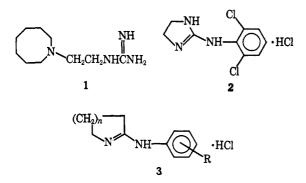
Synthesis and Antihypertensive Activity of 2-Arylamino-1-azacycloalkenes


FRED M. HERSHENSON* AND LEONARD F. ROZEK

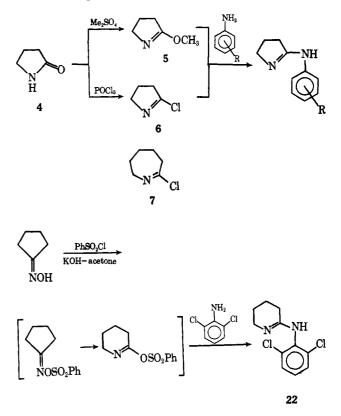
G. D. Searle and Company, Inc., Divisions of Chemical and Biological Research, Chicago, Illinois 60680

Received January 22, 1971

A series of 2-arylamino-1-azacycloalkenes (3) was synthesized and evaluated for antihypertensive activity. The compds were generally prepared by treating the cyclic imidoyl chlorides (6 and 7) with primary aromatic amines and, in one case, by the Beckmann rearrangement of cyclopentanone oxime with PhSO₂Cl in the presence of 2,6-dichloroaniline. A discussion of the structure-activity relationships in this series is presented.

A number of acyclic and cyclic guanidines have been shown to possess potent antihypertensive activity.¹ Guanethidine (1), an example of an acyclic guanidine, has been used extensively for the treatment of hypertension in man. Recently, the cyclic guanidine derivative clonidine² (2) was reported to provide effective antihypertensive therapy at doses of 0.2 to 4.8 mg/day without incidence of postural hypotension.³ Replacement of the guanidine moiety in guanethidine with an amidine group has afforded a derivative with potent antihypertensive activity.⁴ This paper will discuss the synthesis of certain amidine analogs of clonidine,⁵ namely, the 2-arylamino-1-azacycloalkenes (3), and will focus on the structure-activity relationships observed in this amidine series.

Chemistry.—The 2 reported syntheses of 2-anilino-1-pyrroline (8) involve conversion of the lactam, 2-pyrrolidinone (4), to either the iminoether⁶ (5) or the imidoyl chloride⁷ 6 and subsequent aminolysis of these reactive intermediates with PhNH₂. Attempts at applying Etienne's method⁶ by treating 2-methoxy-1pyrroline (5) with a series of ring-substituted anilines gave poor results. While this method failed with the poorly nucleophilic primary aromatic amines, it provided 25 and 26 in good yields when the correspondingly more reactive primary aliphatic amines were used. Compds 8-24, listed in Tables I and II, were obtained by treating 2-pyrrolidinone with POCl₃, followed by treatment of the imidoyl chloride 6, formed in situ, with the corresponding aromatic amine. The tetrahydroazepine derivative 23 was synthesized in an analogous


- (3) A. Khan, G. Camel, and H. M. Perry, Jr., Curr. Ther. Res., 12, 10 (1970).
- (4) E. Schlittler, J. Druey, and A. Marxer, Fortsch. Arzneimittelforsch., 4, 297 (1962).

(5) While this work was in progress, the following patent was issued: H. Wollweber, R. Hiltman, and K. Stoepel, South African Patent 6802,296 (1968): Chem. Abstr., **70**, 68177 (1969).

- (6) A. Etienne and Y. Correia, Bull. Soc. Chim. Fr., 3704 (1969).
- (7) H. Bredereck and K. Bredereck, Chem. Ber., 94, 2278 (1961).

manner via the cyclic imidoyl chloride 7, using ϵ -caprolactam, POCl_s, and 2,6-dichloroaniline.

An alternate approach is demonstrated in the preparation of **22** by applying the Beckmann rearrangement of ketoxime sulfonate esters in the presence of amines.⁸ Treatment of cyclopentanone oxime with PhSO₂Cl in base followed by rearrangement of the ketoxime sulfonate in the presence of 2,6-dichloroaniline afforded **22**.

