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SYNTHESIS OF 6S,7S-ANHYDRO-SERRICORNINE. 

Reinhard W. Hoffmann*, Wilfried Helbig and Wolfgang Ladner 

Fachbereich Chemie der Philipps-Universitbt, Lahnberge, 3550 Marburg 

Summary: Diaqtereoselective and enantioselective reduction of the B-ketoester 
2 by yeast to f provided the chiral starting material for a synthesis of 
4RS,6S,7S-serricornine, having the same configuration as the natural product. 
This material was converted into optically active and diastereomerically pure 
6S,7S-anhydro-serricornine (z). 

The cigarette beetle, Lasioderma serricorne F 1) is a pest, feeding on tobacco 

leaves. Recently a sex pheromone, named serricornine, of this species has been 

identified as 4,6-dimethyl-7-hydroxy-3-nonanone (1). Following some nonselective 

syntheses of epimeric mixtures of 1 2) , stereoselective syntheses of the 

4RS,6R,7R 3), 4RS,6R,7S 4' and 4S,6R,7R 5, -diastereomers were reported, 

establishing the natural material to have the 4S16S,7S-configuration. Due to 

the lability of _1, identification and comparison of samples were performed with 

the acetate 11. 
6r- 

More recently a second pheromone 2 for this species has been 

identified . This material, which is significantly more active than 'l, has 

been called anhydro-serricornine. Although its relative and absolute confi- 

guration is unknown, its cooccurrence with 1 in the same species suggests that 

1 and 2 may have the same configuration at the related stereocenters. 

We wish to report here a synthesis of the 4RS,6S,7S_epimers of 1 as well as of 

6S,7S-anhydro-serricornine in an optical purity of > 85 %. 

Key intermediate in our synthesis is the iodo-compound 8, the enantiomer of which 

served in one of Mori's syntheses 3) of 1. We envisaged a shorter route to this 

material by yeast reduction of a 6-ketoester. Since the reduction of a-propionyl-= 
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acetate produces the R-enantiomer of low enantiomeric purity I', the related 

reduction of a-propionyl-propionate would probably not lead to the alcohol 2 

with S-configuration. However, the S-enantio- and diastereoselective reduction 

of cyclohexanone-2-carboxylate by yeast 8) suggested that 2 9) could be an 

appropriate substrate. Its reduction by fermenting yeast furnished 71 % of $, 

the diastereomeric purity of which was evident from the "C-NMR-spectrum. The 

relative and absolute configuration of the product was assumed to be that shown 

in i, by analogy to the yeast reduction of cyclohexanone-2-carboxylate 8) . This 

assignment was substantiated eventually by the conversion of 2 into 2. 

0 0 

OCHa - OCH, - OCH3 - 

= 

Raney-Ni-desulfurisation of 1 proceeded without epimerization 10) to give 86 % 

of 2, with a diastereomeric purity of 98 %. The enantiomeric purity of 2 was 

estimated to be t 85 % by "F-NMR-analysis of the MTPA-esters 11) . Since the 

carboxylic acid derived from 4 (KOH/CH,OH, 96 %) is crystalline, this opens the 

opportunity to generate optically pure material. In this preliminary study, 

however, we used g as obtained. Its further conversion via 2 to g posed no 

problems: Treatment with tBu-SiMe,Cl/imidazole/DMF furnished 85 % of g, 

Ial zDo = + 1.8 (c = 3.78, CHCl,). Subsequent reduction with DIBAH in Et,O/hexane, 

yielded 81 % of 2, [a]: = -2.6 (c = 1.9, CHCl,). Conversion to the iodo compound 

g (70 %) was accomplished with N-methyl-dicyclohexyl-carbodiimidium iodide 12) , 

in THF,?: [alzDo = + 11.7 (c = 3.75, CHCl,). 
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The elaboration of g into 19 followed Mori's 3, 4) route: However, on reaction 

of g with the lithium enolate of diethyl ketone in THF/HMPA we encountered a 

competing elimination of g to aP , which decreased the yield of 2 to 37 %. 

Deprotection with (n-Bu)bN@F' in THF and acetylation with Ac,O/pyridine led 

to the acetate Aa, which was purified by preparative VPC (SE 30, 130 "C). 

The 13C-NMR spectrum revealed it to be a 1 : 1 mixture of the 4S,bS,7S- and 

the 4R,bS,7S-isomers, based on the 13C-NMR data documented by Mori 3, 4, 5) . 

The rotation of [alzDo = - 18,5 ' (c = 1.08, MeOH) demonstrated that the 

configuration of our synthetic material corresponds to that of the natural 

product 1, 3) ._ 

The synthesis of 9opened an access as well to the 6S,7S-isomer of anhydro-= 

serricornine 2: After deprotection of 2 as above the crude A was heated 

with a catalytic amount of p-toluenesulfonic acid. Crude 2 was distilled 

at 20 Torr and purified by preparative VPC. (SE 30, 80 "C). It gave a 

correct elemental analysis and displayed the following data: 

'H-NMR, CDCl,, 400 MHz: 0,841 (d, J = 7,0 Hz, 3H); 0,944 (t, J = 7,4 Hz, 3H); 

0,99 (t, J = 7,4 Hz, 3H); 1,31 - 1,38 (m, 2H); 1,48 - 1,60 (m, 1H); 

1,549 (s, 3H); 1,88 - 2,14 (m, 4H); 3,54 - 3,58 (m, 1H). 

i3C-NMR, CDCl,: 148,103; 98,844; 79,007; 35,288: 29,773; 23,544; 23,495: 

17,412; 13,548; 12,127; 10,441. (al; = - 61.5 f 0.5 ' (c = 2.28, CHCl,). 
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The diastereo- and enantioselective reduction of 2 illustrates how the yeast 

can be outwitted by offering a cyclic substrate in lieu of an open chain one. 

We have applied this principle advantageously for the reduction of the 

tetrahydro-thiophene-derivatives 12 13) and 12 14'. The resulting B-hydroxy- 

esters have been converted by Raney-Ni-desulfurisation into highly useful 
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chiral building blocks, that are not available in similar diastereomeric 15) 

or enantiomeric 7) purity by yeast reduction of open chain B-ketoesters. 

Support of this study by the Fonds der Chemischen Industrie is gratefully 

acknowledged. 
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