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Abstract: u&Unsaturated ketone dipolarophiles having bidentate or tridentate ligand structures, 
such as (E)-l-benzyloxy- and (E)-I-(2-phenylthioethoq)-3-penten-2-one, are activated by a Lewis acid 
catalyst in I ,3-dipolar cycloadditions of nitrones. Dichlorodiisopropoxytitanium and chlorotriiso- 
propoxytitanium are especially @ective. Lewis acid-mediated enhancement of stereo- and regioselec- 
tivity have been attainedfor the first time in intermolecular nitrone cycloaakiitiorrs. Formation of dipo- 
karophi1eK.ewi.s acid complexes is responsible for the remarkable Lewis acid catalysis. 

Like nitrile oxides, nitrones are among the most useful 1,3-dipoles ever used in organic synthesis.1 
Thus, their cycloadditions, followed by some functional group transformations including a reductive cleav- 
age of the nitrogen-oxygen bond of cycloadducts, have found wide synthetic applications in elaboration of 
complex structures of natural products. 2 Since nitrones are not so highly reactive dipoles compared with 

nitrile oxides and their intermolecular cycloadditions are lack of stereoselctivity, most of synthetic applica- 
tions reported have consisted of intramolecular versions of nitrone cycloadditions.t.2 

Based on numerous reports on successful Lewis acid-catalyzed stereoconttol of Diels-Alder reactions,3 
similar Lewis acid catalysis is expected in dipolar cycloadditions. However, no successful reactions are so 
far known.4 A serious problem is that 1,3-dipoles act as much stronger bases than dienes. Then dipoles 
have a tendency to form inactive dipole/Lewis acid complexes (hereafter referred to as “dipole complex”). 
To overcome this difficulty we designed new electron-deficient olefinic dipolarophiles that have a chelate 
ligand structure. Our expectation is that the incorporation of a Lewis acid may be equilibrating between 
dipole and dipolarophile, and that acceleration of cycloaddition will occur only in the dipolarophile/Lewis 
acid complex (hereafter referred to as “dipolamphile complex”).5 

In the present communication, we describe the first example of reaction control of intermolecular 
nitrone cycloadditions by the aid of a Lewis acid catalyst. Significant rate acceleration, high stereo-, and 
regiocontrol can be attained by a proper choice of dipolarophiles and catalysts. 

Cycloadditions of nitrones, such as benzylidenemethylamine N-oxide (5a) and -phenylamine N-oxide 
(§b), to a 1-propenyl ketone such as (E)-Zpenten-Zone (1) are impracticably slow below 80 Y! (Scheme 1 
and Table 1, entries 1, 3). Although these reactions, when performed at 80 ‘C, are absolutely tegioselective 
to produce 4-acetylisoxazolidines 7a,b, stereoselectivities are quite low (endo:ezo = 4050 for 7a; 73:27 for 
7b). Similarly high regioselectivities and low stereoselectivities result in nitrone cycloadditions to bidentate 
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and tridentate enones such as (E)-1-benzyloxy-3-penten-2-one (2), (E)-1-(2-phenylthioethoxy)-3-penten-2- 
one (3), and diethyl (E)-2-oxo-3-pentenylphosphonate (4) (entries 5, 10. 12, 15).6 

Zinc(I1) chloride and dichlorodiisopropoxytitanium were found to accelerate the cycloadditions of 
nitrones 5 to monodentate enone 1. Stereoselectivities were either not effected (entry 4) or a little improved 
in favor of exe-isomer (entry 2). On the other hand, an 87:23 mixture of endo-7c and e_w-7c was obtained 
in the zinc(I1) chloride-mediated reaction of bidentate enone 2 with Sa at room temperature in 
dichloromethane (entry 6).7 Chlorotriisopropoxy- and dichlorodiisopmpoxytitanium showed more effective 

rate acceleration as well as higher endo-selectivities (entries 7-9). Thus, reaction of 2 with Sa proceeded at 
0 ‘C to provide endo-7c as single diastereomer when catalyzed by dichlorodiisopropoxytitanium (entry 9); 
similarly, endo-7d was obtained from 2 with Sb (entry lo).* 
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endo-‘le-f 8x0~7a-f 

7a: R=H,R”=Me 

7b: R=H,R”=Ph 
7c: R - PhCH20, R’ = Me 

7d: R - PhCH*O. R” - Ph 
7e: R - PhSCH2CH20, R’ - Me 

7f: R - (EK$P(O). R” - Me 

Table 1. Nitrone Cycloadditions to Mono-, Bi-, and Tridentate Enone Dipolarophiles 1-4 

