2} \mathrm{CO}_{3}$ (cat.), $\mathrm{MeOH}, 20^{\circ} \mathrm{C}$.
spectrum contains a cross peak between the methyl ($\delta 1.51, \mathrm{~s}$) and OH protons ($\delta 4.94, \mathrm{~d}$).

($3 R^{\star}, 5 R^{\star}$)-3b

(3R*,5S*)-3b

Apparently, the reaction involves generation of carbocation A. Indeed, 3-hydroxytetrahydrofurans $\mathbf{3}$ were obtained only from the substrates that form stable benzylic $(\mathbf{4 a}, \mathbf{b})$ or tertiary carbocations $(\mathbf{4 c}, \mathbf{d})$. In the case of epoxy alcohol $2 \mathbf{e}$, whose corresponding diol $\mathbf{4 e}$ forms an unstabilized secondary carbocation, the reaction afforded no desired tetrahydrofuran derivative. The reaction products isolated in low yields differed in spectroscopic characteristics from authentic compound 3e prepared in an independent way (Scheme 2). To obtain this compound, we used at the key step earlier ${ }^{4}$ developed dehydrobromination of 1,2-dibromoalkan-4-ols (in our case, alcohol 6) with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol leading to 3-bromotetrahydrofuran derivative 7. The Br atom was replaced by a hydroxy group in a standard way with potassium
acetate in DMSO followed by methanolysis of intermediate furan-3-yl acetate.

It should be noted that previous methods for the transformation of 1,2,4-triols into 3-hydroxytetrahydrofurans involved p-toluenesulfonic acid, ${ }^{\mathbf{1 2}}$ anhydrous cupric sulfate, ${ }^{11 \mathrm{~b}} p$-toluenesulfonyl chloride in pyridine, ${ }^{13}$ and a special combination of protective groups. ${ }^{14}$ The closest analog to our approach is distillation of triols from aqueous $\mathrm{H}_{2} \mathrm{SO}_{4},{ }^{15}$ which usually provides moderate yields and is restricted to low-molecular-weight substrates that are well steam-distilled. Although our method is not versatile, it is simple and affords tetrahydrofuran derivatives in preparative yields.

Experimental

[^0]N-AW-DMCS, injector and flame ionization detector temperature $260^{\circ} \mathrm{C}$, heating from 130 to $200^{\circ} \mathrm{C}$ at a rate of $5 \mathrm{deg} \mathrm{min}^{-1}$). Elemental analysis was performed at an analytical laboratory of the A. N. Nesmeyanov Institute of Organoelement Compounds. TLC analysis was carried out on Kieselgel $60 \mathrm{~F}_{254}$ plates (Merck, Cat. No. 1.05554) in 5% (or 10%) $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Column chromatography was carried out on silica gel L (100/160). The starting allyl carbinols $\mathbf{1 a}-\mathbf{e}$ were prepared from appropriate carbonyl compounds and allylmagnesium bromide according to the literature procedures. ${ }^{16}$

Epoxy alcohols 2. A mixture of allyl carbinol 1 (20 mmol) and 70% 3-chloroperoxybenzoic acid (Acros; $6.9 \mathrm{~g}, 25 \mathrm{mmol}$) in chloroform (50 mL) was refluxed with stirring for $2-3 \mathrm{~h}$ until the starting compound $\mathbf{1}$ was completely consumed (TLC monitoring). The mixture was cooled and the precipitate of 3-chlorobenzoic acid was filtered off. The filtrate was washed successively with solutions of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{NaOH}$, and NaCl , dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give sufficiently pure epoxides 2. They were used at the next step without additional purification. The physicochemical characteristics of compounds $\mathbf{2 a}-\mathbf{d}$ were in agreement with the literature data. ${ }^{\mathbf{9 a}, \mathbf{b}, 17,18}$