Pharmacology. Methods.—Compds were tested for hypotensive effects in unanesthetized hypertensive rats of the Charles River strain. Weanling male rats were rendered hypertensive by sc implanatation of a pellet contg 20 mg of desoxycorticosterone acetate. A 1% saline soln was administered in the drinking water. After 5 weeks, the carotid artery was cannulated for direct blood pressure measurement by a modification of the method of Popovic.⁹ After control pressure measurements, compds were administered intragastrically to groups of 3 rats at 10 mg/kg in saline (5 ml/kg). Direct mean arterial blood pressure was measured at 1, 2, 3, 4, and 24 hr following compd administration. Blood pressure changes were statisti-

(9) V. Popovic and P. Popovic, J. Appl. Physiol., 15, 727 (1960).

O. Schier and A. Marxer, Fortschr. Arzneimittelforsch., 13, 101 (1969).
 (2) Catapres, Catapressan.

⁽⁸⁾ P. Oxley and W. F. Short, J. Chem. Soc., 1514 (1948).

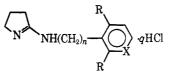

		2-Arylamino-1-az	ACYCLOALKENE HYDROC	HLORIDES			
No.	n	R	Mp, °C	Crystn solvent ^a	$Formula^b$		
8	1	Н	217 - 218.5	А	$C_{10}H_{12}N_2 \cdot HCl$		
9	1	$2\text{-}\mathrm{CH}_2$	162 - 164	В	$C_{11}H_{14}N_2 \cdot HCl$		
10	1	$3-CH_3$	171-173	А	$C_{11}H_{14}N_2 \cdot HCl$		
11	1	$4-CH_3$	177 - 179.5	А	$\mathrm{C_{11}H_{14}N_2 \cdot HCl}$		
12	1	$2, 3-(CH_3)_2$	213 - 215	А	$C_{12}H_{16}N_2 \cdot HCl$		
13	1	$2,4-(CH_3)_2$	171 - 172	A	$\mathrm{C}_{12}\mathrm{H}_{16}\mathrm{N}_2\cdot\mathrm{HCl}$		
14	1	$2,5-(CH_3)_2$	183 - 186	А	$C_{12}H_{16}N_2 \cdot HCl$		
15	1	$2, 6-(CH_3)_2$	189 - 190	А	$\mathrm{C}_{12}\mathrm{H}_{16}\mathrm{N}_2\cdot\mathrm{HCl}$		
16	1	$3, 4-(CH_3)_2$	222-223	Α	$\mathrm{C}_{12}\mathrm{H}_{16}\mathrm{N}_2\cdot\mathrm{HCl}$		
17	1	$3,5-(CH_3)_2$	159.5 - 161	В	$\mathrm{C}_{12}\mathrm{H}_{16}\mathrm{N}_2\cdot\mathrm{HCl}$		
18	1	$2\text{-}\mathrm{CF}_3$	271 - 272	С	$\mathrm{C}_{11}\mathrm{H}_{11}\mathrm{F}_3\mathrm{N}_2\cdot\mathrm{HCl}$		
19	1	$3-CF_3$	184 - 188	А	$C_{11}H_{11}F_3N_2 \cdot HCl$		
20	1	$2,6-(C_2H_5)_2$	122-124	D	$C_{14}H_{20}N_2 \cdot HCl$		
21	1	$2,6-Cl_2$	258 - 260	Е	$C_{10}H_{10}Cl_2N_2\cdot HCl$		
22	2	$2,6-Cl_2$	283 - 284	А	$C_{11}H_{12}Cl_2N_2\cdot HCl$		
23	3	$2,6 ext{-} ext{Cl}_2$	>280	А	$\mathrm{C}_{12}\mathrm{H}_{14}\mathrm{Cl}_{2}\mathrm{N}_{2}\cdot\mathrm{HCl}$		
11 011 13			CONT DO D ID				

 TABLE I

 2-Arylamino-1-azacycloalkene Hydrochlorides

^a A = EtOH-Et₂O, B = EtCOMe, C = MeCN, D = EtCOMe-Et₂O, E = *i*-PrOH-Et₂O. ^b All compds were anal. for C, H, N, Cl, and were within $\pm 0.4\%$ of the theor values.

