spectrum, m/e 210 (3, M<sup>+</sup>), 177 (12), 121 (16), 99 (45), 97 (40), 96 (100), 81 (34), 55 (13), 43 (27), 41 (12). Anal. Calcd for C<sub>14</sub>H<sub>26</sub>O: C, 79.94; H, 12.46. Found: C, 79.87; H, 12.48.

Acknowledgment. We thank Professor D. N. Kevill and Dr. G. Schrumpf for stimulating discussions and the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for support of this work.

Registry No. 2, 68930-33-6; 3, 78310-15-3; 4a, 84602-70-0; 4b, 83379-15-1; 5, 83379-14-0; 6, 81517-77-3; cis-1,3,3,5,5-pentamethyl-4-(1-methylethenyl)cyclohexan-1-ol formate, 84602-71-1; sodium formate, 141-53-7; zinc formate, 557-41-5; zinc chloride, 7646-85-7; formic acid, 64-18-6.

# Scope and Limitations of Aliphatic Friedel-Crafts Alkylations. Lewis Acid Catalyzed Addition Reactions of Alkyl Chlorides to **Carbon-Carbon Double Bonds**

Herbert Mayr\* and Wilhelm Striepe

Institut für Organische Chemie der Friedrich-Alexander-Universität Erlangen-Nürnberg, D-8520 Erlangen, Federal Republic of Germany

Received November 1, 1982

Lewis acid catalyzed addition reactions of alkyl halides 1 with unsaturated hydrocarbons 2 have been studied. 1:1 addition products 3 are formed if the addends 1 dissociate faster than the corresponding products 3; otherwise, polymerization of 2 takes place. For reaction conditions under which 1 and 3 exist mainly undissociated, solvolysis constants of model compounds can be used to predict the outcome of any such addition reactions if systems with considerable steric hindrance are excluded.

Friedel-Crafts-type reactions are of great importance in the chemistry of aromatic compounds.<sup>1</sup> Their synthetic value in aliphatic chemistry appears to be rather limited,<sup>1,2</sup> since alkyl halides with Lewis acids are well-known initiating systems in carbocationic polymerizations of alkenes.<sup>3</sup> Examples have been reported, however, where reactions of type 1 gave 1:1 addition products in high yields.<sup>2</sup>

$$R - x + c = c \qquad \frac{Lewis}{acid} \quad R - c - c - x \qquad (1)$$

Prins<sup>4</sup> found that polychloroalkanes alkylate chlorinated alkenes readily in the presence of aluminum chloride (eq 2). Schmerling showed that monohaloalkanes, particularly

$$CHCl_3 + CH_2 = CHCl \xrightarrow{AlCl_3} Cl_2 CHCH_2 CHCl_2 \quad (2)$$

$$(CH_3)_3CCl + CH_2 \xrightarrow{=} CH_2 \xrightarrow{} (CH_3)_3CCH_2CH_2Cl \quad (3)$$

tert-alkyl halides, also undergo Lewis acid catalyzed addition reactions with halogenated as well as nonhalogenated alkenes (eq 3).<sup>5</sup> However, "only relatively few Friedel-Crafts alkylations of alkenes by means of alkyl halides are as free from complications as the examples cited above".6 The problem arises of how to predict those cases for which Friedel-Crafts alkylations of type 1 work properly.

(5) Schmerling, L. J. Am. Chem. Soc. 1945, 67, 1152.

(6) Reference 1b, p 81.

Table I. Solvolysis Rates of Alkyl Chlorides 1a-m in 80% Aqueous Ethanol at 25 °C

| RX                             | $k_{1}, s^{-1}$        | ref  |
|--------------------------------|------------------------|------|
| $(CH_3)_2$ CHCl (1a)           | 2 × 10 <sup>-9</sup>   | 8a   |
| $CH_1 = CHCH(CH_3)Cl(1b)$      | $5 	imes 10^{-7}$      | 8b   |
| $CH_{3}CH = CHCH_{2}Cl$ (1c)   | ~1 × 10 <sup>-6</sup>  | а    |
| $(CH_3)_3$ CCl (1d)            | 9 × 10 <sup>-6</sup>   | 8b,d |
| $PhCH(CH_3)Cl(1e)$             | $1 \times 10^{-5}$     | 8e   |
| $(CH_3)_2C = CHCH_2Cl (1f)$    | ~4 × 10 <sup>-4</sup>  | а    |
| $PhC \equiv CC(CH_3)_2Cl(1g)$  | $2 	imes 10^{-3}$      | 8f   |
| $PhC(CH_3)_2Cl(1h)$            | $\sim 2 	imes 10^{-3}$ | ь    |
| $Ph_2CHCl(1i)$                 | $2 \times 10^{-3}$     | 8b   |
| $CH_3OCH_2Cl(1j)$              | 15                     | 8h   |
| $Ph_3CCl(1k)$                  | $\sim 2 \times 10^2$   | 8i   |
| $CH_3OCH(CH_3)Cl(1l)$          | >15                    |      |
| CH <sub>3</sub> OCH(Ph)Cl (1m) | ≥15                    |      |

<sup>a</sup> Calculated from relative rates of 1b,c,f in 80% ethanol at 44.6 °C.  $^{\text{sc}}$  <sup>b</sup> Solvolysis rates of 1h and 1i are similar in ethanol.<sup>8g</sup>

Predominant formation of 1:1 products 3 can be expected if 1 reacts faster with 2 than 3. If the 1:1 product 3 is more reactive than 1, higher addition products will be formed. Recently, one of us suggested that solvolysis rates of model compounds of 1 and 3 (Table I) may be used to differentiate between these two cases.<sup>7</sup> It was stated that "Lewis acid catalyzed additions of alkyl halides to carbon-carbon multiple bonds can only lead to 1:1 products if the educts dissociate more rapidly than the products". This conclusion is based on the assumption that the relative addition rates of any alkyl halides AX and BX to a common alkene  $(\Delta G^*_2)_R$  are reflected by the relative dis-

<sup>(1) (</sup>a) Olah, G. A. "Friedel-Crafts and Related Reactions"; Interscience: New York, 1963. (b) Olah, G. A. "Friedel-Crafts Chemistry"; Wiley-Interscience: New York, 1973.

<sup>(2) (</sup>a) Schmerling, L., in ref 1a, Vol. II, Chapter 26. (b) Mathieu, J.; Weill-Raynal, J. "Formation of C-C Bonds"; Georg Thieme Verlag: (3) Kennedy, J. P.; Maréchal, E. "Carbocationic Polymerization";

<sup>Wiley-Interscience: New York, 1982; pp 82-158.
(4) Böseken, J.; Prins, H. J. Versl. Akad. Wetenschappen (Amsterdam) 1910, 19, 776.</sup> 

<sup>(7)</sup> Mayr, H. Angew. Chem., Int. Ed. Engl. 1981, 20, 184.
(8) (a) Cooper, K. A.; Hughes, E. D. J. Chem. Soc. 1937, 1183. (b) Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846. (c) Streitwieser, A., Jr. "Solvolytic Displacement Reactions"; McGraw-Hill: New York, 1962; p 78. (d) Fainberg, A. H.; Winstein, S. J. Am. Chem. Soc. 1956, 78, 2770. (e) Shiner, V. J., Jr.; Buddenbaum, W. E.; Murr, B. L.; Lamaty, G. Ibid. 1968, 90, 418. (f) Bentley, T. W. University College of Swansea, unpublished results. (g) Brown, H. C.; Rei, M.-H. J. Am. Chem. Soc. 1964, 86, 5008. (h) Jones, T. C.; Thornton, E. R. Ibid 1967, 89, 4863. (i) Reference 8c. p 77. (i) Reference 8c, p 77.



Figure 1. Energy profiles for the Lewis acid catalyzed reactions of alkyl halides AX and BX with a common alkene.

sociation rates of AX and BX  $(\Delta G^*_1)_R$ . Noncrossing of the reaction profiles in Figure 1 (i.e., applicability of the Leffler-Hammond postulate<sup>9</sup>) is thus taken for granted. Furthermore, it is assumed that the selected solvolysis rates in 80% ethanol (Table I) are proportional to the rates of the Lewis acid induced dissociation reactions. In this work we studied a variety of Lewis acid catalyzed addition reactions in order to examine the range for which these approximations and the above predictions hold.

### Results

The 1:1 products, obtained from reactions of la-m with 2a-g, usually correspond to the Markovnikov addition

$$R - CI + H_2C = C \qquad R^1 \rightarrow RCH_2CCI \qquad (4)$$

$$1a - m \qquad 2a - g \qquad 3a - ff$$

products 3a-ff. Isopropyl chloride (1a), however, the least reactive alkyl chloride in this series, has been reported not to give 1:1 addition products via Lewis acid catalyzed reactions with butadiene (2b) and isoprene (2e).<sup>10</sup> We found that propene (2a) and isobutene (2c) also do not give 1:1 products with 1a (Table II).

In contrast, tert-butyl chloride (1d) yields 1:1 products with propene (2a) and butadiene (2b). With different Lewis acids, 1d and 2a give mixtures of 3a, 4, and 5 in

variable yields.<sup>11,12</sup> When we used ZnCl<sub>2</sub>-Et<sub>2</sub>O in dichloromethane to catalyze this reaction, 4 and 5 were not detectable in the <sup>1</sup>H NMR spectrum, indicating predominant formation of **3a**.