1,2-Epoxydecan-4-ols (2e), a $1: 1$ mixture of the diastereomers. An analytically pure sample was obtained by column chromatography in AcOEt -hexane with a concentration gradient of AcOEt from 5 to 50%. Found (\%): C, 69.52; H, 11.78. $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2}$. Calculated (\%): C, 69.72; H, 11.70. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 0.88$ $(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) ; 1.23-1.54(\mathrm{~m}, 10 \mathrm{H}) ; 1.61$ (ddd, $0.5 \mathrm{H}, J=$ $14.4 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, J=3.4 \mathrm{~Hz}) ; 1.78-1.88(\mathrm{~m}, 1.5 \mathrm{H}) ; 1.96$ (br.s, 1 H); $2.50(\mathrm{dd}, 0.5 \mathrm{H}, J=4.9 \mathrm{~Hz}, J=2.7 \mathrm{~Hz}) ; 2.61$ (dd, $0.5 \mathrm{H}, J=4.9 \mathrm{~Hz}, J=2.9 \mathrm{~Hz}) ; 2.78(\mathrm{dd}, 0.5 \mathrm{H}, J=4.9 \mathrm{~Hz}, J=$ $3.9 \mathrm{~Hz}) ; 2.82(\mathrm{dd}, 0.5 \mathrm{H}, J=4.9 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}) ; 3.08$ and 3.14 (both m, 0.5 H each); 3.81 and 3.88 (both m, 0.5 H each). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 13.9 ; 22.4 ; 25.3$ and $25.4 ; 29.1 ; 31.7 ; 37.3$ and $37.5 ; 39.3$ and $39.7 ; 46.4$ and $46.8 ; 50.0$ and $50.3 ; 69.0$ and 70.0.

3-Hydroxytetrahydrofurans 3 (general procedure). A mixture of epoxy alcohol (16 mmol), water (25 mL), and 50% $\mathrm{HClO}_{4}(0.8 \mathrm{~mL})$ was stirred at $20^{\circ} \mathrm{C}$ for $3-4 \mathrm{~h}$ and then refluxed with stirring for 3 h . The mixture was cooled and neutralized with NaHCO_{3}. The product was extracted with CHCl_{3} and the extract was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography in $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with a concentration gradient of MeOH from 0 to 3% to give compounds $\mathbf{3 a}-\mathbf{d}$.

3-Hydroxy-5-phenyltetrahydrofuran (3a). The yield from the two-step process was $70-75 \%$, a $3: 2$ mixture of the $\left(3 R^{*}, 5 S^{*}\right)$ - and ($3 R^{*}, 5 R^{*}$)-isomers, a yellowish oil. ($3 R^{*}, 5 S^{*}$)-Isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$, $\delta: 1.94(\mathrm{~m}, 1 \mathrm{H}) ; 2.14$ (br.s, 1 H); 2.34, 3.89 (both m, 1 H each); 4.23 (dd, $1 \mathrm{H}, J=$ $10.1 \mathrm{~Hz}, J=4.4 \mathrm{~Hz}) ; 4.61(\mathrm{~m}, 1 \mathrm{H}) ; 5.17(\mathrm{dd}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}$, $J=5.9 \mathrm{~Hz}$) (cf. Ref. 11). ($3 R^{*}, 5 R^{*}$)-Isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$, $\delta: 1.96$ (m, 1 H); 2.14 (br.s, 1 H); 2.67 (ddd, $1 \mathrm{H}, J=14.3 \mathrm{~Hz}$, $J=7.5 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}) ; 3.90(\mathrm{~m}, 1 \mathrm{H}) ; 4.05(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.0 \mathrm{~Hz}) ; 4.57(\mathrm{~m}, 1 \mathrm{H}) ; 4.91(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz})(c f$. Ref. 8 b$)$.

