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Methyl cyclopropenecarboxylates and dimethoxycarbonyltetrazine undergo cascade cycloaddition and 

retro-cycloaddition reactions. Depending on substituents in cyclopropenes the reaction either leads to 

diazanorcaradienes or is accompanied with an electrocyclic ring-opening and a proton migration or a 

“walk” rearrangement. 
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Abstract. The reaction of di(methoxycarbonyl)tetrazine with substituted cycloprop-2-ene-1-

carboxylates gives a series of 3,4-diazanorcaradienes and 1,2-diazepines. The influence of the 

nature of cyclopropenes and the reaction conditions on its selectivity was investigated. The 

addition of nucleophiles to norcaradienes was studied and a rare example of the “walk” 

rearrangement in this class of compounds was revealed. 

Introduction 

The derivatives of cycloheptatriene sometimes existing in an equilibrium with norcaradiene1,2 

as well as other seven-membered polyene systems are attractive for their high reactivity in 

pericyclic reactions. Therein diazepines and diazanorcaradienes have been paid essentially less 

attention having shown a slight difference from the carbocyclic systems. Thus, 3,4-diazepines 

are significantly less stable than their isomeric 1,2-diazanorcaradienes in most cases3 and are 

often regarded as intermediates in the formation and interconversions of the latter.4 So far the 

main method for the synthesis of diazanorcaradienes consists in the cycloaddition reaction of 

cyclopropenes with tetrazines which is accompanied with the retro-[4+2]-cycloaddition to give 

target products wherein cyclopropenecarboxylates containing alkyl and aryl substituents were 

used as starting material.5–7 The diazanorcaradiene derivatives were demanded for the 

investigation of the rearrangements in these cyclic systems, however the final scope was 

restricted, no diazepines formed therein. Methods for the synthesis of condensed diazepines 

which do not transform into norcaradienes due to the presence of an aromatic cycles annulated 

are known.8–11 Additionally, a series of diazepines have demonstrated biological activity12–14 and 
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the reaction between cyclopropenes and tetrazines is of interest as a bioorthogonal copper – free 

analog of the “click-reaction”.4 

Results and discussion 

Our previous investigations of polyunsaturated cyclic molecules abundant with electron-

withdrawing groups revealed their rich reactivity towards either nucleophilic or electrophilic 

reagents as well as in the pericyclic reactions.15–22 One of the key synthons therein was 

1,2,3,4,5,6,7-hepta(methoxycarbonyl)cycloheptatriene (HMCH),15,16 as well as its closely related 

carbocyclic analogs, relatively high acidity of HMCH being one of the key properties 

determining its high reactivity.14 Electron-deficient 1,2-diazepines are analogues of HMCH in 

which the two C–CO2Me moieties are substituted with nitrogen atoms which similarly stabilize 

the negative charge. It is noteworthy that HMCH itself was not observed to undergo 

isomerization into corresponding norcaradiene, although within some of its transformations such 

as the reaction of hepta(methoxycarbonyl)cycloheptatrienide potassium with tropylium 

tetrafluoroborate this process takes place even at –30°С.20 

Apparently, the most convenient method for the synthesis of diazanorcaradienes containing 

three ester groups in a molecule is the reaction of dimethoxycarbonyltetrazine 123 with 

substituted methyl cycloprop-2-ene-1-carboxylates 2, which were in turn obtained via catalytic 

cyclopropenation of acetylenes with methyl diazoacetate. Thus, the reactions of tetrazine 1 with 

cycloprop-2-ene-1-carboxylates containing either two phenyl groups (2a) or a phenyl and a 

trimethylsilyl (2b) or only one butyl group (2с) proceed in mild conditions at room temperature 

to form stable 3,4-diazanorcaradienes 3a–c (Scheme 1). The structures of products 3b and 3c 

(indirectly via the adduct 4c) were established by single crystal X-ray diffraction analysis (XRD, 

Figure 1). The ester group at the C(7) atom in 3a is anti-configured relative to the phenyl groups 

and syn-configured towards the dihydropyridazine ring (the geometry of 3b was proved to be 

similar to that of 3a on the basis of NOESY data), whereas in 3c (4c) it is otherwise anti-

configured towards the ring, which is more likely due to their thermodynamic stabilities rather 

than the kinetic differences within the first cycloaddition stage. Dissolved in methanol both 3a 

and 3b add one molecule of methanol to form adducts 4a,b. Conversely, diazanorcaradiene 3c 

turned out highly hygroscopic and the formation of hydrate 4c was observed even at the presence 

of trace water. Thus, it forms in deuterochloroform and on silica gel which makes purification of 

3c hardly possible. The high hygroscopicity of similar compounds was observed previously.5 
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Scheme 1. Formation of substituted 3,4-diazanorcaradien-2,5,7-tricarboxylates 3a–c and their reactions 

with methanol or water. 