In accord with previous reports,<sup>10,13</sup> we obtained a moderate yield of 1,4-addition product 3b from tert-butyl

chloride (1d) and butadiene (2b), while 1d and isoprene

(2e) give oligometrs of the general formula  $[C_4H_9-(C_5 H_8)_{2,3}$ -Cl]<sub>1,9</sub> under the same conditions.<sup>10</sup> An attempt to add tert-butyl chloride (1d) to isobutene (2c) and styrene (2d) resulted in formation of isobutene oligomers and polystyrene, respectively.

The data on  $(\alpha$ -chloroethyl)benzene (1e) additions in Table II are contradictory. Previous workers reported the formation of 1:1 products by ZnCl<sub>2</sub>-catalyzed reactions of 1e with 2a-f.<sup>14</sup> The products were identified by their boiling points or the boiling points of their HCl elimination products. We reproduced the results with 2a-d and identified the products spectroscopically. While the reaction of *tert*-butyl chloride (1d) with butadiene (2b) vielded the 1.4-addition product selectively, 1e and 2b gave a mixture of 1,2- and 1,4-addition products 3d and 3d'. Probably because of the milder reaction conditions employed for the addition of 1e, isomerization of 3d' to the thermodynamically more stable 3d was not complete.



Under a variety of conditions we did not obtain the reported 1:1 products from reaction of ( $\alpha$ -chloroethyl)benzene (1e) with isoprene (2e) and  $\alpha$ -methylstyrene (2f). When exactly following the literature procedure<sup>14a</sup> for the reaction of 1e with 2f, we isolated indan 6, a dimer of 2f, with a boiling point similar to that reported for the alleged 2,4-diphenyl-2-pentene.

Cumyl chloride (1h) does not react with the weak nucleophiles propene (2a) and butadiene (2b) when  $ZnCl_2$ - $Et_2O$  is used as the catalyst. In both cases condensation products of 1h are formed, since 1h eliminates HCl to give  $\alpha$ -methylstyrene which reacts with further 1h. With the less basic catalyst system BCl<sub>3</sub> in dichloromethane, however, good yields of 3i and the 1,4-addition product 3j can be obtained. The "normal" addition product 3i from 1h and 2a is accompanied by a small amount of 7 arising from



successive 1,2 hydride and phenyl shifts in the intermediate carbenium ions. ZnCl<sub>2</sub>-Et<sub>2</sub>O effectively catalyzes the reactions of 1h with the more nucleophilic alkenes 2c-f. The addition product 3 from 1h and  $\alpha$ -methylstyrene (2f) is not observable, however, and eliminates HCl to give 8 under reaction conditions. Attempts, adding 1h to ethyl vinyl ether led to polyvinyl ether.

With the exception of ethyl vinyl ether, all alkenes examined (2a-f) gave 1:1 addition products 3n-s with benzhydryl chloride (1i) under ZnCl<sub>2</sub>-Et<sub>2</sub>O catalysis. Only the thermodynamically more stable 1,4-addition product 3r was formed with isoprene (2e) while butadiene (2b) gave a mixture of 1,4- (30) and 1,2-addition products (30'), which were not interconverted under the reaction conditions. When the reaction of 1i with styrene (2d) catalyzed by  $ZnCl_2$  in refluxing dichloromethane, the addition product 3q was accompanied by the condensation product 9;<sup>15</sup> pure

<sup>(9)</sup> Leffler, J. E.; Grunwald, E. "Rates and Equilibria of Organic (9) Lettler, J. E.; Gruttwald, E. Takes and Equations of the sections"; Wiley: New York, 1963; pp 156, 163.
(10) Petrov, A. A.; Leets, K. V. Zh. Obshch. Khim. 1956, 26, 1113; Chem. Abstr. 1956, 50, 11936d.
(11) Petrovice I. J. Am. Chem. Soc. 1953, 75, 6217.

Schmerling, L. J. Am. Chem. Soc. 1953, 75, 6217.
 Miller, V. A. J. Am. Chem. Soc. 1947, 69, 1764.

<sup>(13)</sup> Kolyaskina, Z. N.; Petrov, A. A. Zh. Obshch. Khim. 1961, 32, 1089; Chem. Abstr. 1963, 58, 1335g.

<sup>(14) (</sup>a) Olah, G. A.; Kuhn, S. J.; Barnes, D. G. U.S. Patent 2996 556, 1961. (b) Olah, G. A.; Kuhn, S. J.; Barnes, D. G. J. Org. Chem. 1964, 29, 2685.

| Table II. | Lewis Acid | Catalyzed H | Reactions of | Alkyl | Halides v | vith Alkenes |
|-----------|------------|-------------|--------------|-------|-----------|--------------|
|-----------|------------|-------------|--------------|-------|-----------|--------------|