3-Hydroxy-5-methyl-5-phenyltetrahydrofuran (3b). The yield from the two-step process was $65-85 \%$, a $\sim 5: 4$ mixture of the ($3 R^{*}, 5 R^{*}$)- and ($3 R^{*}, 5 S^{*}$)-isomers, a yellowish oil. Found (\%): $\mathrm{C}, 74.37 ; \mathrm{H}, 8.01 . \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$. Calculated (\%): C, 74.13; H, 7.92. The mixture was separated by column chromatography in $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with a concentration gradient of MeOH from 0 to 3%.
$\left(3 R^{*}, 5 R^{*}\right)$-Isomer, $R_{\mathrm{f}} 0.63\left(10 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$), $\delta: 1.38$ (s, 3 H); 2.01 (dd, $1 \mathrm{H}, J=$ $12.9 \mathrm{~Hz}, J=4.4 \mathrm{~Hz}$); $2.32(\mathrm{dd}, 1 \mathrm{H}, J=12.9 \mathrm{~Hz}, J=7.0 \mathrm{~Hz})$; $3.56(\mathrm{dd}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}, J=4.4 \mathrm{~Hz}) ; 4.01(\mathrm{dd}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}$, $J=5.6 \mathrm{~Hz}) ; 4.43(\mathrm{~m}, 1 \mathrm{H}) ; 4.72(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}) ; 7.18(\mathrm{t}$, $1 \mathrm{H}, J=7.3 \mathrm{~Hz}) ; 7.30(\mathrm{t}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}) ; 7.40(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$), $\delta: 30.1,48.6,71.0,73.8,83.5$, 124.6, 126.0, 127.9, 148.8.
($3 R^{*}, 5 S^{*}$)-Isomer, $\quad R_{\mathrm{f}} 0.54$ ($10 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1}{ }^{H}$ NMR (DMSO-d ${ }_{6}$), $\delta: 1.51(\mathrm{~s}, 3 \mathrm{H}) ; 2.03(\mathrm{dd}, 1 \mathrm{H}, J=$ $12.9 \mathrm{~Hz}, J=3.7 \mathrm{~Hz}) ; 2.28(\mathrm{dd}, 1 \mathrm{H}, J=12.9 \mathrm{~Hz}, J=6.5 \mathrm{~Hz})$; 3.72 (dd, $1 \mathrm{H}, J=9.2 \mathrm{~Hz}, J=3.1 \mathrm{~Hz}) ; 3.82(\mathrm{dd}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}$, $J=5.2 \mathrm{~Hz}) ; 4.23(\mathrm{~m}, 1 \mathrm{H}) ; 4.94(\mathrm{~d}, J=3.7 \mathrm{~Hz}) ; 7.19(\mathrm{t}, 1 \mathrm{H}, J=$ $7.0 \mathrm{~Hz}) ; 7.30(\mathrm{t}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}) ; 7.35(\mathrm{~d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$), $\delta: 30.4,48.5,71.1,74.4,83.8,124.3$, 126.2, 128.1, 148.6.

1-Oxaspiro[4.5]decan-3-ol (3c). The yield from the twostep process was $70-75 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 1.28-1.54$ (m, 6 H); $1.60-1.72$ (m, 4 H); 1.75 (ddd, $1 \mathrm{H}, J=13.5 \mathrm{~Hz}, J=$ $2.4 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}$); 1.91 (br.s, 1 H); 1.94 (dd, $1 \mathrm{H}, J=13.5 \mathrm{~Hz}$, $J=6.6 \mathrm{~Hz}) ; 3.77$ (ddd, $1 \mathrm{H}, J=9.9 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}$); $3.89(\mathrm{dd}, J=9.9 \mathrm{~Hz}, J=4.4 \mathrm{~Hz}) ; 4.44(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 23.5,23.7,25.3,37.1,38.0,45.9,72.7,73.4,82.7$. The spectroscopic characteristics are close to the literature data. ${ }^{8 \mathrm{a}}$

5,5-Diethyl-3-hydroxytetrahydrofuran (3d). The yield from the two-step process was 49%, a colorless oil. Found (\%): $\mathrm{C}, 66.39 ; \mathrm{H}, 11.07 . \mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$. Calculated (\%): C, 66.63; H, 11.18. ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$), $\delta: 0.76$ (t, $3 \mathrm{H}, J=7.5 \mathrm{~Hz}$); $0.80(\mathrm{t}, 3 \mathrm{H}$, $J=7.4 \mathrm{~Hz}) ; 1.29-1.48(\mathrm{~m}, 2 \mathrm{H}) ; 1.46-1.77$ (m, 3 H$) ; 1.83$ (dd, $1 \mathrm{H}, J=12.9 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}) ; 3.46(\mathrm{dd}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, J=$ $4.1 \mathrm{~Hz}) ; 3.75(\mathrm{dd}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}) ; 4.27(\mathrm{~m}, 1 \mathrm{H})$; 4.75 (br.s, 1 H). ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$), $8: 8.3,8.6,29.8,30.2$, 43.4, 71.0, 73.5, 84.9 .