Entry Olefin + Nitronea Catalysta Solventh Temp.PC Tim& Product Yield/% endo:exo 

1 1 5 
1:s; iZ% 

80 20 7a 
:: 

4060 
2 a(32 8: 6d 20:80 
3 l+Sb - TLN 10 

;ab 
70 73~27 

4 l+Sb Ti(OPr-i)lClz DCM 8; 18 ;,” 49 77:23 
5 2+Sa BZN 8 76 40:60 
6 2+Sa zncl2 DCM rt 52 77 87:23 
7 2 + 5a Ti(OPr-l)gCl DCM rt 14 

?r 
45 9O:lO 

8 2+5a Ti(OPr-&Cl2 DCM rt 5 7c 35 94:6 
9 2+5a Ti(OPr-l)$lz DCM 32 50 >99:1 

10 2+Sb TLN 800 15 ;c, 89 67:33 
11 2+Sb Ti(OPr-i)aC12 DCM 0 17 7d 74 >99:1 
12 3+5a BZN 80 7e 64 35:65 
13 3+Sa Ti(OPr-r)zCl2 DCM lt 

; 
65 94:6 

14 3+Sa m2 DCM 
15 4+Sa TLN 

11: 6d 
;: 

40 23:77 
21 73 83:17 

16 4+Sa Ti(OPr-i)$l DCM rt 21 
3: 

45 83:17 

aEach one equivalent of oletin, nitrone, and catalyst was used in all cases. bBZN: benzene; DCM: 
dichloromethane; TIN: toluene. cYield of isolated mixture of isomers. dBased on IH NMR of the crude 
reaction mixture. 

Stereochemistries of en& and em-7a-d were clearly assigned on the basis of lH and 13C NMR spec- 
tra. Protons of 4-substituent RCI-IzCO of exe-7 are more effectively shielded by 3-phenyl group since they 
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are cis each other both C-3 and C-4 of exe-7 appear in higher chemical shifts due to a compression effect. 
Two diastereomers of 7d, endo-7d and exe-7d, offered the typical case.8 

Tridentate enone 3 was also effectively catalyzed by dichlorodiisopropoxytitanium to show the 
endo:exo ratio of 94:6 at room temperature (entry 13). On the other hand, no preference for e&o-selectivity 
resulted in the zinc(U) iodide-accelerated nitmne cycloaddition to 3, but rather, the Rxo-selectivity was more 
favored (entries 12, 14). Such preference of exe-selectivity was observed in the reaction with 1 (entry 2), 
while the zinc(U) chloride-catalyzed reaction to 2 was highly endo-selective (entry 6). No satisfactory ex- 
planation is so far available. Enone 4 having a phosphoryl moiety was activated by chlorotriisopropoxy- 
titanium, but no any increase of et&-selectivity was observed (entries 15. 16). 

8: R-H R 
9: R - (r&0)2P(O) endo- 

10,ll: 

Scheme 2. 

a: R-H.R’=Me 
b: R I (MeO)$‘(O). R” I Me 
C: R - (MeO)P(O), R” - Ph 

Regioselectivity is not always high in nitrone cycloadditions to terminal olefins.t** For example, reac- 
tion of 5a with dimethyl 2-oxo-3-butenylphosphonate (9) under reflux in toluene affords a 34:66 mixture of 
regioisomers lob (end0 only) and llb (endo:exo = 1:l). When catalyzed by chlorotriisopropoxytitanium, 
the endo-isomer of 4-acetyl regioisomer endo-10a was yielded as a single product (rt, 24 h in 
dichloromethane, 41% yield). Similarly, only endo-10c was produced in the chlorotriisopropoxytitanium- 
catalyzed reaction between 5b and 9 (rt, 21 h in dichloromethane, 46% yield). However, the regiose.lectiv- 
ity was not improved in the reaction between Sa and 8 even under catalyzed conditions, indicating the 
insufficient coordination of Lewis acid to monodentate enone 8. 
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Figure 1. Titanium-mediated end~wlectlve nltronr cycloadditlona 

A Lewis acid catalyst can be incorporated both in nitrone 5a and bidentate enone 2. It is clear that the 
catalyst is mostly incorporated in the dipole complex A rather than the dipolarophile complex B (Fig. I).9 



Although inactive complex A does not undergo cycloadditions, mon reactive complex B, albeit as minor 
contributor, participates in cycloadditions. The enhanced regioselectivity would be due to the incnzase of 
electron deficiency at the p-carbon of enone complex B; the highly en&-selective reaction through route 
“a” leading to endo-7c is a result of tbe serious steric repulsion developing in the exe-selective counterpart 

(route ‘lb”).10 
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