TABLE II 2-Aryl- and Aralkylamino-1-pyrrolines

						Crystn	
No.	n	x	R	q	Mp, °C	solvent ^a	$\mathbf{Formula}^{b}$
24	0	Ν	Н	2	216 - 217	Α	$C_9H_{11}N_3 \cdot 2HCl$
25	1	CH	Cl	1	>280	В	$C_{11}H_{12}Cl_2N_2\cdot HCl$
26	2	CH	CI	1	238.5 - 240.5	В	$\mathrm{C_{12}H_{14}Cl_2N_2 \cdot HCl}$

^{*a*} A = EtOH, B = EtOH-Et₂O. ^{*b*} See footnote *b*, Table I.

TABLE III

ANTIHYPERTENSIVE ACTIVITY OF 2-AMINO-1-AZACYCLOALKENES % change^a at various time intervals after

			arious time intervals after			
	Pretreatment	administration of test compd (10 mg/kg)				
No.	average, mm	1 hr	2 hr	3 hr	4 hr	24 hr
8	180	0	-6	-7	-14	-24
9	151	0	-8	-14	-9	0
10	146	0	-10	-12	-9	-8
11	172	0	0	0	0	-6
12	154	-12	-8	-10	-11	-10
13	176	-11	-14	-19	-16	-12
14	154	0	0	0	0	0
15	186	-10	-30	-43	-35	0
16	181	0	0	0	0	0
17	139	0	0	0	0	0
18	145	0	0	-8	-8	-6
19	142	0	0	0	-4	-10
20	184	0	0	0	0	-23
21	162	-13	-22	-18	-14	-9
22	165	-8	- 8	-7	-8	-5
23	140	-13	-10	0	0	-18
24	160	0	0	0	0	-9
25	188	-5	-14	-12	-11	-13
26	153	0	0	0	0	-6

 a 0% denotes the per cent change from the pretreatment average was not statistically significant.

cally evaluated using the Students' t test and were considered significant at the 95% confidence level (P < 0.05).

Structure-Activity Relationships.—While several of the amidines exhibited significant antihypertensive activity, exact potency comparisons cannot be made due to the variations in the pretreatment averages (see Table III). Certain structure-activity relationships, however, are apparent from the data contained in Table III.

1. Placement of substituents at one (9, 12, 13) or both (15, 21) of the ortho positions of the benzene ring resulted in significant antihypertensive activity peaking between 2 and 3 hr after administration. By comparison, 8 produced a sustained reduction in blood pressure lasting for 24 hr after administration. The size of the substituent also seems to be important, since the 2,6-Et₂ derivative (20) did not produce activity until 24 hr had elapsed.

2. Replacement of the anilino moiety with a β pyridylamino group (24) resulted in the loss of activity. 3. Insertion of CH₂ groups between the exocyclic N and the aromatic ring of the anilino group affected activity. 25, which possesses a single such CH₂ group, is less active than 21, and the insertion of a second CH₂ group (26) resulted in the complete loss of antihypertensive activity.

4. The size of the azacycloalkene ring seems to have some effect on activity. The compd containing a 5membered pyrroline ring (21) provided more potent activity than the corresponding 6-membered tetrahydropyridine derivative (22), however, extension of this argument to the 7-membered tetrahydroazepine (23) cannot be made due to the variability in the pretreatment averages.

Experimental Section

All melting points were determined on a Thomas-Hoover capillary melting point apparatus and are cor. Where analyses are indicated only by symbols of the elements, anal. results obtained for those elements were within $\pm 0.4\%$ of the theor values. Nmr and ir spectra were recorded for all the compds and are consistent with assigned structures.