| R-Cl                  | alkene <sup>d</sup> | catalyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | temp, °C        | time                    | products (yield, %)                  | ref             |
|-----------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------|--------------------------------------|-----------------|
| $(CH_3)$ , CHCl (1a)  | 2a                  | ZnCl <sub>2</sub> -Et <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -78             | 36 days                 | no reaction                          | a               |
|                       |                     | ZnCl,-Et,O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20              | 36 days                 | oligomers                            | а               |
|                       |                     | AlCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20              | 0.15 h                  | oligomers                            | a               |
|                       | 2b                  | ZnCL. FeCl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20              |                         | polymers                             | 10              |
|                       | 20                  | $ZnCl_{-Et}O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20              | 10 dave                 | oligomers                            | 20              |
|                       | 20                  | $Z_{n}C_{2}^{-}E_{2}C_{2}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20              | 10 days                 | nolymers                             | 10              |
|                       | 20                  | $\Delta 101_2$ , $\Delta 101_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40 kg 20        |                         | $2 \circ 4 = (42)$                   | 11              |
| $(CH_3)_3$ CCI (10)   | 28                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -40 to -32      |                         | 3a, 4, 5(43)                         | 11              |
|                       |                     | FeCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -15 to $-10$    |                         | 3a, 4, 5(43)                         | 11              |
|                       |                     | BiCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22              |                         | 3a, 4, 5(28)                         | 11              |
|                       |                     | $ZnCl_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23              |                         | <b>3a</b> , <b>4</b> , <b>5</b> (21) | 11              |
|                       |                     | ZrCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22              |                         | <b>3a</b> , <b>4</b> , <b>5</b> (18) | 11              |
|                       |                     | TiCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50              |                         | 3a, 4, 5(29)                         | 11              |
|                       |                     | BF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10              |                         | 3a, 4, 5(63)                         | 11              |
|                       |                     | AICL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -30             |                         | $C_{-}H_{-}C_{-}(70)$                | 12              |
|                       |                     | ZnCl -Et O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0               | 17 h                    | 3a (major) (41)                      |                 |
|                       | 0h                  | $Z_{n}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20              | 1,11                    | $\frac{9}{2}$ (20-25)                | 10.19           |
|                       | 20                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20              | 40.1                    | 3D (20-35)                           | 10, 10          |
|                       |                     | $2nCl_2 - Et_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -30             | 48 n                    | 3D (20)                              | a               |
|                       | 2c                  | $ZnCl_2-Et_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0               | 15 h                    | oligomers                            | а               |
|                       | 2d                  | $ZnCl_2-Et_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0               | 20 h                    | polystyrene                          | a .             |
|                       | 2e                  | ZnCl., SnCl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                         | oligomers                            | 10              |
| PhCH(CH_)Cl (1e)      | <b>2</b> a          | ZnCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20-80           |                         | $3c(40)^{b}$                         | 14b             |
|                       |                     | ZnCL -Et O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0               | 15 h                    | 3c (52)                              | a               |
|                       | 9h                  | $Z_nCl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20-70           | 1 h                     | 3d (45)                              | 1/10            |
|                       | 40                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20-10           | 1 H<br>00 L             | 2d (20) 2d' (10)                     | 17a             |
|                       | •                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -30             | 22 n                    | au (ay), au (12)                     | 4               |
|                       | ZC                  | ZnCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20-50           | lh                      | 3e (95)                              | 14a,b           |
|                       |                     | $ZnCl_2-Et_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -78             | 4 days                  | 3e (71)                              | а               |
|                       | 2d                  | ZnCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45-60           | 1 h                     | <b>3f</b> (70)                       | 14a,b           |
|                       |                     | ZnCl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                         | polymers                             | 15              |
|                       |                     | ZnClEt.O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0               | 22 h                    | 3f(72)                               | а               |
|                       | 20                  | $Z_nCl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20-30           |                         | $3g(56)^{c}$                         | 149             |
|                       | 20                  | $\overline{Z_n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | variable        |                         |                                      | 114             |
|                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | variable        |                         | polymers                             | u               |
|                       |                     | $ZnCl_2-Et_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | conditions      |                         | polymers                             | <i>a</i>        |
|                       | <b>2</b> f          | ZnCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45-60           |                         | $3h(57)^{\circ}$                     | 14a,b           |
|                       |                     | $ZnCl_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50              | 4 h                     | 6 (80)                               | a               |
| $PhC(CH_{2}), Cl(1h)$ | 2a                  | ZnClEt_O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -78             | 18 h                    | decomp of 1h                         | а               |
|                       |                     | BCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -78             | 6 h                     | 3i(43), 7(15)                        | а               |
|                       | 0L                  | 7-01 - 1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70              | 4 h                     | decomp of 1h                         | -               |
|                       | 20                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -18             | 10 6                    |                                      | u               |
|                       | -                   | BCI <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -78             | 18 n                    | 3) (65)                              | a               |
|                       | 2c                  | ZnCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20-50           |                         | $3k(80)^{\circ}$                     | 14a,b           |
|                       |                     | $ZnCl_2-Et_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -78             | 4 h                     | 3k (71)                              | а               |
|                       | 2d                  | ZnCl,-Et,O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -78             | 15 h                    | 31(71)                               | a               |
|                       | 2e                  | ZnCl <sub>2</sub> -Et <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -78             | 4 h                     | 3m (64)                              | а               |
|                       | <b>2f</b>           | ZnClEt.O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -78             | 17 h                    | 8 (58)                               | a               |
|                       | 20                  | ZnCl - Et O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -78             | 4 h                     | polyvinyl ether                      | a               |
| Ph CHCI (11)          | 20                  | $Z_nClEt_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-78 to \pm 2$  |                         | 3n(92)                               | -<br>a          |
|                       | 2a<br>01            | $Z_{n}O_{2}^{n}E_{2}O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70 10 4 2       | 1 dava                  | 2n(48) 2n'(37)                       | 4               |
|                       | 20                  | $ZnOI_2 - El_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -18             | 4 0ays                  | 30(40), 30(57)                       | a               |
|                       | ze                  | $ZnOl_2-Et_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -18             | 10 N                    | ab (a.)                              | a<br>1 -        |
|                       | 2d                  | ZnCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40              | 6 h                     | 3q (54), 9 (8)                       | 15              |
|                       |                     | $ZnCl_2-Et_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -78             | 15 h                    | <b>3</b> q (88)                      | а               |
|                       | 2e                  | ZnCl <sub>2</sub> -Et <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -78             | 6 h                     | <b>3r</b> (82)                       | a               |
|                       | <b>2f</b>           | ZnCl,-Et.O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -78             | 1 h                     | <b>3s</b> (75)                       | а               |
|                       |                     | ZnClEt.O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -78             | 18 h                    | 10 (47)                              | a               |
|                       | 20                  | ZnCl -Et O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -78             | 3 h                     | polyvinyl ether                      | a               |
| CH OCH CL(13)         |                     | $Z_nC^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30              | 3 h                     | 3t(47)                               | 16              |
| $OII_3OOII_2OI(IJ)$   | 2ä<br>01-           | $Z_{nO1}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00              | 0 II<br>0 4 L           | 9 u u' (70)                          | 17              |
|                       | 20                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U               | 24 n                    | au,u (70)                            | 17              |
|                       | 2c                  | HgCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20              | 4 days                  | 3v (60)                              | 17              |
|                       | 2d                  | $ZnCl_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20              | 3 h                     | <b>3w</b> (75)                       | 18              |
|                       | 2e                  | ZnCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10              | 3 h                     | <b>3x,x</b> ′ (30)                   | 19a             |
|                       |                     | SnClROH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0               | 80 min                  | <b>3x</b> (64)                       | 19b             |
|                       | 2f                  | ZnClEt.O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -78             | 21 h                    | 3v (37)                              | a               |
|                       | 24                  | $Z_nC_{1} = E_{1}^{2}O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -78             | 4 h                     | oligomers                            | ā               |
|                       | 48                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70              | 106                     | no prestion                          | ~               |
| $rn_{3}OOI(1K)$       | 4C                  | $Z_{1} \cup I_2 - Et_2 \cup Z_2 \cup Z$ | -10             | 191                     |                                      | u               |
|                       | -                   | $ZnCl_2-Et_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U               | loh                     | 13 (21), 12 (8)                      | а               |
|                       | 2e                  | $ZnCl_2-Et_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -78             | 15 h                    | polymers                             | а               |
|                       | <b>2f</b>           | ZnCl <sub>2</sub> -Et <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -78             | 16 h                    | no reaction                          | а               |
|                       | 2g                  | ZnClEt_O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -78             | 17 h                    | polyvinyl ether                      | а               |
| PhCH(OCH_)Cl (1m)     | 28                  | ZnClEt.O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -30 to 0        | 3 h                     | 3z (19), 3z' (43).                   | a               |
|                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | ~                       | 14 (16)                              | -               |
|                       | የኩ                  | HaCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20              | 6 dave                  | 3aa (65)                             | 17              |
|                       | 40                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20              | 0 uays<br>0 h           | 3bb (90)                             | <u> </u>        |
|                       | 20                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10             | 4 11                    |                                      | 40              |
|                       | 6.1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60              | 7 4                     | 200 1 5 1 1                          |                 |
|                       | 2d                  | $ZnCl_2 - Et_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20              | 1 day                   | 3CC (57)                             | 20              |
|                       | 2d<br>2e            | $ZnCl_2-Et_2O$<br>$ZnCl_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20<br>20        | 1 day<br>10 days        | 3cc (57)<br>3dd (52)                 | $\frac{20}{21}$ |
|                       | 2d<br>2e<br>2f      | $ZnCl_2 - Et_2O$<br>$ZnCl_2$<br>$ZnCl_2 - Et_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20<br>20<br>-78 | l day<br>10 days<br>2 h | 3cc (57)<br>3dd (52)<br>3ee (69)     | 20<br>21<br>a   |

<sup>a</sup> This work. <sup>b</sup> Products not isolated. <sup>c</sup> Products not characterized spectroscopically. <sup>d</sup> See Table III for structures.



3q can be obtained by carrying out the reaction at -78 °C with  $ZnCl_2$ -Et<sub>2</sub>O as a catalyst. Adduct 3s, formed from benzhydryl chloride (1i) and  $\alpha$ -methylstyrene (2f), decomposed to give the 2:1 product 10 when exposed to ZnCl<sub>2</sub>-Et<sub>2</sub>O for several hours. This reaction can be rationalized by regeneration of 1i via retro addition of 3s and addition of 1i to 2,4,4-triphenyl-1-butene, the HCl elimination product of 3s.

Chlorodimethyl ether (1j) reacts with 2a-f under mild conditions to produce the 1:1 products 3t-y. Both dienes 2b and 2e yield mixtures of 1,4- and 1,2-addition products when  $ZnCl_2$  was used as a catalyst. When the addition of 1j to isoprene (2e) was catalyzed by SnCl<sub>4</sub>, a stronger Lewis acid, the 1,4-product 3x was formed selectively.

Trityl chloride  $(1\mathbf{k})$  did not react with isobutene  $(2\mathbf{c})$  or  $\alpha$ -methylstyrene (2f) under ZnCl<sub>2</sub>-Et<sub>2</sub>O catalysis at -78 °C. Isoprene (2e) and ethyl vinyl ether (2g) were polymerized under these conditions. At 0 °C a mixture of 11-13 was formed from ZnCl<sub>2</sub>-Et<sub>2</sub>O-catalyzed reaction of 1k with isobutene (2c).



 $\alpha$ -Methoxybenzyl chloride (1m) was the only alkylating agent in this series which gave 1:1 products with all alkenes 2a-g. Reaction with propene gives addition products 3z, z'as a 31:69 mixture of two diastereomers (62%) with 16%14. The mechanism of formation of the latter product is



- (15) Marcuzzi, F.; Melloni, G.; Modena, G. J. Org. Chem. 1979, 44, 3022.
- (16) Volynskii, N. P.; Sheherbakova, L. P. Izv. Akad. Nauk SSSR, Ser. Khim 1979, 1077; Chem. Abstr. 1979, 91, 56773.
- (17) Straus, F.; Thiel, W. Justus Liebigs Ann. Chem. 1936, 525, 151. (18) Mamedov, S.; Khydyrov, D. N. Zh. Obshch. Khim. 1961, 31, 3905; Chem. Abstr. 1962, 57, 11073b.
- (19) (a) Pudovik, A. N.; Altunina, N. Zh. Obshch. Khim. 1956, 26, 1635; Chem. Abstr. 1957, 51, 1834i. (b) Sato, T.; Kise, H.; Seno, M.;
- Asohara, T. J. Jpn. Oil Chem. Soc. 1975, 24, 607.
   (20) Vartanyan, S. A.; Dangyan, F. V. Armyansk. Khim. Zh. 1966, 19, 286; Chem. Abstr. 1966, 65, 12128c.
- (21) Vartanyan, S. A.; Gevorkyan, Sh. A. Izv. Akad. Nauk Arm. SSR,
   (21) Vartanyan, S. A.; Gevorkyan, Sh. A. Izv. Akad. Nauk Arm. SSR,
   (21) Klein, Haim Marking, K. Mayr, H. Angew. Chem., Int. Ed. Engl. 1982,
   (22) Klein, H.; Erbe, A.; Mayr, H. Angew. Chem., Int. Ed. Engl. 1982,
- 21, 82; Angew. Chem. Suppl. 1982, 105.
- (23) Klein, H.; Mayr, H., unpublished results.
  (24) Lééts, K. V.; Shumeiko, A. K.; Rozenoer, A. A.; Kudryasheva, N.
  ; Pilyavskaya, A. I. Zh. Obshch. Khim. 1957, 27, 1510; Chem. Abstr. 1958, 52, 3733
- (25) Bäuml, E.; Mayr, H., unpublished results.
- (26) (a) Mayr, H.; Klein, H. J. Org. Chem. 1981, 46, 4097. (b) Mayr, H.; Klein, H. Chem Ber. 1982, 115, 3528.
- (27) Mayr, H.; Seitz, B.; Halberstadt-Kausch, I. K. J. Org. Chem. 1981, 46. 1041.
- (28) Mayr, H. Habilitationsschrift, Universität Erlangen-Nürnberg, 1980.

not completely clear. Addition of 1m to ethyl vinyl ether (2g) must be a reversible process since the concentration of 1m in the reaction mixture goes through a minimum at short reaction times. Addition product 3ff, which was not isolated in substance but degraded to cinnamaldehyde, was accompanied by a variety of side products, which have not been identified since they were formed in small quantities.