 

Figure 1. Single crystal X-ray structures of molecules 3a (left) and 4c (right). Atoms are represented as 

thermal ellipsoids (р=50%).  

Upon heating in either toluene or xylene the compound 3a rearranges into 1,2-diazepine 5a. 

The latter can be obtained via direct reaction of tetrazine 1 with cyclopropane 2a upon heating in 

xylene at reflux for 2h. According to XRD, the structure of 5a does not correspond to the 

expected C(1)–C(6) bond cleavage in diazanorcaradiene 3a. Apparently, the product 5a is 

formed via subsequent walk rearrangement2 of 3a into 3a´ and electrocyclic ring-expansion into 

5a (Scheme 2, Figure 2), wherein the relative configuration of intermediate 3a´ was suggested 

according to the previous calculations of [1,5]-shifts within norcaradiene systemes.2 

Unfortunately, upon heating in xylene at reflux, diazanorcaradienes 3b and 3c gave 

unidentifiable mixtures. It is worth mentioning that to the best of our knowledge the 

transformation of 3a into 5a is the first example of a rearrangement of a norcaradiene into a 

diazepine.3 
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Scheme 2. Isomerization of diazanorcaradiene 3a into 1,2-diazepine 5a via the walk rearrangement into 

3a´. 

 

Figure 2. Single crystal X-ray structure of molecule 5a. Atoms are represented as thermal ellipsoids 

(р=50%). 

Formation of diazanorcaradienes 3d,e in the reaction of tetrazine 1 with 

cyclopropenecarboxylates 2d,e could not be observed even at low temperatures (–30°С). Herein 

1,2-diazepines are formed and immediately isomerized into 4-methylene-4,5-dihydro-1H-1,2-

diazepine-3,5,7-tricarboxylates 6a,b containing exo-cyclic double bonds (Scheme 3). The 

structure of 6b was established by means of XRD (Figure 3). As it was mentioned previously, 

diazepines in most cases are not stable, however they are regarded as stable intermediates in 

interconversions of diazanorcaradienes. Herein the driving force of the ring-expansion is likely 

the formation of exo-double-bonded products 6a,b. 

 

Scheme 3. Formation of substituted 4-methylene-4,5-dihydro-1H-1,2-diazepines 6a,b. 
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Figure 3. Single crystal X-ray structure of molecule 6b. Atoms are represented as thermal ellipsoids 

(р=50%). 

Analogously, formation of dihydrodiazepine fragment with an exo-alkylidene double bond is 

observed in the reaction of tetrazine 1 with cyclopropene 2f (see SI). However, the reaction leads 

to a mixture of isomeric products whose separation was accompanied with desilylation and 

isomerization reaction and was unsuccessful. In this case the reaction requires heating in toluene 

which is apparently due to the low reactivity at the first stages. It is worth noting, that 2-(tert-

butyl)-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate gives no reaction with 1. 

Methyl 2-phenylcycloprop-2-ene-1-carboxylate 7 could not be used in the synthesis of the 

corresponding diazanorcaradiene via the reaction with tetrazine 1 because it trimerizes into 8 

upon formation (Scheme 4, Figure 4), the mechanism presumably including ene reaction.24,25  

 

Scheme 4. Formation of trimer 8. The relative stereochemistry is shown for one of the diastereomers 

formed which was established by means of XRD. 
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Figure 4. Single crystal X-ray structure of molecule 8. Atoms are represented as thermal ellipsoids 

(р=50%). 

The introduction of a trimethylsilyl substituent into cyclopropane could be an alternative 

pathway to diazanorcaradienes with a hydrogen atom at one of the angular positions, however 

the reaction of 3b with TBAF initiates the rearrangement into pyridazine 9 (Scheme 5).  

 

Scheme 5. Cleavage of TMS-substituted diazanorcaradiene 3b into pyridazine 9. 

