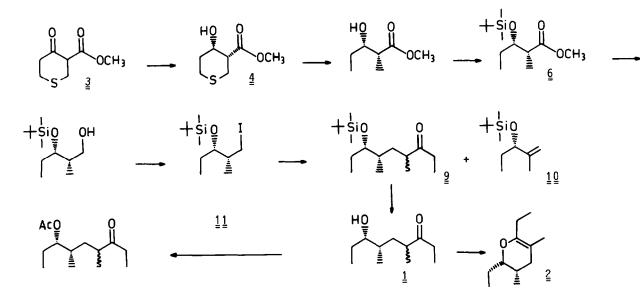
Tetrahedron Letters,Vol.23,No.34,pp 3479-3482,1982 0040-4039/82/343479-04\$03.00/0 Printed in Great Britain ©1982 Pergamon Press Ltd.


SYNTHESIS OF 6S,7S-ANHYDRO-SERRICORNINE.

Reinhard W. Hoffmann*, Wilfried Helbig and Wolfgang Ladner Fachbereich Chemie der Philipps-Universität, Lahnberge, 3550 Marburg

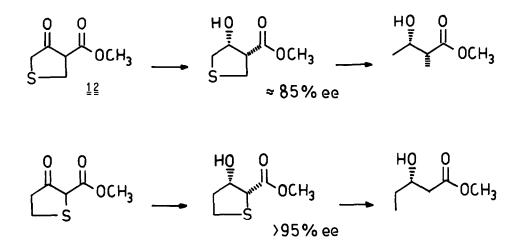
Summary: Diastereoselective and enantioselective reduction of the β -ketoester $\frac{3}{3}$ by yeast to $\frac{4}{2}$ provided the chiral starting material for a synthesis of 4RS,6S,7S-serricornine, having the same configuration as the natural product. This material was converted into optically active and diastereomerically pure 6S,7S-anhydro-serricornine ($\frac{2}{2}$).

The cigarette beetle, Lasioderma serricorne F¹⁾ is a pest, feeding on tobacco leaves. Recently a sex pheromone, named serricornine, of this species has been identified as 4,6-dimethyl-7-hydroxy-3-nonanone (<u>1</u>). Following some nonselective syntheses of epimeric mixtures of <u>1</u>²⁾, stereoselective syntheses of the 4RS,6R,7R³⁾, 4RS,6R,7S⁴⁾ and 4S,6R,7R⁵⁾ -diastereomers were reported, establishing the natural material to have the 4S,6S,7S-configuration. Due to the lability of <u>1</u>, identification and comparison of samples were performed with the acetate <u>11</u>. More recently a second pheromone <u>2</u> for this species has been identified ⁶⁾. This material, which is significantly more active than <u>1</u>, has been called anhydro-serricornine. Although its relative and absolute configuration is unknown, its cooccurrence with <u>1</u> in the same species suggests that <u>1</u> and <u>2</u> may have the same configuration at the related stereocenters.


We wish to report here a synthesis of the 4RS,6S,7S-epimers of $\frac{1}{2}$ as well as of 6S,7S-anhydro-serricornine in an optical purity of \geq 85 %.

Key intermediate in our synthesis is the iodo-compound $\underline{8}$, the enantiomer of which served in one of Mori's syntheses ³⁾ of $\underline{1}$. We envisaged a shorter route to this material by yeast reduction of a β -ketoester. Since the reduction of α -propionyl-=

3479


acetate produces the R-enantiomer of low enantiomeric purity ⁷, the related reduction of α -propionyl-propionate would probably not lead to the alcohol 5 with S-configuration. However, the S-enantio- and diastereoselective reduction of cyclohexanone-2-carboxylate by yeast ⁸ suggested that 3⁹ could be an appropriate substrate. Its reduction by fermenting yeast furnished 71 % of 4, the diastereomeric purity of which was evident from the ¹³C-NMR-spectrum. The relative and absolute configuration of the product was assumed to be that shown in 4, by analogy to the yeast reduction of cyclohexanone-2-carboxylate ⁸. This assignment was substantiated eventually by the conversion of 4 into 1.

Raney-Ni-desulfurisation of $\frac{4}{2}$ proceeded without epimerization ¹⁰ to give 86 % of $\frac{5}{2}$, with a diastereomeric purity of 98 %. The enantiomeric purity of $\frac{5}{2}$ was estimated to be \geq 85 % by ¹⁹F-NMR-analysis of the MTPA-esters ¹¹. Since the carboxylic acid derived from $\frac{4}{4}$ (KOH/CH₃OH, 96 %) is crystalline, this opens the opportunity to generate optically pure material. In this preliminary study, however, we used $\frac{4}{4}$ as obtained. Its further conversion via $\frac{5}{2}$ to $\frac{8}{2}$ posed no problems: Treatment with tBu-SiMe₂Cl/imidazole/DMF furnished 85 % of $\frac{6}{2}$, $[\alpha]_{D}^{20} = + 1.8$ (c = 3.78, CHCl₃). Subsequent reduction with DIBAH in Et₂O/hexane, yielded 81 % of $\frac{7}{2}$, $[\alpha]_{D}^{20} = -2.6$ (c = 1.9, CHCl₃). Conversion to the iodo compound $\frac{8}{2}$ (70 %) was accomplished with N-methyl-dicyclohexyl-carbodiimidium iodide ¹², in THF, $\frac{8}{2}$: $[\alpha]_{D}^{20} = + 11.7$ (c = 3.75, CHCl₃).