## Discussion

The matrix presentation in Table III summarizes the above results and the 1:1 product yields of addition reactions with prenyl chloride (1f) and 1,1-dimethyl-3phenylpropargyl chloride (1g). When the alkyl halides 1 are arranged vertically according to increasing solvolysis rates (Table I) and the alkenes are ordered horizontally in a way that solvolysis rates of the 1:1 addition products increase from left to right, a diagonal results which correlates addends and products of equal solvolysis rates. This diagonal separates Table III into a lower left section where the formation of 1:1 products is observed and an upper right section where polymerization of the alkenes takes place. Our prediction<sup>7</sup>-formation of 1:1 products only if educts dissociate faster than products-is thus verified.

However, the impressive presentation in Table III is only possible when the addition reactions of trityl chloride are not included. From solvolysis rates, one would derive that trityl chloride (1k) is more reactive than 1a-j and therefore should vield 1:1 products with 2a-f. In contrast to this expectation, isoprene (2e) polymerizes when treated with 1k and ZnCl<sub>2</sub>-Et<sub>2</sub>O, indicating that allyl chlorides of the prenyl type are more reactive than 1k. The observation that trityl chloride (1k), in contrast to 1h or 1i, does not react with isobutene (2c) or  $\alpha$ -methylstyrene (2f) at -78 °C also indicates that solvolysis rates are not the only factor determining relative addition rates. We attribute the low reactivity of trityl chloride (1k) to steric hindrance in the addition transition state. Resonance stabilization of the trityl cation cannot be the determining factor, since  $\alpha$ -methoxybenzyl chloride (1m), which forms an even more electronically stabilized carbenium ion, reacts readily with all alkenes 2a-g.

The operation of steric effects is also realized in other cases. The 10% solvolysis rate difference between tertbutyl chloride (1d) and  $\alpha$ -phenylethyl chloride (1e) can hardly explain that le gives good yields of 1:1 products with isobutene and styrene whereas 1d does not. More plausible is the assumption that the attack of the secondary 1-phenylethyl cation at an olefin is sterically less hindered than the attack of the *tert*-butyl cation.

However, the clear diagonal dividing Table III indicates that steric effects can often be neglected. The reason is that solvolysis rates in Table I span a range of  $\sim 12$  powers of 10, corresponding to 11 kcal/mol at -78 °C. Therefore, steric effects have only to be considered if very bulky systems are involved or if systems with closely similar solvolysis rates are compared.

Besides steric effects we have to consider another factor which limits the scope of our predictions. The approximation that the relative magnitudes of  $(\Delta G^*_2)_A$  and  $(\Delta G^*_2)_{\rm B}$  are reflected by the energy ordering of A<sup>+</sup> and B<sup>+</sup> will be valid if A<sup>+</sup> and B<sup>+</sup> are high-energy intermediates (Figure 1). The smaller  $(\Delta G^*_1)_A$  and  $(\Delta G^*_1)_B$  become, either by going into highly ionizing reaction media or by going to better stabilized carbenium ions, the less reliable solvolysis data for estimating the relative magnitudes of  $(\Delta G_{2}^{*})_{A}$  and  $(\Delta G_{2}^{*})_{B}$  will be. It can be derived that the above rules even have to be reversed if dissociation of RX becomes exothermic (stable ion conditions).

 Table III. Yields of 1:1 Products from Lewis Acid Catalyzed Addition Reactions of Alkyl Halides with Alkenes (Predictions in Parentheses)

|                                          | alkene |                  |                  |                  |      |            |     |
|------------------------------------------|--------|------------------|------------------|------------------|------|------------|-----|
|                                          | _/     |                  | $\neq$           | Ph               |      |            |     |
| RCl                                      | 2a     | 2b               | 2c               | 2d               | 2e   | 2 <b>f</b> | 2g  |
| (CH <sub>3</sub> ),CHCl (1a)             | 0      | 0                | 0                | (0)              | 0    | 0          | (0) |
| $(CH_{4})_{3}$ CCl (1d)                  | 41     | 35               | 0                | 0                | 0    | (0)        | (0) |
| PhCH(CH <sub>3</sub> )Cl (1e)            | 52     | 50               | 71               | 72               | 0    | Ó          | (0) |
| $(CH_{3})$ , C=CHCH, Cl (1f)             | 3222   | $27^{23}$        | 65 <sup>22</sup> | 7522             | 1024 | 022        | 022 |
| PhC≡CC(CH <sub>2</sub> ),Cl (1g)         | 6725   | 46 <sup>26</sup> | 93 <sup>27</sup> | 91 <sup>28</sup> | 6726 | 028        | 028 |
| $PhC(CH_{1}), Cl(1h)$                    | 58     | 65               | 71               | 71               | 64   | 58         | 1 0 |
| Ph, CHCl (1i)                            | 92     | 85               | 97               | 88               | 82   | 75         | 0   |
| CH <sub>1</sub> OCH <sub>2</sub> Cl (1j) | 47     | 70               | 60               | 75               | 64   | 37         | 0   |
| CH, OCH(Ph)Cl (1m)                       | 78     | 65               | 90               | 57               | 52   | 69         | 68  |

Generally, reliable predictions are possible for those addition reactions where the dissociation step is the main contributor to the activation energy of the overall process. If the addition products undergo rapid sequence reactions (e.g., eliminations and cyclizations), application of the above rules is not possible.

In order to include steric effects as well as widely dissociated reaction systems, we are going to directly determine relative magnitudes of  $(\Delta G^*_2)_R$  for various alkyl halides. Until these new data become available, we recommend solvolysis rates as a guide for synthesis planning with aliphatic Friedel-Crafts reactions.

### **Experimental Section**

General Methods. Infrared spectra were recorded on a Beckmann Acculab 1 IR spectrophotometer. <sup>1</sup>H NMR spectra were taken in carbon tetrachloride on a JEOL JNM-C-60-HL spectrometer and <sup>13</sup>C NMR spectra on a JEOL JNM-PS-100 spectrometer. Chemical shifts  $(\delta)$  were recorded relative to  $(CH_3)_4$ Si as an internal standard.

It was advantageous to use  $ZnCl_2$  in a homogeneous solution. For this purpose 50 g of  $ZnCl_2$  (commercial quality, Merck) was dissolved in 60 mL of ether. This solution (referred to as  $ZnCl_2-Et_2O$  in the following) can be diluted with  $CH_2Cl_2$ . Precipitates, sometimes formed at 20 °C, are mostly dissolved at low temperature.

tert-Butyl Chloride (1d) and Propene (2a). A solution of 1.85 g (20.0 mmol) of 1d in 10 mL of  $CH_2Cl_2$  was added to a solution of 4 mL of  $ZnCl_2$ -Et<sub>2</sub>O and 1.68 g (39.9 mmol) of 2a in 45 mL of  $CH_2Cl_2$  at -78 °C. The mixture was allowed to stand at 0 °C for 17 h, washed with aqueous ammonia and dried. The solvent was evaporated and the remaining oil was distilled to give 2-chloro-4,4-dimethylpentane 3a: 1.1 g (41%); bp (bath) 45-50 °C (40 mmHg) [lit.<sup>29</sup> bp 45 °C (39 mmHg)]; <sup>1</sup>H NMR  $\delta$  0.99 (s, 9 H), 1.4-2.1 (m, 5 H), 4.06 (m, 1 H). Anal. Calcd for  $C_7H_{15}Cl$ : C, 62.44; H, 11.23. Found: C, 62.58; H, 11.32.