Conclusion 

Thus, the cycloaddition reaction between substituted methyl cycloprop-2-ene-1-carboxylates and 

di(methoxycarbonyl)tetrazine was found to be an appropriate approach to the synthesis of 

diazanorcaradienes and 1,2-diazepines. Diazanorcaradienes are formed from diaryl- and 

aryltrimethylsilyl- and monoalkylated cyclopropenecarboxylates, while the presence of an alkyl 

group in trisubstituted cyclopropenes brings to formation of diazepines containing an 

exomethylene double bond. 

 

Experimental Section 

General: 1H and 13C NMR spectra were recorded on a 300 and 75.5 MHz NMR spectrometer for 

solutions in CDCl3 containing 0.05% of Me4Si as an internal standard. High resolution mass 

spectra were obtained using a BrukermicrOTOF II instrument (ESI, positive or negative ion 

modes, capillary voltage 4500 V). All chemical reagents and solvents were purchased from 

commercial sources and used without additional purification. Dimethoxycarbonyltetrazine 1,23 

methyl 2-phenyl-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate 2b26, methyl 2,3-

dimethylcycloprop-2-ene-1-carboxylate 2d,27 2-(tert-butyl)-3-(trimethylsilyl)cycloprop-2-ene-1-

carboxylate28 were synthesized according to the literature procedures. 

X-ray diffraction data for 2a, 2c and 4a were collected on a SMART APEX II area-detector 

diffractometer (graphite monochromator, ω-scan technique), using MoKα-radiation (0.71073 Å). 

The intensity data were integrated by the SAINT program29 and were corrected for absorption 

and decay using SADABS30. All structures were solved by direct methods using SHELXS31, and 

were refined on F2 using SHELXL-2014/2017.32 All non-hydrogen atoms were refined with 
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anisotropic displacement parameters. All hydrogen atoms were placed in ideal calculated 

positions and refined as riding atoms with relative isotropic displacement parameters taken as 

Uiso(H)=1.5Ueq(C) for methyl groups and Uiso(H)=1.2Ueq(C) for the rest ones. Crystal data and 

structure refinement parameters of compounds 3a, 4c, 5a, 6b and 8 can be retrieved free of 

charge from www.ccdc.cam.ac.uk/conts/retrieving.html (CCDC 1886318–1886322).  

 

Trimethyl 1,6-diphenyl-3,4-diazabicyclo[4.1.0]hepta-2,4-diene-2,5,7-tricarboxylate (3a): A 

mixture of dimethoxycarbonyltetrazine 1 (0.20 g, 1.0 mmol), methyl 2,3-diphenylcycloprop-2-

ene-1-carboxylate 2a (0.28 g, 1.1 mmol) and CH2Cl2 (6 mL) stirred for 30 h, the solvent was 

removed in vacuo. The residue was recrystallized from methyl-tert-butyl ether (MTBE) to give 

the desired product (0.39 g, 91%). M.p. 129–132 °C. 1H NMR (300 MHz, CDCl3): δ = 7.17–6.96 

(m, 10 H), 4.14 (s, 1 H), 3.74 (s, 3 H), 3.64 (s, 6 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 164.9, 

163.6, 153.7, 133.7, 129.5, 128.7, 128.6, 52.9, 52.8, 42.6, 21.3 ppm. HRMS (ESI+): m/z calcd. 

for C23H21N2O6
+ [M+H]+ 421.1394; found 421.1390. 

Trimethyl 1-phenyl-6-(trimethylsilyl)-3,4-diazabicyclo[4.1.0]hepta-2,4-diene-2,5,7-

tricarboxylate (3b): A mixture of dimethoxycarbonyltetrazine 1 (0.20 g, 1.0 mmol), methyl 2-

phenyl-3-(trimethylsilyl)cycloprop-2-ene-1-carboxylate 2b (0.27 g, 1.1 mmol) and CH2Cl2 (6 

mL) stirred for 7 days, the solvent was removed in vacuo. The residue was purified by column 

chromatography on silica gel (EtOAc/CHCl3, 1:4), recrystallization from MTBE gave the desired 

product (0.24 g, 56%). M.p. 122–124 °C. 1H NMR (300 MHz, CDCl3): δ = 7.41–7.22 (m, 5H), 

3.93 (s, 3H), 3.71 (s, 3H), 3.56 (s, 3H), 3.24 (s, 1H), –0.21 (s, 9H) ppm. 13C NMR (75 MHz, 

CDCl3): δ = 165.8, 165.6, 163.8, 156.5, 153.2, 136.9, 130.8, 129.4, 128.8, 53.0, 52.6, 52.5, 39.7, 

29.3, 19.3, –0.9 ppm. HRMS (ESI+): m/z calcd. for C20H25N2O6Si+ [M+H]+ 417.1476; found 

417.1467. 