5-Hexyl-3-hydroxytetrahydrofuran (3e) (parallel synthesis). A solution of bromine (2.2 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added at $0-5{ }^{\circ} \mathrm{C}$ to a stirred solution of dec-1-en-4-ol (1e) $(0.312 \mathrm{~g}$, $2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$. An aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and NaHCO_{3} was added and the mixture was stirred for $15-20 \mathrm{~min}$. The organic layer was separated and the product from the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ and freshly powdered $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.104 \mathrm{~g}, 8 \mathrm{mmol})$ was added with stirring. The mixture was stirred at $20^{\circ} \mathrm{C}$ for 4 h and then the greater part of the solvent was removed in vacuo. The residue was diluted with water and organic material was extracted with ether. The extracts were dried with CaCl_{2} and concentrated in vacuo. The residue was dissolved in DMSO (4 mL) and potassium acetate $(0.784 \mathrm{~g}$, 8 mmol) was added. The mixture was stirred at $70-80^{\circ} \mathrm{C}$ for 6 h (GLC monitoring) and diluted with water (16 mL). The product was extracted with ether and the extracts were washed with a solution of NaCl , dried with CaCl_{2}, and concentrated in vacuo. The residue was dissolved in $\mathrm{MeOH}(3 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{mg})$ was added. The mixture was stirred at $20^{\circ} \mathrm{C}$ for 6 h . The greater part of the solvent was removed in vacuo. Benzene (10 mL) and silica gel $(2 \mathrm{~mL})$ were added to the residue. The mixture was evaporated to dryness. The dry friable residue was placed on the top of a chromatographic column packed with silica gel and chromatographed in $\mathrm{AcOEt}-$ hexane with a concentration gradient of AcOEt from 0 to 40%. Concentration of the corresponding fractions gave $3: 2$ mixtures of diastereomers 3 e as
colorless oils. The yield was 0.213 g (62% with respect to $\mathbf{1 e}$). Found (\%): C, 70.00; H, 11.70. $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2}$. Calculated (\%): C, 69.72; H, 11.70.

Major diastereomer. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 0.85(\mathrm{t}, 3 \mathrm{H}, J=$ 6.9 Hz); $1.20-1.74(\mathrm{~m}, 11 \mathrm{H}) ; 2.30$ (quint, $1 \mathrm{H}, J=6.6 \mathrm{~Hz}$); 2.43 (br.s, 1 H); 3.65 (m, 1 H); 3.71-3.82 (m, 2 H); 4.40 (m, 1 H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 14.0,22.5,26.2,29.2,31.7$, 36.1, 41.4, 72.3, 75.2, 79.2 .

Minor diastereomer. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 0.85(\mathrm{t}, 3 \mathrm{H}, J=$ $6.9 \mathrm{~Hz}) ; 1.20-1.74(\mathrm{~m}, 11 \mathrm{H}) ; 1.95(\mathrm{dd}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}, J=$ 5.6 Hz); 2.43 (br.s, 1 H); 3.64 (dd, $1 \mathrm{H}, J=9.8 \mathrm{~Hz}, J=4.4 \mathrm{~Hz}$); 3.96 (dd, $1 \mathrm{H}, J=9.8 \mathrm{~Hz}, J=4.7 \mathrm{~Hz}$); 4.07, 4.44 (both m, 1 H each $).{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 14.0,22.5,26.1,29.3,31.7$, 35.4, 41.6, 72.4, 75.1, 78.1.

4-Phenylbutane-1,2,4-triol (4a). An aqueous 50% solution of $\mathrm{HClO}_{4}(0.45 \mathrm{~mL})$ was added to a solution of epoxy alcohol 2a $(0.255 \mathrm{~g})$ in THF (1.25 mL) and water (2.5 mL). The mixture was stirred at $20^{\circ} \mathrm{C}$ for $18-20 \mathrm{~h}$ and neutralized with NaHCO_{3}. Impurities were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the aqueous layer was largely concentrated in vacuo. The residue was mixed with $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ was added. The inorganic precipitate was filtered off and the filtrate was concentrated in vacuo. A viscous oily residue mainly consisted of a 3:2 mixture of the diastereomers of triol 4a. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}), $\delta: 1.43(\mathrm{~m}, 0.6 \mathrm{H}) ; 1.62-1.71(\mathrm{~m}, 1.4 \mathrm{H}) ; 3.19-3.40(\mathrm{~m}, 2.4 \mathrm{H})$; 3.69 (m, 0.6 H); 4.50 (m, 1.6 H); 4.60 (br.s, 0.4 H); 4.68-4.78 (m, 1 H); 5.13 (br.s, 0.6 H); 5.21 (br.s, 0.4 H); 7.21 (m, 1 H); $7.26-7.38$ (m, 4 H) (cf. Ref. 19).