*tert*-Butyl Chloride (1d) and 1,3-Butadiene (2b). Compounds 1d (5.0 g, 54 mmol) and 2b (3.0 g, 55 mmol) dissolved in 60 mL of CH<sub>2</sub>Cl<sub>2</sub> reacted at -30 °C in the presence of 4 mL of ZnCl<sub>2</sub>-Et<sub>2</sub>O to give 1.6 g (20%) 1-chloro-5,5-dimethyl-2-hexene (3b): bp (bath) 50-65 °C (4 mmHg) [lit.<sup>10</sup> bp 47-47.5 (10 mmHg)]; <sup>1</sup>H NMR  $\delta$  0.92 (s, 9 H), 1.95 (br d, J = 6.0 Hz, 2 H), 3.99 (br d, J = 6Hz, 2 H), 5.68 (m, 2 H); IR (neat) 965 cm<sup>-1</sup> (trans olefin); mass spectrum (70 eV), m/e (relative intensity) 146, 148 (10, 3, M<sup>+</sup>), 95 (98), 57 (100). Anal. Calcd for C<sub>8</sub>H<sub>15</sub>Cl: C, 65.51; H, 10.31. Found: C, 65.71; H, 10.58.

1-Chloro-1-phenylethane (1e) and Propene (2a). A solution of 2.8 g (20 mmol) of 1e in 10 mL of  $CH_2Cl_2$  was added to a solution of 4 mL of  $ZnCl_2$ -Et<sub>2</sub>O and 2.5 g (59 mmol) of 2a in 35 mL of  $CH_2Cl_2$  at -78 °C and warmed up to 0 °C. After 15 h the mixture was worked up as above to give 2-chloro-4-phenylpentane

(29) Whitmore, F. C.; Noll, C. I.; Heyd, J. W.; Surmatis, J. D. J. Am Chem. Soc. 1941, 63, 2028. (3c): 1.9 g (52%); bp (bath) 50–62 °C (0.003 mmHg). The mixture of two diastereomers was not separated: <sup>1</sup>H NMR  $\delta$  0.7–1.6 (m, 6 H), 1.65–2.3 (m, 2 H), 2.94 (br sextet, 1 H), 3.9 (m, 1 H), 7.18 and 7.20 (2 s, 5 H); mass spectrum (96 eV), m/e (relative intensity) 182, 184 (33, 10, M<sup>+</sup>), 105 (100). Anal. Calcd for C<sub>11</sub>H<sub>15</sub>Cl: C, 72.31; H, 8.28. Found: C, 72.95; H, 8.50.

1-Chloro-1-phenylethane (1e) and 1,3-Butadiene (2b). Compounds 2b (2.16 g, 39.9 mmol) and 1e (5.60 g, 40.0 mmol) were added to 4 mL of ZnCl<sub>2</sub>-Et<sub>2</sub>O in 65 mL of CH<sub>2</sub>Cl<sub>2</sub> and kept at -30 °C for 22 h. An ordinary workup yielded 3.88 g (50%) of 1-chloro-5-phenyl-2-hexene (3d) and 3-chloro-5-phenyl-1-hexene (3d') (77:23): bp (bath) 55-65 °C (0.01 mmHg) [lit.<sup>14a</sup> bp 100-110 °C (4 mm Hg)]. Fractionated distillation yielded pure 3d as the higher boiling isomer: bp (bath) 60-65 °C (0.01 mmHg); <sup>1</sup>H NMR  $\delta$  1.24 (d, J = 7 Hz, 3 H), 2.15-2.50 (m, 2 H), 2.5-3.0 (m, 1 H), 3.89 (split d, J = 6 Hz, 2 H), 5.6 (m, 2 H); mass spectrum (96 eV), m/e (relative intensity) 194 (1, M<sup>+</sup>), 158 (3), 143 (3), 105 (100). Anal. Calcd for C<sub>12</sub>H<sub>15</sub>Cl: C, 74.03; H, 7.77. Found: C, 73.96; H, 7.64.

3d': <sup>1</sup>H NMR  $\delta$  1.24 (d, J = 7 Hz), 1.8–2.4 (m), 3.8–4.3 (m), 4.9–5.3 (m), other signals masked by 3d absorptions.

1-Chloro-1-phenylethane (1e) and Isobutene (2c). 2-Chloro-2-methyl-4-phenylpentane (3e; 2.8 g, 71%) was obtained from the ZnCl<sub>2</sub>-Et<sub>2</sub>O (4 mL) catalyzed reaction of 2c (1.1 g, 20 mmol) with 1e (2.8 g, 20 mmol) in 45 mL of CH<sub>2</sub>Cl<sub>2</sub> at -78 °C (4 days): bp (bath) 32-34 °C (10<sup>-4</sup> mmHg); <sup>1</sup>H NMR  $\delta$  1.29 (d, J = 7 Hz, 3 H), 1.36 (s, 3 H), 1.47 (s, 3 H), 2.13, 2.14 (2 d, J = 6, 7 Hz, 2 H), 3.08 (br sextet,  $J \approx 7$  Hz, 1 H), 7.18 (s, 5 H); mass spectrum (70 eV), m/e (relative intensity) 196, 198 (4.3, 1.3, M<sup>+</sup>), 145 (100). Anal. Calcd for C<sub>12</sub>H<sub>17</sub>Cl: C, 73.26; H, 8.71. Found: C, 73.75; H, 8.80.

1-Chloro-1-phenylethane (1e) and Styrene (2d). A solution of 1e (5.6 g, 40 mmol) in 20 mL of  $CH_2Cl_2$  was added to a solution of 2d (4.2 g, 40 mmol) and  $ZnCl_2-Et_2O$  (8 mL) in 80 mL of  $CH_2Cl_2$ at -78 °C. The mixture was warmed to 0 °C and after 22 h washed with aqueous ammonia. Distillation yielded 7.0 g (72%) 1chloro-1,3-diphenylbutane (3f), a mixture of two diastereomers: bp (bath) 78-85 °C (0.001 mmHg); <sup>1</sup>H NMR  $\delta$  1.23, 1.30 (2 d, J = 8 Hz, 3 H), 2.3 (m, 2 H), 3.1 (m, 1 H), 4.5 (m, 1 H), 7.2 (m, 10 H); mass spectrum (96 eV), m/e (relative intensity) 244, 246 (3, 1, M<sup>+</sup>), 105 (100). Anal. Calcd for  $C_{16}H_{17}Cl$ : C, 78.51; H, 7.00. Found: C, 78.34; H, 6.93.

1-Chloro-1-phenylethane (1e) and  $\alpha$ -Methylstyrene (2f). Compound 1e (11 g, 78 mmol) was added to a mixture of 2f (9.4 g, 80 mmol) and ZnCl<sub>2</sub> (120 mg) and kept at 50 °C for 4 h. A workup as described in the literature<sup>14a</sup> gave 0.7 g of 1e, 7.5 g (80%) of 6, and polymeric material. 1,1,3-Trimethyl-3-phenylindan (6): bp (bath) 100–120 °C (0.05 mmHg); <sup>1</sup>H NMR<sup>30</sup>  $\delta$  1.03 (s, 3 H), 1.32 (s, 3 H), 1.63 (s, 3 H), 2.15 and 2.40 (AB system, J = 13 Hz, 2 H).

Cumyl Chloride (1h) and Propene (2a). A 1 M BCl<sub>3</sub> solution in  $CH_2Cl_2$  (2 mL) was added to a solution of 2a (2.1 g, 50 mmol) in 30 mL of  $CH_2Cl_2$  at -78 °C. 1h (3.1 g, 20 mmol) dissolved in 20 mL of  $CH_2Cl_2$  was added dropwise and the resulting solution kept at -78 °C for 6 h. The solution was poured onto water, washed  $(2 \times 25 \text{ mL of } H_2O)$ , and dried (CaCl<sub>2</sub>). Distillation yielded 3.0 g of a colorless oil, bp (bath) 48-60 °C (0.02 mmHg). HPLC (silica gel, petroleum ether) gave 1.7 g (43%) of **3i** and 0.6 g (15%) of 7. 2-Chloro-4-methyl-4-phenylpentane (**3i**): <sup>1</sup>H NMR  $\delta$  1.26 (d, J = 7 Hz, 3 H), 1.33 (s, 3 H), 1.44 (s, 3 H), 2.13 (d, J = 6 Hz, 2 H), 3.74 (sextet, J = 6.3 Hz, 1 H), 7.24 (br s, 5 H); mass spectrum (70 eV), m/e (relative intensity) 198, 196 (8, 25, M<sup>+</sup>), 160 (10), 145 (29), 119 (100).

2-Chloro-2-methyl-3-phenylpentane (7): <sup>1</sup>H NMR  $\delta$  0.73 (t, J = 7 Hz, 3 H), 1.44 (s, 3 H), 1.49 (s, 3 H), 1.6–2.3 (m, 2 H), 2.65 (dd, J = 11.4, 3.4 Hz, 1 H), 7.24 (s, 5 H); mass spectrum (70 eV), m/e (relative intensity) 198, 196 (4, 12, M<sup>+</sup>), 160 (59), 145 (65), 131 (96), 119 (100). Anal. Calcd for C<sub>12</sub>H<sub>17</sub>Cl: C, 73.27; H, 8.71. Found: C, 72.86; H, 8.65.