Trimethyl 1-butyl-3,4-diazabicyclo[4.1.0]hepta-2,4-diene-2,5,7-tricarboxylate (3c): A 

mixture of dimethoxycarbonyltetrazine 1 (0.20 g, 1.0 mmol), methyl 2-butylcycloprop-2-ene-1-

carboxylate 2c (0.17 g, 1.1 mmol) and THF (6 mL) stirred for 20 h under argon, the solvent was 

removed in vacuo. The residue was recrystallized from MTBE to give the desired product (0.37 

g, 86%); 1H NMR (300 MHz, CDCl3): δ = 4.00 (s, 3 H), 3.97 (s, 3 H), 3.81 (s, 3 H), 3.37 (d, J = 

5.1 Hz, 1 H), 2.38–2.17 (m, 1 H), 1.62–1.47 (m, 1 H), 1.29 (d, J = 5.1 Hz, 1 H), 1.26–1.11 (m, 4 

H), 0.94–0.76 (m, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 169.2, 163.7, 163.7, 158.8, 154.3, 

53.6, 53.3, 53.1, 34.6, 30.5, 29.7, 26.8, 24.7, 22.2, 13.7 ppm. HRMS (ESI+): m/z calcd. for 

C15H23N2O6
+ [M+H]+ 325.1394; found 325.1395. 
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Trimethyl 5-methoxy-1,6-diphenyl-3,4-diazabicyclo[4.1.0]hept-2-ene-2,5,7-tricarboxylate 

(4a): Trimethyl 1,6-diphenyl-3,4-diazabicyclo[4.1.0]hepta-2,4-diene-2,5,7-tricarboxylate 3a (0.2 

g, 0.48 mmol) was dissolved in MeOH (5.5 mL), stirred for 24 h, the solvent was removed in 

vacuo to give the desired product (0.2 g, 94%). M.p. 136–138 °C. 1H NMR (300 MHz, 

(CD3)2CO): δ = 8.43 (br.s, 1 H), 7.39–7.21 (m, 4 H), 7.07–6.88 (m, 6 H), 3.69 (s, 1 H), 3.67 (s, 3 

H), 3.55 (s, 3 H), 3.42 (s, 3 H), 3.25 (s, 3 H) ppm. 13C NMR (75 MHz, (CD3)2CO): δ = 166.7, 

166.4, 164.3, 142.6, 137.2, 136.3, 133.1, 127.6, 126.7, 126.5, 126.2, 82.4, 51.4, 51.1, 50.8, 50.3, 

36.6, 32.7 ppm. HRMS (ESI+): m/z calcd. for C24H21N2O7
+ [M+H]+ 453.1656; found 453.1649. 

Trimethyl 1-butyl-5-hydroxy-3,4-diazabicyclo[4.1.0]hept-2-ene-2,5,7-tricarboxylate (4c): A 

mixture of dimethoxycarbonyltetrazine 1 (0.20 g, 1.0 mmol), methyl 2-butylcycloprop-2-ene-1-

carboxylate 2c (0.17 g, 1.1 mmol) and CH3CN (6 mL) stirred for 5 h, the solvent was removed in 

vacuo. The residue was recrystallized from MTBE to give the desired product (0.34 g, 97%). 

M.p. 148–151 °C. 1H NMR (300 MHz, CDCl3): δ = 6.62 (с, 1 H), 4.26 (s, 1 H), 3.90 (s, 3 H), 

3.86 (s, 3 H), 3.72 (s, 3 H), 2.98 (d, J = 5.0 Hz, 1 H), 2.87 (d, J = 5.0 Hz, 1 H), 2.21–2.01 (m, 1 

H), 1.63–1.47 (m, 1 H), 1.29–0.97 (m, 4 H), 0.83 (т, J = 7.0 Hz, 3 H) ppm. 13C NMR (75 MHz, 

CDCl3): δ = 172.2, 170.4, 163.3, 140.3, 80.0, 53.9, 52.6, 52.2, 40.8, 28.6, 27.5, 25.5, 23.5, 22.8, 

13.7 ppm. HRMS (ESI+): m/z calcd. for C15H23N2O7
+ [M+H]+ 343.1500; found 343.1499. 

