Rhodium catalyzed asymmetric hydroformylation of vinylarenes with a diphosphite ligand forming a large chelating ring[†]

Zoraida Freixa and J. Carles Bayón*

Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain. E-mail: bayon@cc.uab.es

Received 13th June 2001, Accepted 14th June 2001 First published as an Advance Article on the web 3rd July 2001

A rhodium complex containing a sixteen membered chelated diphosphite, with the appropriate combination of stereogenic centers, produces ee's above 70% in the hydroformylation of vinylarenes, while a related diastereo-isomeric ligand renders very low ee's because it does not form a chelated species.

Asymmetric hydroformylation catalyzed by transition metal catalysts is a method for the synthesis of homochiral aldehydes.¹ Both, platinum and rhodium catalysts, containing bidentate P-donor ligands, have been extensively used in this reaction. However, while Pt-SnCl₂ catalysts produce the best stereoselectivities with diphosphine ligands containing four carbon atoms in the backbone (i.e. seven membered chelates),² in the case of rhodium catalysts, phosphine-phosphite3 or diphosphite⁴ ligands forming eight membered chelates render the best results. Catalysts forming larger chelate rings are reported to produce poor results in enantioselective hydroformylation,⁵ although they have been used successfully in other asymmetric reactions.⁶ We report here the first results on the enantioselective rhodium catalyzed hydroformylation of vinylarenes using a diphosphite ligand forming a very large, sixteen membered chelate.

Ligands (*R*)-phtabinphos **1** and (*S*)-phtabinphos **2** were prepared by reaction of (2*S*)-hydroxypropyl isophthalate⁷ with (*R*)- and (*S*)-binaphthol phosphorochlorhidites and NEt₃.⁸

Table 1 collects selected catalytic experiments on the hydroformylation of vinylarenes with rhodium catalysts formed with ligands 1 and 2. Entries 1 and 2 reveal the different behavior of the diastereoisomeric ligands in the hydroformylation of styrene. Reaction with ligand 1 is slower than that of ligand 2, but the latter shows very low stereoselectivity. Matchingmismatching effects between the stereogenic centers of the

DOI: 10.1039/b105208j

ligands have been previously observed in asymmetric hydroformylation.^{3b,4b,9} In order to get some insight into the nature of this effect in ligands 1 and 2, the structure of the catalytic species formed by reacting them with $[Rh(\mu-OMe)(cod)]_2$ under CO/H₂ was studied by HPNMR. For ligand 1, ¹H- and ³¹P-NMR spectra show the formation of the species $[RhH(CO)_2(1)]$ 3, where the diphosphite coordinates the metal in equatorial positions.¹⁰ Very broad spectra, which could not be resolved, were obtained with ligand 2 in the explored temperature range (-40 to 90 °C). These spectra likely correspond to a fluxional species or a mixture of species in dynamic equilibrium.

More conclusive results were obtained by NMR analysis of the reactions of ligands 1 and 2 with [RhH(CO)(PPh₃)₃] in a ligand/rhodium ratio of 0.5:1. Ligand 1 forms the expected species [RhH(CO)(PPh₃)(1)] 4, with the characteristic 16 (phosphite) plus 8 (phosphine) lines spectrum, again with the diphosphite occupying equatorial positions.¹¹ However, the reaction with ligand **2** produces a binuclear species $[Rh_2H_2(CO)_2(PPh_3)_4(2)]$ 5, in which the diphosphite is acting as a bridge between two metal atoms, as indicated by the 8 (phosphite) plus 16 (phosphine) lines ³¹P-NMR spectrum.¹² These NMR results reveal that the low enantioselectivity observed with diphosphite 2 is due to the tendency of this ligand to act in a bridging or monodentate fashion, which creates a very loose chiral environment on the catalysts. Species of this type are known to be poorly enantioselective in asymmetric hydroformylation.13 Furthermore, the remarkably different tendency of diastereoisomeric ligands 1 and 2 to form chelating species can be considered as an extreme case of the matching-mismatching effect.