Cumyl Chloride (1h) and 1,3-Butadiene (2b). A 1 M BCl<sub>3</sub> solution in CH<sub>2</sub>Cl<sub>2</sub> (2 mL) was added to a solution of **2b** (1.6 g, 30 mmol) in 30 mL of CH<sub>2</sub>Cl<sub>2</sub> at -78 °C. After dropwise addition of **1h** (3.1 g, 20 mmol) the mixture was allowed to stand at -78 °C for 17 h, and the reaction was stopped with water as described above. Distillation yielded 2.7 g (65%) of (*E*)-1-chloro-5-methyl-5-phenyl-2-hexene (**3**): bp (bath) 65-80 °C (0.01 mmHg); <sup>1</sup>H NMR  $\delta$  1.30 (s, 6 H), 2.33 (m, 2 H), 3.83 (m, 2 H), 5.45 (m, 2 H), 7.18 (br s, 5 H); IR (neat) 968 cm<sup>-1</sup> (trans-alkene); mass spectrum (96 eV), m/e (relative intensity) 208, 210 (0.7, 0.2, M<sup>+</sup>), 172 (2), 157 (3), 119 (100). Anal. Calcd for C<sub>13</sub>H<sub>17</sub>Cl: C, 74.80; H, 8.21. Found: C, 75.03; H, 7.81.

Cumyl Chloride (1h) and Isobutene (2c). A solution of 1h (3.1 g, 20 mmol) in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> was added dropwise within 0.5 h to a cooled (-78 °C) solution of 2c (2.2 g, 39 mmol) and ZnCl<sub>2</sub>-Et<sub>2</sub>O (4 mL) in 35 mL of CH<sub>2</sub>Cl<sub>2</sub>. After 4 h at -78 °C the mixture was worked up as described to give 3.0 g (71%) 2-chloro-2,4-dimethyl-4-phenylpentane (3k): bp (bath) 64-69 °C (0.1 mmHg); <sup>1</sup>H NMR  $\delta$  1.29 (s, 6 H), 1.46 (s, 6 H), 2.36 (s, 2 H), 7.0-7.5 (m, 5 H); mass spectrum (96 eV), m/e (relative intensity) 210 (1.3, M<sup>+</sup>), 119 (100). Anal. Calcd for C<sub>13</sub>H<sub>19</sub>Cl: C, 74.09; H, 9.09. Found: C, 74.56; H, 9.09.

Cumyl Chloride (1h) and Styrene (2d). A solution of 1h (3.1 g, 20 mmol) and 2d (2.1 g, 20 mmol) in 20 mL of CH<sub>2</sub>Cl<sub>2</sub> was added dropwise to a solution of  $\text{ZnCl}_2-\text{Et}_2O$  (4 mL) in 35 mL of CH<sub>2</sub>Cl<sub>2</sub> at -78 °C. After 15 h at -78 °C the mixture was worked up as described to give 3.68 g (71%) 1-chloro-3-methyl-1,3-diphenylbutane (3l): bp (bath) 82-98 °C (0.001 mmHg); <sup>1</sup>H NMR  $\delta$  1.14 (s, 3 H), 1.41 (s, 3 H), 2.52 (d, J = 6 Hz, 2 H), 4.51 (t, J = 6 Hz, 1 H), 7.14 (s, 5 H), 7.22 (s, 5 H); mass spectrum (70 eV), m/e (relative intensity) 258, 260 (10, 3, M<sup>+</sup>), 207 (53), 119 (100). Anal. Calcd for C<sub>17</sub>H<sub>19</sub>Cl: C, 78.90; H, 7.40. Found: C, 78.45; H, 7.16.

Cumyl Chloride (1h) and Isoprene (2e).  $ZnCl_2-Et_2O$  (4 mL) was dissolved in 30 mL of  $CH_2Cl_2$  and cooled to -78 °C. Solutions of 1h (3.1 g, 20 mmol) in 10 mL of  $CH_2Cl_2$  and 2e (1.4 g, 20 mmol) in 10 mL of  $CH_2Cl_2$  and 2e (1.4 g, 20 mmol) in 10 mL of  $CH_2Cl_2$  were successively added, each within 20 min. After being allowed to stand 4 h at -78 °C, the mixture was worked up as described to give 2.83 g (64%) of (*E*)-1-chloro-3,5-dimethyl-5-phenyl-2-hexene (3m): bp (bath) 55-62 °C (0.001 mmHg); <sup>1</sup>H NMR  $\delta$  1.24 (d, J = 1 Hz, 3 H), 1.32 (s, 6 H), 2.34 (s, 2 H), 3.91 (d, J = 8 Hz, 2 H), 5.30 (br t, J = 8 Hz, 1 H), 7.0-7.4 (m, 5 H); mass spectrum (70 eV), m/e (relative intensity) 222, 224 (0.7, 0.2, M<sup>+</sup>), 186 (16), 119 (100). Anal. Calcd for  $C_{14}H_{19}Cl$ : C, 75.48; H, 8.60. Found: C, 75.82; H, 8.87.

Cumyl Chloride (1h) and  $\alpha$ -Methylstyrene (2f). Compound 1h (3.9 g, 25 mmol) dissolved in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> was added (10 min) to a precooled (-78 °C) solution of ZnCl<sub>2</sub>-Et<sub>2</sub>O (10 mL) in 40 mL of CH<sub>2</sub>Cl<sub>2</sub>. Subsequently, a solution of 2f (2.95 g, 25 mmol) in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> was added within 30 min, and the resulting mixture was kept at -78 °C for 17 h to give 4-methyl-2,4-diphenyl-1-pentene (8): 3.4 g (58%); bp (bath) 75-82 °C (10<sup>-4</sup> mmHg); <sup>1</sup>H NMR  $\delta$  1.22 (s, 6 H), 2.80 (s, 2 H), 4.75 (br s, 1 H), 5.08 (br s, 1 H), 7.16 (m, 10 H); mass spectrum (70 eV), m/e(relative intensity) 236 (87, M<sup>+</sup>), 119 (100). Anal. Calcd for C<sub>18</sub>H<sub>20</sub>: C, 91.47; H, 8.53. Found: C, 90.99; H, 8.73.

Chlorodiphenylmethane (1i) and Propene (2a). A solution of 1i (4.04 g, 19.9 mmol) in 10 mL of  $CH_2Cl_2$  was added dropwise to a solution of  $ZnCl_2-Et_2O$  (4 mL) and 2a (2.04 g, 48.5 mmol) in 35 mL of  $CH_2Cl_2$  at -78 °C. The solution was allowed to warm to 2 °C within 18 h, was washed with aqueous ammonia, and was dried. Removal of solvent and recrystallization from ether-petroleum ether gave 4.50 g (92%) of 2-chloro-4,4-diphenylbutane (**3n**): mp 71 °C; <sup>1</sup>H NMR  $\delta$  1.49 (d, J = 7 Hz, 3 H), 2.35 (t, J = 7 Hz, 2 H), 3.72 (sextet, J = 7 Hz, 1 H), 4.27 (t, J = 7 Hz, 1 H), 7.23 (br s, 10 H); mass spectrum (70 eV), m/e (relative intensity) 244, 246 (12, 4, M<sup>+</sup>), 167 (100). Anal. Calcd for C<sub>16</sub>H<sub>17</sub>Cl: C, 78.51; H, 7.00. Found: C, 78.83; H, 7.18.

Chlorodiphenylmethane (1i) and 1,3-Butadiene (2b). A solution of 1i (4.04 g, 19.9 mmol) in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> was added dropwise to a solution of 2b (3.24 g, 59.9 mmol) and 4 mL ZnCl<sub>2</sub>-Et<sub>2</sub>O in 45 mL CH<sub>2</sub>Cl<sub>2</sub> at -78 °C. After being allowed to stand 4 days at -78 °C, the solution was washed with aqueous ammonia and dried. Evaporation of the solvent and distillation yielded 4.35 g (85%) of 1-chloro-5,5-diphenyl-2-pentene (30) and 3-chloro-5,5-diphenyl-1-pentene (3o') (57:43), bp (bath) 115-130 °C ( $10^{-4}$  mmHg). Pure 30 was obtained when 1.0 g of the 30/30'mixture in 12 mL of  $CH_2Cl_2$  was treated with 3 mL of  $ZnCl_2$ -Ét<sub>2</sub>O (9 h, 0 °C). 30: mp 40-45 °C (petroleum ether) <sup>1</sup>H NMR  $\delta$  2.74 (m, 2 H), 3.7-4.15 (m, 3 H), 5.55 (m, 2 H), 7.18 (s, 10 H); mass spectrum (96 eV), m/e (relative intensity) 256, 258 (3, 1, M<sup>+</sup>), 165 (100). Anal. Calcd for C<sub>17</sub>H<sub>17</sub>Cl: C, 79.52; H, 6.67. Found: C, 79.90; H, 6.91. 30': <sup>1</sup>H NMR  $\delta$  2.46 (t, J = 7.5 Hz, 2 H), 4.21 (t, J = 7.5 Hz, 1 H), 4.9–5.3 (m, =-CH<sub>2</sub>), 5.88 (ddd, J = 17, 10, 8 Hz, 1 H), other signals masked.