Trimethyl 5,6-diphenyl-4H-1,2-diazepine-3,4,7-tricarboxylate (5a): (a) A mixture of 

dimethoxycarbonyltetrazine 1 (0.20 g, 1.0 mmol), methyl 2,3-diphenylcycloprop-2-ene-1-

carboxylate 2a (0.28 g, 1.1 mmol) and p-xylene (6 mL) was heated at reflux 1 h, the solvent was 

removed in vacuo. The residue was recrystallized from MTBE to give the desired product (0.36 

g, 84%); (b) Trimethyl 1,6-diphenyl-3,4-diazabicyclo[4.1.0]hepta-2,4-diene-2,5,7-tricarboxylate 

3a (0.2 g, 0.48 mmol) and p-xylene (4.0 mL) was heated at reflux for 1 h, the solvent was 

removed in vacuo. The residue was recrystallized from MTBE to give the desired product (0.19 

g, 95%). M.p. 123–125 °C. 1H NMR (300 MHz, CDCl3): δ = 7.41–7.22 (m, 5 H), 3.93 (s, 3 H), 

3.71 (s, 3 H), 3.56 (s, 3 H), 3.24 (s, 1 H), –0.21 (s, 9 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 

165.8, 165.6, 163.8, 156.5, 153.2, 136.9, 130.8, 129.4, 128.8, 53.0, 52.6, 52.5, 39.7, 29.3, 19.3, –

0.9 ppm. HRMS (ESI+): m/z calcd. for C23H21N2O6
+ [M+H]+ 421.1394; found 421.1390. 

Trimethyl 6-methyl-4-methylene-4,5-dihydro-1H-1,2-diazepine-3,5,7-tricarboxylate (6a): A 

mixture of dimethoxycarbonyltetrazine 1 (0.20 g, 1.0 mmol), methyl 2,3-dimethylcycloprop-2-

ene-1-carboxylate 2d (0.13 g, 1.1 mmol) and p-xylene (6 mL) was heated at reflux for 1 h, the 

solvent was removed in vacuo. The residue was recrystallized from MTBE to give the desired 

product (0.25 g, 85%) as yellow crystals. M.p. 114-115 °C. 1H NMR (300 MHz, CDCl3): δ = 
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8.64 (br. s, 1 H), 5.59 (s, 1 H), 5.18 (s, 1 H), 3.93 (s, 1 H), 3.87 (s, 3 H), 3.86 (s, 3 H), 3.68 (s, 3 

H), 2.34 (s, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 169.0, 164.9, 163.8, 135.9, 134.6, 131.5, 

127.8, 116.1, 61.6, 52.6, 52.6, 52.6, 21.5 ppm. HRMS (ESI+): m/z calcd. for C13H17N2O6
+ 

[M+H]+ 297.1081; found 297.1079. 

Trimethyl 4-methylene-6-phenyl-4,5-dihydro-1H-1,2-diazepine-3,5,7-tricarboxylate (6b): A 

mixture of dimethoxycarbonyltetrazine 1 (0.20 g, 1.0 mmol), methyl 2-methyl-3-

phenylcycloprop-2-ene-1-carboxylate 2e (0.21 g, 1.1 mmol) and CH2Cl2 (5 mL) stirred for 4 

days, the solvent was removed in vacuo. The residue was purified by column chromatography on 

on silica gel (EtOAc/CHCl3, 1:4), recrystallization from MTBE to give the desired product (0.24 

g, 65%) as yellow crystals. M.p. 143-145 °C. 1H NMR (300 MHz, CDCl3): δ = 8.80 (br.s, 1 H), 

7.43–7.31 (m, 3 H), 7.26–7.20 (m, 2 H), 5.57 (s, 1 H), 4.99 (s, 1 H), 4.40 (s, 1 H), 3.89 (s, 3 H), 

3.76 (s, 3 H), 3.50 (s, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 169.2, 164.9, 164.3, 140.5, 

137.5, 133.0, 131.5, 128.3, 128.2, 128.0, 127.9, 117.5,69.8, 61.7, 52.9, 52.7, 52.5 ppm. HRMS 

(ESI+): m/z calcd. for C18H19N2O6
+ [M+H]+ 359.1238; found 359.1232. 