In the case of the catalyst containing ligand 1, an increase in the temperature (entries 3 and 1 in Table 1) produces an improvement in the activity of the system, but with a drop in the regio- and enantio-selectivity. By increasing the syngas (CO/H₂) pressure (entries 3 and 6) a decrease in the activity of the system was observed with almost no change in the selectivity. A significant increase in the activity (TOF = 31 h⁻¹) and a slight improvement of the ee was achieved by running the reaction at a higher concentration of substrate (entries 3 and 7). Finally, the catalyst Rh/(*R*)-phtabinphos shows higher activity and stereoselectivity in the hydroformylation of vinylnaphthalene than in styrene (entries 5 and 3). However, a decrease in

J. Chem. Soc., Dalton Trans., 2001, 2067–2068 2067

[†] Electronic supplementary information (ESI) available: experimental details, NMR data for 1 and 5 and NMR spectra of 3, 4 and 5. See http://www.rsc.org/suppdata/dt/b1/b105208j/

Table 1 Hydroformylation of vinylarenes using (R)- and (S)-phtabinphos (ligands 1 and 2) and [Rh(μ -OMe)(cod)]₂

Entry	L ^a	Substrate ^b	T/°C	<i>P</i> /bar	Conv. (%) (<i>t</i> /h) ^{<i>c</i>}	regio ^{<i>d</i>} (%)	ee (%) (conf) ^e
1	1	PhCH=CH ₂	50	15	78 (15)	75	62 (<i>R</i>)
2	2	PhCH=CH ₂	50	15	99 (21)	83	11 (S)
3	1	PhCH=CH ₂	40	15	30 (36)	80	70 (R)
4	1	p-tBuC6H4CH=CH2	40	15	53 (115)	66	72(R)
5	1	NaphCH=CH ₂	40	15	89 (23)	81	75 (R)
6	1	PhCH=CH ₂	40	30	25 (69)	80	73(R)
7^{f}	1	PhCH=CH ₂	40	15	17 (16)	80	76 (<i>R</i>)

Reaction conditions: 1.25×10^{-2} mmol Rh, 2.5×10^{-2} mmol ligand and 5.0 mmol substrate (substrate/catalyst = 400) in 7.5 ml of toluene; P(CO)=P(H₂). ^{*a*} Diphosphite. ^{*b*} Substrates: styrene; 4-*tert*-butylstyrene, and vinylnaphthalene. ^{*c*} Substrate consumed in the time indicated in parentheses. ^{*d*} Regioselectivity in the branched aldehyde. ^{*e*} Enantiomeric excess of the isomer indicated in parentheses. ^{*f*} 2.5 × 10⁻² mmol Rh, 5.0×10^{-2} ligand and 45 mmol substrate (substrate/catalyst = 1800) in 4.0 ml of toluene; TOF is 31 h^{-1}

activity as well as in the regioselectivity was observed in the hydroformylation of 4-tert-butylstyrene with respect to styrene (entries 4 and 3)

In conclusion, diphosphite 1 provides the first example of a ligand forming a chiral macrochelate, which produces a fairly good stereoselective catalyst for asymmetric hydroformylation. Furthermore, the modular structure of this ligand allows an easy modification of its stereochemical properties. This approach is currently under investigation.

Acknowledgements

We thank the Spanish MEC (PB98-0913-C02-01) and DGE-CIRIT of Catalonia for financial support and a scholarship for Z. F.

References

- 1 (a) K. Nozaki, in Comprehensive Asymmetric Catalysis, ed. E. N. Jacobsen, A. Pfaltz and H. Yamamoto, Springer, Berlin, 1999, vol. 1, pp. 381-413; (b) C. Claver and P. W. N. M. van Leeuwen, in Rhodium Catalyzed Hydroformylation, ed. P. W. N. M. van Leeuwen and C. Claver, Kluwer Academic Publisher, Dordrecht, 2000, pp. 107-144.
- 2 (a) J. K. Stille, H. Su, P. Brechot, G. Parrinello and L. S. Hegedus, Organometallics, 1991, 10, 1183; (b) G. Consiglio, S. C. A. Nefkens and A. Borer, Organometallics, 1991, 10, 2046; (c) G. Consiglio, P. Pino, L. I. Flowers and C. U. Pittman, Jr., J. Chem. Soc., Chem. Commun., 1983, 612.