Chlorodiphenylmethane (1i) and Isobutene (2c). Compound 1i (4.4 g, 22 mmol) was dissolved in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> and added slowly to a solution of 2c (1.2 g, 22 mmol) and ZnCl<sub>2</sub>-Et<sub>2</sub>O (4 mL) in 45 mL of CH<sub>2</sub>Cl<sub>2</sub> at -78 °C. A workup after 15 h at -78 °C gave 5.5 g (97%) of 2-chloro-2-methyl-4,4-diphenylbutane (**3p**): mp 44-45 °C (ether-petroleum ether); <sup>1</sup>H NMR  $\delta$  1.38 (s, 6 H), 2.58 (d, J = 6 Hz, 2 H), 4.32 (t, J = 6 Hz, 1 H), 7.22 (m, 10 H); mass spectrum (96 eV), m/e (relative intensity) 258, 260 (15, 5, M<sup>+</sup>), 167 (100). Anal. Calcd for C<sub>17</sub>H<sub>19</sub>Cl: C, 78.90; H, 7.40. Found: C, 79.02; H, 7.31.

Chlorodiphenylmethane (1i) and Styrene (2d). A solution of 2d (2.08 g, 20.0 mmol) in 10 mL of  $CH_2Cl_2$  was slowly added to a solution of 1i (4.04 g, 19.9 mmol) and  $ZnCl_2-Et_2O$  (4 mL) in 45 mL of  $CH_2Cl_2$  at -78 °C. After 15 h at -78 °C the mixture was worked up to give 5.38 g (88%) of 1-chloro-1,3,3-triphenylpropane (3q): mp 95–96 °C (ether) (lit.<sup>15</sup> mp 97–98 °C); <sup>1</sup>H NMR, see ref 15.

Chlorodiphenylmethane (1i) and Isoprene (2e). A solution of 2e (2.04 g, 30.0 mmol) in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> was added dropwise to a solution of ZnCl<sub>2</sub>-Et<sub>2</sub>O (4 mL) and 1i (6.06 g, 29.9 mmol) in 25 mL of CH<sub>2</sub>Cl<sub>2</sub> and allowed to stand 6 h at -78 °C. The solution was washed with aqueous ammonia, dried, and distilled to give (*E*)-1-chloro-3-methyl-5,5-diphenyl-2-pentene (3r): 6.60 g (82%); bp (bath) 120-135 °C ( $10^{-4}$  mmHg); <sup>1</sup>H NMR  $\delta$  1.63 (br s, 3 H), 2.74 (br d, J = 8 Hz, 2 H), 3.83 (d, J = 8 Hz, 2 H), 4.09 (t, J = 8 Hz, 1 H), 5.26 (br t, J = 8 Hz, 1 H), 7.1 (s, 10 H); mass spectrum (96 eV), m/e (relative intensity) 270 (1, M<sup>+</sup>), 234 (38), 167 (100). Anal. Calcd for C<sub>18</sub>H<sub>19</sub>Cl: C, 79.83; H, 7.07. Found: C, 80.17; H, 7.12.

**Chlorodiphenylmethane** (1i) and  $\alpha$ -Methylstyrene (2f). (a) A solution of 2f (2.36 g, 20.0 mmol) in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> was added slowly (1 h) to a solution of 2 mL of ZnCl<sub>2</sub>-Et<sub>2</sub>O and 1i (4.04 g, 19.9 mmol) in 50 mL of CH<sub>2</sub>Cl<sub>2</sub> at -78 °C. After 10 min the solution was washed with aqueous ammonia and dried and the solvent evaporated to give 2-chloro-2,4,4-triphenylbutane (3s) contaminated by some 1i: <sup>1</sup>H NMR  $\delta$  1.67 (s, 3 H), 2.97 (d, J =6 Hz, 2 H), 3.99 (t, J = 6 Hz, 1 H), 6.8-7.5 (mc). 3s, which was formed in 75% yield according to NMR, was identified by the following elimination reaction.

The crude product and 6.0 g (53 mmol) of KO-t-Bu in 40 mL of tert-butyl alcohol were heated at reflux for 6 h. H<sub>2</sub>O (20 mL) was added and the mixture extracted with 40 mL of CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was dried over CaCl<sub>2</sub>, the solvent evaporated, and the residue distilled to give **2,4,4-triphenyl-1-butene**: 4.1 g (72%); bp (bath) 150–160 °C (0.03 mmHg); <sup>1</sup>H NMR  $\delta$  3.19 (br d, J = 7.5 Hz, 2 H), 4.01 (br t, J = 7.5 Hz, 1 H), 4.79 (br s, 1 H), 5.07 (br s, 1 H), 7.12 (s, 10 H), 7.23 (s, 5 H); mass spectrum (70 eV), m/e (relative intensity) 284 (8, M<sup>+</sup>), 269 (3), 193 (8), 167 (100). Anal. Calcd for C<sub>22</sub>H<sub>20</sub>: C, 92.91; H, 7.09. Found: C, 93.30; H, 7.12.

(b) Solutions of 2f (2.36 g, 20.0 mmol) in 10 mL of  $CH_2Cl_2$  and 1i (4.04 g, 19.9 mmol) in 10 mL of  $CH_2Cl_2$  were subsequently added

## Aliphatic Friedel-Crafts Alkylations

to  $\text{ZnCl}_2-\text{Et}_2\text{O}$  (4 mL) in 35 mL of  $\text{CH}_2\text{Cl}_2$  at -78 °C. After 18 h the mixture was worked up as described and gave 2.29 g (47%) of 3-chloro-1,1,3,5,5-pentaphenylpentane (10): needles; mp 146-150 °C (ether); <sup>1</sup>H NMR  $\delta$  2.87, 2.83 (2 d, J = 6 Hz, 4 H), 4.05 (br t, J = 6 Hz, 2 H), 6.7-7.5 (m, 25 H); mass spectrum (70 eV), m/e (relative intensity) 486 (0.2, M<sup>+</sup>), 450 (44), 284 (39), 283 (29), 282 (21), 270 (64), 269 (100). Anal. Calcd for  $C_{35}H_{31}$ Cl: C, 86.30; H, 6.42. Found: C, 86.20; H, 6.28.

Chloromethyl Methyl Ether (1j) and  $\alpha$ -Methylstyrene (2f). A solution of 2f (4.7 g, 40 mmol) in 20 mL of CH<sub>2</sub>Cl<sub>2</sub> was added dropwise to a solution of ZnCl<sub>2</sub>-Et<sub>2</sub>O (2 mL) and 1j (6.4 g, 80 mmol) in 70 mL of CH<sub>2</sub>Cl<sub>2</sub>. After being allowed to stand 21 h at -78 °C, the mixture was worked up to give 2.9 g (37%) of 2-chloro-2-phenyl-4-methoxybutane (3y): bp (bath) 45-50 °C (0.01 mmHg); <sup>1</sup>H NMR  $\delta$  1.94 (s, 3 H), 2.38 (t, J = 7 Hz, 2 H), 3.19 (s, 3 H), 3.40 (t, J = 7 Hz, 2 H), 7.1-7.7 (m, 5 H); mass spectrum (70 eV), m/e (relative intensity) 198 (2, M<sup>+</sup>), 162 (30), 147 (59), 132 (100). Anal. Calcd for C<sub>11</sub>H<sub>15</sub>ClO: C, 66.49; H, 7.61. Found: C, 66.19; H, 7.26.

Trityl Chloride (1k) and Isobutene (2c). Solutions of  $ZnCl_2-Et_2O$  (4 mL) in 4 mL of  $CH_2Cl_2$  and 1k (4.96 g, 17.8 mmol) in 10 mL of  $CH_2Cl_2$  were added successively to a solution of 2c (1.00 g, 17.8 mmol) in 40 mL of  $CH_2Cl_2$  at -78 °C. The mixture was warmed up slowly, kept at 0 °C for 15 h, and worked up as described to give 5.3 g of crude product. Chromatographic separation (silica gel;  $CH_2Cl_2$ /petroleum ether, 1:3) yielded 1.1 g (21%) 1,1-dimethyl-3,3-diphenylindan [13:<sup>31</sup> <sup>1</sup>H NMR  $\delta$  1.17 (s, 6 H), 2.88 (s, 2 H), 7.14 (s, ~10 H), 7.19 (s, ~4 H)], 0.95 g (22%) of triphenylmethane, 0.44 g (8%) of 2-methyl-4,4-triphenyl-1-butene [12: <sup>1</sup>H NMR  $\delta$  1.41 (s, 3 H), 3.32 (s, 2 H),4.24 (br s, 1 H), 4.62 (br s, 1 H), 6.0–7.3 (m, 15 H)], and triphenylmethanol contaminated by high molecular weight compounds.

 $\alpha$ -Methoxybenzyl Chloride (1m) and Propene (2a). When a solution of 1m (3.1 g, 20 mmol) in 20 mL of CH<sub>2</sub>Cl<sub>2</sub> was added dropwise to a solution of 2a (2.1 g, 50 mmol) and 2 mL of ZnCl<sub>2</sub>-Et<sub>2</sub>O in 30 mL of CH<sub>2</sub>Cl<sub>2</sub> at -30 °C, a colorless precipitate formed. After 2 h the mixture was warmed to 0 °C; the precipitate dissolved, and the mixture turned brownish. After 1 h the reaction was stopped by pouring it onto aqueous ammonia. The organic layer was washed with NaHSO<sub>3</sub> solution and water and dried, and the solvent was evaporated to give 3.0 g of crude product. HPLC (silica gel; ether/petroleum ether, 7.5:92.5) yielded 535 mg (16%) of 14, 743 mg (19%) of 3z, and 1.69 g (43%) of 3z' (increasing retention times).