2-(3,4-Dimethylphenyl)amino-1-pyrroline \cdot HCl (16).—A soln of POCl₃ (31.0 g, 0.2 mole) in 20 ml of PhMe was added in dropwise amts to a stirred, cooled (10°) soln of 2-pyrrolidinone (4) (34.0 g, 0.4 mole) in 20 ml of PhMe. The temp during the addn (20 min) was maintained at 10-15°, then allowed to return to room temp for 3 hr. A soln of 3,4-xylidene (24.2 g, 0.2 mole) in 20 ml of PhMe was added, and the mixt was heated to reflux overnight. It was cooled to room temp, and the PhMe layer was decanted. The residue was dissolved in 150 ml of H₂O and extd with 150 ml of C₈H₆. NaOH (100 ml, 6 N) was then added to the aq layer. The resultant alkaline mixt was cooled and 27.65 g (73%) of a light tan solid collected, mp 150.5-152.5°. Recrystn from MeCN yielded light tan crystals, mp 151-153°. Anal. (C₁₂H₁₆N₂) C, H, N. The HCl salt was prepd in Et₂O by addn of Et₂O satd with dry

The HCl salt was prepd in Et₂O by addn of Et₂O satd with dry HCl. Recrystn from EtOH-Et₂O gave a colorless powder, mp 222-223°. Anal. $(C_{12}H_{16}N_2 \cdot HCl) C$, H, N, Cl.

2-(2,6-Dichlorophenyl)amino-3,4,5,6-tetrahydropyridine HCl (22).—A cold (-10°) , stirred soln of cyclopentanone oxime (9.9 g, 0.1 mole), 2.5 N KOH (50 ml), and Me₂CO (10 ml) was treated dropwise with PhSO₂Cl (18 g, 0.1 mole). The temp of the resultant mixt was maintained at -10° for 1 hr. The reaction mixt was then extd with 100 ml of C_6H_6 , and the C_6H_6 ext was washed with 50 ml of H_2O and dried (MgSO₄). 2,6-Dichloroaniline (16.2 g, 0.1 mole) was then added to the dried C_6H_6 ext, and the mixt was heated to reflux overnight. The reaction mixt was cooled to room temp and extd with H_2O (2 × 75 ml). The aq ext was made alk by adding 30 ml of 2.5 N NaOH. The alk mixt was cooled in ice water, and 1.6 g (7%) of a brown solid, mp 136-141°, was collected. Recrystn (EtOH- H_2O) provided a light tan solid, mp 143-145°, HCl salt, mp 283-284°. Anal. ($C_{11}H_{12}Cl_2N_2 \cdot HCl$) C, H, N, Cl.

2-(2,6-Dichlorobenzyl)amino-1-pyrroline HCl (25).—A soln of 2,6-dichlorobenzylamine HCl^{10} (4.25 g, 0.02 mole) and 2-methoxy-1-pyrroline¹¹ (3.95 g, 0.04 mole) in 75 ml of CHCl₂ was heated to reflux for 48 hr. The reaction mixt was cooled and evapd to dryness *in vacuo*. Trituration of the residue with Et₂O provided 5.05 g (90%) of a colorless solid, which did not melt <280°. Anal. (C₁₁H₁₂Cl₂N₂·HCl) C, H, N, Cl.

2-(2,6-Dichlorophenyl)ethylamine Acetate.—A soln of 2,6dichlorophenylacetonitrile (22.3 g, 0.12 mole) in AcOH (200 ml) was hydrogenated at room temp (4 atm) using Raney Ni catalyst. After consumption of the theor quantity of H₂, the catalyst was filtered, and the filtrate was evapd to dryness *in vacuo*. Recrystn of the residue from EtOAc furnished 18.9 g (63%) of colorless needles, mp 166.5–167.5°. *Anal.* (C₁₄H₁₃-Cl₂NO₂) C, H.