5-Phenyltetrahydrofuran-3-one (5a). Pyridinium chlorochromate ($604 \mathrm{mg}, 2.8 \mathrm{mmol}$) was added to a solution of a diastereomeric mixture of 3-hydroxy-5-phenyltetrahydrofuran (3a) ($328 \mathrm{mg}, 2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The mixture was stirred at $20^{\circ} \mathrm{C}$ for $2-3 \mathrm{~h}$ (TLC monitoring), diluted with ether $(40 \mathrm{~mL})$, and allowed to stand for 30 min . The mixture was filtered through a column of neutral alumina and then the sorbent was washed with ether $-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$. The filtrate was concentrated in vacuo and the residue was purified by column chromatography in AcOEt -hexane with a concentration gradient of AcOEt from 0 to 10%. The yield of ketone $\mathbf{5 a}$ was 195 mg $(60 \%) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$), $\delta: 2.51(\mathrm{dd}, 1 \mathrm{H}, J=17.8 \mathrm{~Hz}, J=$ $9.9 \mathrm{~Hz}) ; 2.88(\mathrm{dd}, 1 \mathrm{H}, J=17.8 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}) ; 3.98,4.18$ (both d, 1 H each, $J=16.7 \mathrm{~Hz}$); 5.27 (dd, $1 \mathrm{H}, J=9.9 \mathrm{~Hz}, J=$ $6.0 \mathrm{~Hz}) ; 7.33(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}) ; 7.39(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}) ; 7.43$ (d, $2 \mathrm{H}, J=7.3 \mathrm{~Hz}$) (cf. Ref. 8c).

5-Methyl-5-phenyltetrahydrofuran-3-one (5b) was obtained analogously. The yield was 73%, m.p. $51-52{ }^{\circ} \mathrm{C}$. Found (\%): $\mathrm{C}, 75.29 ; \mathrm{H}, 7.02 . \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}$. Calculated (\%): C, 74.98; H, 6.86. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 1.68(\mathrm{~s}, 3 \mathrm{H}) ; 2.70,2.92$ (both d, 1 H each, $J=17.6 \mathrm{~Hz}$); 3.97, 4.14 (both d, 1 H each, $J=17.1 \mathrm{~Hz}$); 7.28 (t, $1 \mathrm{H}, J=6.9 \mathrm{~Hz}) ; 7.34-7.42(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta:$ 30.1, 49.9, 70.3, 83.7, 124.7, 127.4, 128.6, 144.5, 214.6.