Dimethyl 4-(2-methoxy-2-oxoethyl)-5-phenylpyridazine-3,6-dicarboxylate (7): A mixture of 

trimethyl 1-phenyl-6-(trimethylsilyl)-3,4-diazabicyclo[4.1.0]hepta-2,4-diene-2,5,7-tricarboxylate 

3b (0.15 g, 0.36 mmol) Bu4NF×3H2O (0.114 g, 0.36 mmol) and CHCl3 (5 mL) stirred for 2 days, 

washed with water (3×5mL), the solvent was removed in vacuo. The residue was purified by 

column chromatography  on silica gel (EtOAc/CH2Cl2, 1:1) to give the desired product (0.12 g, 

45%) as light yellow oil. 1H NMR (300 MHz, CDCl3): δ = 7.53–7.42 (m, 3 H), 7.25–7.17 (m, 2 

H), 4.06 (s, 3 H), 3.87 (s, 2 H), 3.72 (s, 3 H), 3.67 (s, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 

169.4, 165.1, 164.8, 154.4, 152.3, 140.8, 134.2, 132.2, 129.5, 128.8, 128.3, 53.4, 53.0, 52.5, 34.7 

ppm. HRMS (ESI+): m/z calcd. for C17H17N2O6
+ [M+H]+ 345.1081; found 345.1079. 

Trimer of methyl 2-phenylcycloprop-2-ene-1-carboxylate (8): To a mixture of 

phenylacetylene (5.0 g, 49 mmol), Cu[CH3CN]4PF6 (0.22 g, 0.59 mmol) and CH2Cl2 (10 mL) 

was added a solution of methyl diazoacetate (6.0 g, 60 mmol) in CH2Cl2 (10 mL) via a syringe 

pump in 8 h. After addition the reaction mixture was stirred for 30 min, the reaction mixture 

filtered through silica gel, the solvent was removed in vacuo. The residue was purified by 

column chromatography on silica gel (EtOAc/Petroleum ether, 1:4) to give the desired product 

(6.4 g, 75%) as colorless crystals. M.p. 146–147 °C. 1H NMR (300 MHz, CDCl3): δ = 7.51–7.38 

(m, 6 H), 7.36–7.15 (m, 9 H), 3.73 (s, 3 H), 3.53 (s, 3 H), 3.46 (s, 3 H), 3.21 (dd, J = 6.4, 5.0 Hz, 

1 H), 3.00 (m, 2 H), 2.60 (dd, J = 9.7, 5.0 Hz, 1 H), 2.31 (dd, J = 9.3, 7.5 Hz, 1 H), 2.03 (dd, J = 

9.3, 5.2 Hz, 1 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 174.8, 170.3, 169.2, 136.0, 134.4, 129.4, 

129.2, 129.1, 128.9, 128.9, 128.3, 128.0, 127.4, 126.7, 126.0, 111.6, 108.0, 52.2, 51.9, 51.4, 
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33.3, 32.6, 31.1, 30.2, 28.5, 20.1 ppm. HRMS (ESI+): m/z calcd. for C33H34NO6
+ [M+NH4]+ 

540.2381; found 540.2380.  

Methyl 2,3-diphenylcycloprop-2-enecarboxylate (2a): To a mixture of 1,2-diphenylacetylene 

(3.0 g, 16.85 mmol), Cu[CH3CN]4PF6 (63 mg, 5.9 mmol) and CH2Cl2 (10 mL) was added a 

solution of methyl diazoacetate (2.53 g, 25.3 mmol) in CH2Cl2 (10 mL) via a syringe pump in 8 

h. After addition the reaction mixture was stirred for 30 min, the reaction mixture filtered 

through silica gel, the solvent was removed in vacuo. The residue was purified by column 

chromatography on silica gel (EtOAc/Petroleum ether, 1:9) to give the desired product (1.6 g, 

39%) as colorless crystals. M.p. 83–84 °C. 1H NMR (300 MHz, CDCl3): δ =7.72 (d, J = 7.4 Hz, 

4 H), 7.60–7.33 (m, J = 6 H), 3.73 (s, 3 H), 2.87 (s, 1 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 

175.3, 130.0, 129.3, 128.9, 127.1, 107.6, 51.7, 21.5 ppm. HRMS (ESI+): m/z calcd. for 

C17H14O2Na+ [M+Na]+ 273.086; found 273.0884. 