2-(2,6-Dichlorophenethyl)amino-1-pyrroline \cdot HCl (26).— A soln of 2-(2,6-dichlorophenyl)ethylamine in CHCl₃ was prepd by treating the acetate salt (5.0 g, 0.02 mole) with 100 ml of 2.5 N NaOH, and then extg the alk mixt with 100 ml of CHCl₃. The CHCl₃ layer was then added to a soln of 2-methoxy-1-pyrroline (3.95 g, 0.04 mole) in 50 ml of CHCl₃. The CHCl₃ mixt was heated to reflux for 48 hr and then evapd to dryness *in vacuo*. Recrystn of the residue from petr ether (40-60°) yielded 3.6 g (94%) of brown needles, mp 123.5-125°; HCl salt, mp 238.5-240.5°. Anal. (C₁₂H₁₄Cl₂N₂·HCl) C, H, N, Cl.

(10) J. S. Morley, J. Chem. Soc., 1414 (1961).

(11) S. Petersen and E. Tietze, Chem. Ber., 90, 909 (1957).

Antihypertensive and Monoamine Oxidase Inhibitory Activity of Some Azacycloalkyl-Substituted Benzaldehyde Hydrazone Derivatives

T. GEORGE,* C. L. KAUL, R. S. GREWAL, AND D. V. MEHTA

Ciba Research Center, Goregaon, Bombay 63, India

Received October 28, 1970

The hydrazones derived by condensation of certain azacycloalkyl-substituted benzaldehydes with 3-amino-2-oxazolidinone were evaluated for their antihypertensive and MAO-inhibitory activity. Some of these compds were more potent than pargyline in their antihypertensive response. However, they were less active than pargyline as regards MAO inhibition. The most potent compd of the series was N-[2-N-methylpiperazino-5-nitroben-zylidene]-3-amino-2-oxazolidinone. There was no direct correlation between the antihypertensive effect and MAO inhibition in this series.

Furazolidone, N-[5-nitro-2-furfurylidene]-3-amino-2oxazolidinone, has been reported to produce slow, gradual reduction of arterial blood pressure in patients with primary hypertension when administered orally.¹ Confirmation of the significant hypotensive effect of furazolidone at high doses in hypertensive patients has been provided by other workers.² This substance is also reported to produce irreversible inhibition of monoamine and diamine oxidase in the rat liver and brain.³ N-[1-(5-Nitro-2-furyl)ethylidene]-3-amino-2oxazolidinone, a compd closely related to furazolidone, is reported to produce a slight hypotensive effect in anesthetized dogs.⁴ The present report deals with the evaluation of the antihypertensive and MAO-inhibitory activities of certain hydrazones derived by condensation of certain azacycloalkyl-substituted benzaldehydes with 3-amino-2-oxazolidinone.

Chemistry.—Starting from 2-chloro-5-nitrobenzaldehyde⁵ the 3-amino-2-oxazolidinone derivative Ic was prepared by treatment of the β -hydroxyethyl hydrazone derivative Ib with COCl₂. By treatment of 2-chloro-5-nitrobenzaldehyde, 3-nitro-4-chlorobenzaldehyde,⁶ and 3-chloro-4-nitrobenzophenone⁷ with cyclic secondary amines, the corresponding substituted

(7) R. B. Davis and L. C. Pizzini, J. Org. Chem., 27, 1605 (1962).

⁽¹⁾ B. Calesnick, Amer. J. Med. Sci., 236, 736 (1958).

⁽²⁾ V. C. Desiderio and J. R. Beem, Proc. Soc. Exp. Biol. Med., 100, 343 (1959).

⁽³⁾ D. Palm, U. Magnus, H. Grobecker, and J. Jonsson, Arch. Exp. Pathol. Pharmakol., 256, 281 (1967).

⁽⁴⁾ A. I. Eldin, J. P. Buckley, W. J. Kinnard, and M. D. Aceto, Arch. Int. Pharmacodyn., 149, 434 (1964).

⁽⁵⁾ H. Erdmann, Justus Liebigs Ann. Chem., 272, 148 (1892).

⁽⁶⁾ H. H. Hodgson and H. G. Beard, J. Chem. Soc., 20 (1927).