**1-Chloro-1-phenylbutane (14):** bp (bath) 50–60 °C (0.03 mmHg); <sup>1</sup>H NMR (100 MHz)  $\delta$  0.92 (t, J = 7 Hz, 3 H), 1.5 (m, 2 H), 2.0 (m, 2 H), 4.77 (t, J = 7 Hz, 1 H), 7.28 (m, 5 H); <sup>13</sup>C NMR  $\delta$  13.4, 20.3, 42.0, 63.5, 126.9 (double intensity), 128.1, 128.5 (double intensity), 141.9; mass spectrum (70 eV), m/e (relative intensity) 168, 170 (27, 8, M<sup>+</sup>), 133 (100), 125 (87), 91 (90), 77 (22).

**2-Chloro-4-methoxy-4-phenylbutane (isomer 1, 3z)**: bp (bath) 44-48 °C (0.03 mmHg); <sup>1</sup>H NMR (100 MHz)  $\delta$  1.47 (d, J = 7 Hz, 3 H), 1.5-2.1 (m, 2 H), 3.16 (s, 3 H), 4.2-4.4 (m, 2 H), 7.27 (br s, 5 H); <sup>13</sup>C NMR  $\delta$  25.7, 49.4, 55.5, 56.8, 80.6, 126.3 (double intensity), 127.6 128.5 (double intensity), 141.8; mass spectrum (70 eV), m/e (relative intensity) 198, 200 (0.3, 0.1, M<sup>+</sup>), 162 (0.2), 161 (0.2), 147 (0.3), 121 (100). Anal. Calcd for C<sub>11</sub>H<sub>15</sub>ClO: C, 66.49; H, 7.61. Found: C, 66.58; H, 7.39.

**2-Chloro-4-methoxy-4-phenylbutane (isomer 2, 3z'):** bp (bath) 44-48 °C (0.03 mmHg); <sup>1</sup>H NMR (100 MHz)  $\delta$  1.44 (d, J = 6.5 Hz, 3 H), 1.8 (m, 1 H), 2.25 (m, 1 H), 3.08 (s, 3 H), 3.69 (m, 1 H), 4.24 (br t, J = 7 Hz, 1 H), 7.20 (s, 5 H); <sup>13</sup>C NMR  $\delta$  25.2, 48.1, 54.8, 56.3, 81.3, 126.8 (double intensity), 127.9, 128.5 (double intensity), 140.8; mass spectrum (70 eV), m/e (relative intensity) 198, 200 (0.3, 0.1, M<sup>+</sup>), 162 (0.2), 161 (0.2), 147 (0.3), 121 (100).

α-Methoxybenzyl Chloride (1m) and Isobutene (2c). At -78 °C 2c (2.7 g, 50 mmol) was added to a solution of 2.5 mL of ZnCl<sub>2</sub>-Et<sub>2</sub>O in 40 mL of CH<sub>2</sub>Cl<sub>2</sub>. Subsequently, a solution of 1m (3.1 g, 20 mmol) in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> was added dropwise. A yellow precipitate, which was formed during this procedure, dissolved when the reaction mixture was stirred for 2 h at -78 °C. The reaction mixture was poured onto aqueous ammonia solution, washed with NaHSO<sub>3</sub> solution and water, dried, and distilled to give 2-chloro-4-methoxy-2-methyl-4-phenylbutane (**3bb**): 3.8 g (90%); bp (bath) 52-65 °C (0.02 mmHg); <sup>1</sup>H NMR δ 1.58 (s, 3 H), 1.69 (s, 3 H), 2.04 (d, J = 4 Hz, 1 H), 2.09 (d, J = 7.5 Hz, 1 H), 3.18 (s, 3 H), 4.45 (dd, J = 7.5, 4 Hz, 1 H), 7.27 (s, 5 H); mass spectrum (70 eV), m/e (relative intensity) 214, 212 (1, 4, M<sup>+</sup>), 176 (23), 121 (100). Anal. Calcd for C<sub>12</sub>H<sub>17</sub>ClO: C, 67.75; H, 8.06. Found: C, 67.88; H, 7.74.

 $\alpha$ -Methoxybenzyl Chloride (1m) and  $\alpha$ -Methylstyrene (2f). ZnCl<sub>2</sub>-Et<sub>2</sub>O (2 mL) was added to a solution of 1m (3.1 g, 20 mmol) in 40 mL of CH<sub>2</sub>Cl<sub>2</sub> at -78 °C. A solution of 2f (2.4 g, 20 mmol) in 20 mL of  $CH_2Cl_2$  was added dropwise. After 2 h at -78 °C, the solution was washed with aqueous ammonia, NaHSO3 solution, and water and dried, and the solvent was evaporated. Since distillation resulted in decomposition of the addition product, the crude material was purified by HPLC (silica gel; petroleum ether/ether, 82:18) to give 3.8 g (69%) of 3ee as a mixture of two diasteromers ( $\sim$ 5:4). HPLC of this mixture resulted in partial decomposition of the products, and only the major isomer could be obtained as a pure sample. 2-Chloro-4-methoxy-2,4-diphenylbutane (3ee): <sup>1</sup>H NMR (major isomer) δ 2.08 (s, 3 H), 2.53 (d, J = 4 Hz, 1 H), 2.60 (d, J = 8 Hz, 1 H), 2.88 (s, 3 H), 3.73 (dd, J)J = 8, 4 Hz, 1 H), 7.0–7.7 (m, 10 H); <sup>1</sup>H NMR (minor isomer)  $\delta$ 2.03 (s, 3 H), 2.37 (d, J = 4 Hz, 1 H), 2.40 (d, J = 7 Hz, 1 H), 3.18 (s, 3 H), 4.55 (dd, J = 7, 4 Hz, 1 H), 7.0-7.7 (m); mass spectrum (both isomers, 96 eV) m/e (relative intensity) 274 (0.1, M<sup>+</sup>), 238 (4), 206 (2), 121 (91), 118 (100), 117 (68). Anal. Calcd for C17H19ClO: C, 74.30; H, 6.97. Found: C, 74.59; H, 6.89.

 $\alpha$ -Methoxybenzyl Chloride (1m) and Ethyl Vinyl Ether (2g).  $2nCl_2$ -Et<sub>2</sub>O (1.4 mL) was added to a solution of 1m (4.1 g, 26 mmol) in 40 mL of  $CH_2Cl_2$  at -78 °C. A colorless precipitate formed, which dissolved when 2g (1.9 g, 26 mmol) in 20 mL of  $CH_2Cl_2$  was added dropwise within 30 min. The mixture was stirred for another 15 min, poured onto water, and extracted with concentrated NaHSO<sub>3</sub> solution. The organic layer was dried and the solvent evaporated to give 1.2 g (20%) of an oil, a mixture of six 1:1 addition products (HPLC). Acidification of the NaHSO<sub>3</sub> solution and extraction with ether yielded 0.50 g of benzaldehyde. The bisulfite solution was then treated with 2 N NaOH to give pH 12 and stirred for 4 h at 25 °C. Extraction with ether yielded a mixture of 0.33 g of benzaldehyde and 1.67 g (48%) of cinnamaldehyde.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for support.

**Registry No.** 1a, 75-29-6; 1b, 507-20-0; 1e, 672-65-1; 1h, 934-53-2; 1i, 90-99-3; 1j, 107-30-2; 1k, 76-83-5; 1m, 35364-99-9; 2a, 115-07-1; 2b, 106-99-0; 2c, 115-11-7; 2d, 100-42-5; 2e, 78-79-5; 2f, 98-83-9; 2g, 109-92-2; 3a, 33429-72-0; (E)-3b, 84803-15-6; 3c (isomer 1), 84803-16-7; 3c (isomer 2), 84803-17-8; 3d, 84803-18-9; 3d', 84803-19-0; 3e, 33484-99-0; 3f (isomer 1), 84803-20-3; 3f (isomer 2), 84803-21-4; 3i, 33484-54-7; (E)-3j, 84803-22-5; 3k, 84803-23-6; 3l, 84803-24-7; (E)-3m, 84803-25-8; 3n, 36317-61-0; 3o, 84803-26-9; 3o', 84803-27-0; 3p, 84803-25-8; 3n, 36317-61-0; (E)-3r, 84803-29-2; 3s, 84803-30-5; 3y, 84803-31-6; 3z, 84803-32-7; 3z', 84803-33-8; 3bb, 71375-49-0; 3ee (isomer 1), 84803-34-9; 2e (isomer 2), 84803-35-0; 3ff, 84803-36-1; 6, 3910-35-8; 7, 84803-37-2; 8, 6362-80-7; 9, 5424-75-9; 10, 84803-38-3; 12, 84803-39-4; 13, 84803-40-7; 14, 27059-40-1; 2,4.4-triphenyl-1-butene, 84803-41-8; ZnCl<sub>2</sub>, 7646-85-7; BCl<sub>3</sub>, 10294-34-5.

<sup>(31)</sup> Richey, H. G., Jr.; Lustgarten, R. K.; Richey, J. M. J. Org. Chem. 1968, 33, 4543.