The elaboration of § into 10 followed Mori's ^{3, 4)} route: However, on reaction of § with the lithium enolate of diethyl ketone in THF/HMPA we encountered a competing elimination of § to 10, which decreased the yield of 9 to 37 %. Deprotection with $(n-Bu)_{\mu}N^{\Theta}F^{\Theta}$ in THF and acetylation with Ac₂O/pyridine led to the acetate 11, which was purified by preparative VPC (SE 30, 130 °C). The ¹³C-NMR spectrum revealed it to be a 1 : 1 mixture of the 4S,6S,7S- and the 4R,6S,7S-isomers, based on the ¹³C-NMR data documented by Mori ^{3, 4, 5}. The rotation of [α]²⁰_D = -18,5 ° (c = 1.08, MeOH) demonstrated that the configuration of our synthetic material corresponds to that of the natural product ^{1, 3}.

The synthesis of $\frac{9}{2}$ opened an access as well to the 6S,7S-isomer of anhydro-= serricornine $\frac{2}{2}$: After deprotection of $\frac{9}{2}$ as above the crude $\frac{1}{2}$ was heated with a catalytic amount of p-toluenesulfonic acid. Crude $\frac{2}{2}$ was distilled at 20 Torr and purified by preparative VPC. (SE 30, 80 °C). It gave a correct elemental analysis and displayed the following data: ¹H-NMR, CDCl₃, 400 MHz: 0,841 (d, J = 7,0 Hz, 3H); 0,944 (t, J = 7,4 Hz, 3H); 0,99 (t, J = 7,4 Hz, 3H); 1,31 - 1,38 (m, 2H); 1,48 - 1,60 (m, 1H); 1,549 (s, 3H); 1,88 - 2,14 (m, 4H); 3,54 - 3,58 (m, 1H). ¹³C-NMR, CDCl₃: 148,103; 98,844; 79,007; 35,288; 29,773; 23,544; 23,495; 17,412; 13,548; 12,127; 10,441. [α] $\frac{23}{D}$ = - 61.5 ± 0.5 ° (c = 2.28, CHCl₃).

The diastereo- and enantioselective reduction of $\frac{3}{2}$ illustrates how the yeast can be outwitted by offering a cyclic substrate in lieu of an open chain one. We have applied this principle advantageously for the reduction of the tetrahydro-thiophene-derivatives $\underline{12}$ ¹³⁾ and $\underline{13}$ ¹⁴⁾. The resulting β -hydroxyesters have been converted by Raney-Ni-desulfurisation into highly useful

3481

chiral building blocks, that are not available in similar diastereomeric $^{15)}$ or enantiomeric $^{7)}$ purity by yeast reduction of open chain β -ketoesters.

Support of this study by the Fonds der Chemischen Industrie is gratefully acknowledged.

References:

- 1) T. Chuman, M. Kohno, K. Kato and M. Noguchi, Tetrahedron Lett. 1979, 2361.
- 2) <u>T. Chuman</u>, <u>K. Kato</u> and <u>M. Noguchi</u>, Agr. Biol. Chem. <u>43</u>, 2005 (1979); <u>M. Ohne</u>, <u>T. Onishi</u>, <u>T. Chuman</u>, <u>M. Kohno</u> and <u>K. Kato</u>, ibid <u>44</u>, 2259 (1980).
- 3) K. Mori and H. Nomi, Tetrahedron Lett. 1981, 1127.
- 4) <u>T. Chuman</u>, <u>M. Kohno</u>, <u>K. Kato</u>, <u>M. Noguchi</u>, <u>H. Nomi</u> and <u>K. Mori</u>, Agr. Biol. Chem. <u>45</u>, 2019 (1981).
- 5) <u>M. Mori, T. Chuman, M. Kohno, K. Kato, M. Noguchi, H. Nomi</u> and <u>K. Mori</u>, Tetrahedron Lett. <u>1982</u>, 667.
- 6) <u>H. Z. Levinson</u>, <u>A. R. Levinson</u>, <u>W. Francke</u>, <u>W. Mackenroth</u> and <u>V. Heemann</u>, Naturwiss. 68, 148 (1981).
- 7) F. Frater, Helv. Chim. Acta 62, 2829 (1979) and references quoted.
- 8) B. S. Deol, D. D. Ridley and G. W. Simpson, Austr. J. Chem. 29, 2459 (1976).
- 9) E. A. Fehnel and M. Carmack, J. Am. Chem. Soc. 70, 1813 (1948).
- 10) cf. R. E. Ireland and F. R. Brown, jr., J. Org. Chem. 45, 1868 (1980).
- 11) J. A. Dale, D. L. Dull and H. S. Mosher, J. Org. Chem. 34, 2543 (1969).
- 12) <u>R. Scheffold</u> and <u>E. Saladin</u>, Angew. Chem. <u>84</u>, 158 (1972); Angew. Chem., Int. Ed. Engl. <u>11</u>, 229 (1972).
- 13) P. A. Rossy, W. Hoffmann and N. Müller, J. Org. Chem. 45, 617 (1980).
- 14) <u>V. E. Kolchin</u>, <u>N. S. Vulfson</u>, Zh. Obshch. Khim <u>32</u>, 3659 (1962); Chem. Abstr. 58, 13888c (1963).
- 15) <u>R. W. Hoffmann</u>, <u>W. Ladner</u>, <u>K. Steinbach</u>, <u>W. Massa</u>, <u>R. Schmidt</u> and <u>G. Snatzke</u>, Chem. Ber. <u>114</u>, 2786 (1981).

(Received in Germany 27 May 1982)