- 3 (a) K. Nozaki, N. Sakai, T. Nanno, T. Higashijima, S. Mano, T. Horiuchi and H. Takaya, J. Am. Chem. Soc., 1997, 119, 4413; (b) N. Sakai, S. Mano, K. Nozaki and H. Takaya, J. Am. Chem. Soc., 1993. 115. 7033.
- 4 (a) J. E. Babin and G. T. Whitecker, PCT Int. Appl., WO 93/03839, for Union Carbide, 1993; (b) G. J. H. Buisman, L. A. van der Veen, A. Klootwijk, W. G. J. Lange, P. C. J. Kamer, P. W. N. M. van Leeuwen and D. Vogt, Organometallics, 1997, 16, 2929; (c) M. Diéguez, O. Pagamies, A. Ruiz, S. Castillón and C. Claver, Chem. Commun., 2000, 1607.
- 5 G. J. H. Buisman, E. J. Vos, P. C. J. Kamer and P. W. N. M. van Leeuwen, J. Chem. Soc., Dalton Trans., 1995, 409.
- 6 L. David, D. L. Van Vranken and B. M. Trost, Chem. Rev., 1996, 96,
- 7 Z. Freixa, E. Martin, S. Gladiali and J. C. Bayón, Appl. Organomet. Chem., 2000, 14, 66.
- 8 Selected data: $1 \delta_{P}$ (CDCl₃) 145.8; $2 \delta_{P}$ (CDCl₃) 148.6.
- 9 D. Gleich, R. Schmid and W. A. Herrmann, Organometallics, 1998, 17.2141
- 10 NMR data: **3** $\delta_{\rm P}$ (CDCl₃, 121.6 MHz) 177.6 (d, $J_{\rm Rh-P}$ = 231 Hz). $\delta_{\rm H}$ $(\text{CDCl}_3, 300 \text{ MHz}) - 9.90 \text{ (hydride, q br, } J_{P-H} = J_{Rh-H} = 4\text{Hz}).$
- 11 NMR data: 4 $\delta_{\rm P}$ (CDCl₃, 101.3 MHz) 180.6 (P1 phosphite, ddd, Hink data: $4 \delta_P$ (CDC1₃, 101.5 MH2) 100.6 (11 phosphite, ddd, $J_{Rh-P1} = 251$ Hz, $J_{P2-P1} = 271$ Hz, $J_{P3-P1} = 172$ Hz); 175.3 (P2 phosphite, ddd, $J_{Rh-P2} = 237$ Hz, $J_{P3-P2} = 109$ Hz); 37.7 (P3 phosphine, ddd, $J_{Rh-P3} = 134$ Hz). δ_H (CDC1₃, 250 MHz) -10.25 (hydride, dddd, J = 13.0 Hz, 6.5 Hz, 2.7 Hz).
- 12 NMR data: 5 δ_P (CDCl₃, 101.3 MHz) 37.8 (P1 phosphine, ddd, IVINC data: 5 of (CDC13, 101.5 H12) 57.5 (11 phosphile, data, J_{Rb}.P1 = 143 Hz, J_{P2.P1} = 86 Hz, J_{P3.P1} = 167 Hz); 40.8 (P2 phosphine, ddd, J_{Rb}.P2 = 148 Hz, J_{P3.P2} = 191 Hz); 174.7 (P3 phosphite, ddd, J_{Rb}.P3 = 258 Hz).
 Z. Freixa, M. M. Pereira, A. A. C. C. Pais and J. C. Bayón, J. Chem.
- Soc., Dalton Trans., 1999, 3245.