Methyl 2-methyl-3-phenylcycloprop-2-ene-1-carboxylate (2d): To a mixture of 1-methyl-2-

phenylacetylene (1.5 g, 12.9 mmol), Cu[CH3CN]4PF6 (70 mg, 0.18 mmol) and CH2Cl2 (5 mL) 

was added a solution of methyl diazoacetate (1.93 g, 19 mmol) in CH2Cl2 (10 mL) via a syringe 

pump in 10 h. After addition the reaction mixture was stirred for 30 min, the reaction mixture 

filtered through silica gel, the solvent was removed in vacuo. The residue was purified by 

column chromatography on silica gel (EtOAc/Petroleum ether, 1:4) to give the desired product 

(1.72 g, 71%) as colorless oil; 1H NMR (300 MHz, CDCl3): δ= 7.60–7.23 (m, 1 H), 3.71 (d, J = 

7.9 Hz, 1 H), 2.46 (d, J = 5.9 Hz, 1 H), 2.38–2.29 (m, 1 H) ppm. 13C NMR (75 MHz, CDCl3): δ 

= 176.2, 129.23, 128.6, 127.8, 106.3, 105.3, 51.5, 22.4, 10.7 ppm. HRMS (ESI+): m/z calcd. for 

C12H12O2Na+ [M+Na]+ 211.0736; found 211.0730. 

Methyl 2-butylcycloprop-2-ene-1-carboxylate (2c): To a mixture of 1-hexyne (3.28 g, 40 

mmol), Rh2(OAc)4 (44 mg, 0.01 mmol) and CH2Cl2 (10 mL) was added a solution of methyl 

diazoacetate (2,0 g, 20 mmol) in CH2Cl2 (8 mL) via a syringe pump in 10 h. After addition the 

reaction mixture was stirred for 30 min, the reaction mixture filtered through silica gel, the 

solvent was removed in vacuo. The residue was purified by column chromatography on silica gel 

(EtOAc–Petroleum ether, 1:4) to give the desired product (2.3 g, 75%) as colorless oil. 1H NMR 

(300 MHz, CDCl3): δ = 6.34 (d, J = 1.3 Hz, 1 H), 3.70 (s, 3 H), 2.51 (t, J = 7.0 Hz, 2 H), 2.15 (d, 

J = 1.3 Hz, 1 H), 1.57 (m, 2 H), 1.40 (m, 2 H), 0.93 (t, J = 7.3 Hz, 3 H) ppm. 13C NMR (75 MHz, 

CDCl3): δ = 177.0, 115.6, 93.89, 51.4, 28.7, 24.6, 22.2, 19.5, 13.7 ppm. HRMS (ESI+): m/z 

calcd. for C9H15O2
+ [M+H]+ 155.1067; found 155.1064. 

Methyl 2-butyl-3-(trimethylsilyl)cycloprop-2-enecarboxylate (2f): (a) Preparation of 

LiHMDS solution: To a solution of bis(trimethylsilyl)amine (4.38g, 27 mmol) in THF (10 mL) 
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was added a solution of n-butyllithium in hexane (11.8 mL, 27 mmol) dropwise under argon, 

maintaining the temperature at –30ºC.  

(b) To a mixture of methyl 2-butylcycloprop-2-ene-1-carboxylate (3.22 g, 21 mmol), TMSCl 

(3.4 g, 31 mmol) and THF (50 mL) was added the solution of LiHMDS in 5 min, maintaining the 

temperature –80ºC. Then 10 mL of a saturated NH4Cl solution was added at –80°C, organic 

phase were separated and dried over Na2SO4. The solvent was removed in vacuo and the residue 

was purified by flash column chromatography on silica gel (EtOAc/Petroleum ether, 1:25) to 

give the desired product (4.05 g, 85%) as colorless oil. 1H NMR (300 MHz, CDCl3): δ = 3.63 (s, 

3 H), 2.59–2.43 (m, 1 H), 2.00 (s, 1 H), 1.67–1.49 (m, 2 H), 1.39 (m, 2 H), 0.92 (t, J = 7.3 Hz, 3 

H), 0.19 (s, 9 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 177.5, 126.6, 103.2, 51.1, 29.1, 26.1, 

22.2, 20.6, 13.7, –1.6 ppm. HRMS (ESI+): m/z calcd. for C12H23O2Si+ [M+H]+ 227.1462; found 

227.1465. 
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