References

1. A. A. Semenov, Ocherk khimii prirodnykh soedinenii [An Outline of the Chemistry of Natural Compounds], Nauka, Novosibirsk, 2000, 298 pp. (in Russian).
2. M. D. Mashkovskii, Lekarstvennye sredstva [Drugs], OOO "Izdatel'stvo Novaya Volna", Moscow, 2001, 1, 2 (in Russian).
3. R. C. Larock, Comprehensive Organic Transformations. A Guide to Functional Group Preparations, Wiley, Inc., 1999, p. 905.
4. M. V. Chirskaya, A. A. Vasil'ev, N. L. Sergovskaya, S. V. Shorshnev, and S. I. Sviridov, Tetrahedron Lett., 2004, 45, 8811.
5. M. Karikomi, S. Watanabe, Y. Kimura, and T. Uyehara, Tetrahedron Lett., 2002, 43, 1495.
6. A. Bhaumik and T. Tatsumi, Chem. Commun., 1998, 463.
7. Y. Okimoto, D. Kikuchi, S. Sakaguchi, and Y. Ishii, Tetrahedron Lett., 2000, 41, 10223.
8. (a) N. A. Petasis and S.-P. Lu, J. Am. Chem. Soc., 1995, 117, 6294; (b) O. Andrey, L. Ducry, Y. Landais, D. Planchenault, and V. Weber, Tetrahedron, 1997, 53, 4339; (c) M. A. Ciufolini, M. V. Deaton, S. Zhu, and M. Chen, Tetrahedron, 1997, 53, 16299; (d) F. Lacrampe, F. Leost, and A. Doutheau, Tetrahedron Lett., 2000, 41, 4773.
9. (a) A. Murai, M. Ono, and T. Masamune, Bull. Chem. Soc. Jpn, 1977, 50, 1226; (b) J.-P. Bats, J. Moulines, P. Picard, and D. Leclercq, Tetrahedron, 1982, 38, 2139; (c) R. D. Evans, J. W. Magee, and J. H. Schauble, Synthesis, 1988, 862.
10. (a) B. H. Lipshutz and J. C. Barton, J. Am. Chem. Soc., 1992, 114, 1084; (b) E. D. Mihelech and G. A. Hite, J. Am. Chem. Soc., 1992, 114, 7318; (c) S. B. Bedford, K. E. Bell, G. Fenton, C. J. Hayes, D. W. Knight, and D. Shaw, Tetrahedron Lett., 1992, 33, 6511; (d) J. M. Barks and D. W. Knight, Tetrahedron Lett., 1994, 35, 7259.
11. M. Tiecco, L. Testaferri, L. Bagnoli, R. Terlizzi, A. Temperini, F. Marini, C. Santi, and C. Scarponi, Tetrahedron: Asymmetry, 2004, 15, 1949.
12. (a) R. F. Curtis, C. H. Hassal, and J. Weatherston, J. Chem. Soc., 1962, 4225; (b) Y. Kashman, I. Neeman, and A. Lifshitz, Tetrahedron, 1969, 25, 4617; (c) K. W. Gopinath and P. K. Mahanta, Tetrahedron, 1976, 32, 737.
13. P. Picard and J. Moulines, Bull. Soc. Chim. Fr., 1974, 2889.
14. Y. Ishibashi, S. Nishiyama, Y. Shizuri, and S. Yamamura, Tetrahedron Lett., 1992, 33, 521.
15. (a) D. Wagner, V. L'vov, and A. Bening, Zh. Russ. Fiz.-Khim. O-va., 1904, 36, 539; (b) W. Reppe, Justus Liebigs Ann. Chem., 1955, 596, 113.
16. (a) S. Ranganathan, R. Kumar, and V. Maniktala, Tetrahedron, 1984, 40, 1167; (b) M. P. Dreyfuss, J. Org. Chem., 1963, 28, 3269; (c) R. Kieffer, Bull. Soc. Chim. Fr., 1967, 3026; (d) G. A. Tolstikov, A. Yu. Spivak, S. I. Lomakina, and A. V. Kuchin, Izv. Akad. Nauk SSSR, Ser. Khim., 1985, 1109 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1985, 34, 1012 (Engl.Transl.)].
17. F.-X. Felpin and J. Lebreton, J. Org. Chem., 2002, 60, 7353.
18. V. I. Pansevich-Kolyada, V. A. Ablova, and L. A. Kureichik, Zh. Obshch. Khim., 1955, 25, 2448 [J. Gen. Chem. USSR, 1955, 25 (Engl.Transl.)].
19. (a) C. Ticozzi and A. Zanarotti, Tetrahedron Lett., 1994, 40, 7421; (b) A. Bachki, F. Foubelo, and M. Yus, Tetrahedron: Asymmetry, 1996, 7, 2997.

Received March 25, 2006;
in revised form July 26, 2006

[^0]: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker DRX 400 Avance instrument (400.13 $\quad\left({ }^{1} \mathrm{H}\right)$ and $\left.100.62 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)\right)$ in CDCl_{3} or DMSO- d_{6} with reference to signals for a deuterated solvent $\left({ }^{13} \mathrm{C}\right)$ or its residual protons $\left({ }^{1} \mathrm{H}\right)$. The ratios of the diastereomeric products were determined from the integral intensities of the characteristic signals in the ${ }^{1} \mathrm{H}$ NMR spectra. GLC analysis was carried out on a Chrom-5 chromatograph (column $2400 \times 3 \mathrm{~mm}$, 5% SE- 30 on Chromaton

