

Tetrahedron 55 (1999) 2327-2340

TETRAHEDRON

Synthesis and Structural Studies of Some [14]Paracyclo-bis-(1,2)pyrazolium- and (1,3)imidazolium-phanes

Pilar Cabildo,^{a,*} Dionisia Sanz,^a Rosa M. Claramunt,^a Susan A. Bourne,^b Ibon Alkorta,^c and José Elguero^c

^aDepartamento de Química Orgánica y Biología, Facultad de Ciencias, UNED, Senda del Rey s/n, E-28040 Madrid, Spain ^bDepartment of Chemistry, University of Cape Town, Rondebosch 7701, South Africa ^cInstituto de Química Médica, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain

Received 11 September 1998; revised 30 November 1998; accepted 23 December 1998

Abstract.- The crystal and molecular structure of [14]paracyclo-bis-(1,2)pyrazoliumphane dibromide (1a) has been determined. The compound exists in the solid state in the chair (C) conformation while both chair (C) and boat (B) conformations are present in solution in comparable amounts. The barrier to the C \rightleftharpoons B interconversion has been determined by ¹H NMR spectroscopy ($\Delta G^{\ddagger} \approx 17$ kcal mol⁻¹). AM1 semiempirical calculations conveniently reproduce the difference in stability between the chair (C) and the boat (B) conformations. © 1999 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

Considering only consecutive situations (no Ar-Ar bonds), macrocycles of the general formula ($C_6H_4CH_2$)₄ can present twenty-one isomers. In Scheme 1 we have represented six cases, the three most regular isomers and three cases pertinent to this work, as well as the simple notation (based on *ortho*, *meta*, *para* substitution) we have introduced [a list of all the isomers (from *oooo* to *omop*) can be obtained from the authors].

Scheme 1. Six isomers of general formula (C₆H₄CH₂)₄

0040-4020/99/\$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved. *PII*: S0040-4020(99)00013-7 One of them (*mmm*) corresponds to a very well known class of compounds with representatives like calixarenes and carcerands, ¹⁻⁵ while another (*0000*) is related to cyclotetraveratrylene.⁶⁻⁹ Structure (*pppp*) corresponds to [1,1,1,1]paracyclophane, which is still unknown. The IUPAC names of these compounds are rather cumbersome, for instance, unsubstituted *0000* and *mmmm* are 5,10,15,20-tetrahydro-tetrabenzo[*a,d,g,j*]cyclodo-decene and [19.3.1.1^{3,7}.1^{9,13}.1^{15,19}]octacosa-1(25),3,5,7(28),9,11,13(27),15,17,19(26),21,23-dodecaene. For this reason we will use the short four-letter notation.

Using six-membered heterocycles, *e.g.* pyridines, *mmmm*-type structures, with either four pyridines or four pyridinium units, have recently been described.^{10,11} When five-membered rings are used to replace benzene rings, only *ortho* (1,2) and *meta* (1,3) situations are possible; again the *mmmm* situation is very well known since it comprises porphyrinogens and derivatives.¹²⁻¹⁴ Recently, Alcalde *et al.* have described [1₄](*ortho-meta*)heterophanes with an *omom* structure.¹⁵

In this paper we want to report the synthesis and structural study in solution and in the solid state of compound **1a**, a bis-pyrazolium salt, which is the first example of an *opop*-type. In a subsidiary way, we have also prepared compounds **1b** and **1c**, this latter one being related to larger-ring benzimidazolophanes.¹⁶ We already described in 1996 the study of the fast atom bombardment mass spectra (MS-FAB⁺) of the salts [1₄]paracyclo-bis-(1,2)pyrazoliumphane dibromide (**1a**), [1₄]paracyclo-bis-(1,3)imidazoliumphane dibromide (**1b**) and [1₄] paracyclo-bis-(1,3)benzimidazoliumphane dibromide (**1c**).¹⁷

The work most related to our own results is the independent synthesis of three imidazolium cyclophanes by Zhou, Xie and Zhao in 1996.¹⁸ These authors reported the compounds represented in Scheme 2 which they obtain from imidazolate anion and the three *bis*(bromomethyl)benzenes (*ortho*, *meta* and *para*) in good yields. The ¹H NMR chemical shifts (in D₂O at 90 MHz) they reported for **1b** do not coincide with ours.

Scheme 2. Three isomeric imidazolium cyclophanes

RESULTS AND DISCUSSION

Synthesis.- The three compounds (1a)-(1c) were prepared from α, α' -dibromo-*p*-xylene and the corresponding azolates as represented in Scheme 3. Depending on the reactants and the experimental conditions, cyclophanes 1, *p*-bromomethylbenzylpyrazole 2a, 1,4-bis(azol-1-ylmethyl)benzenes 3, double picrate 4a or double quaternary salts 5 were isolated.

Scheme 3. Reagents: i: α, α' -dibromo-*p*-xylene; ii: picric acid; iii: methyl iodide

Conformational analysis of compound 1a. To describe the conformational surface of [14]paracyclobis-(1,2)pyrazoliumphane 1a we have assumed that the *para*-substituted phenyl rings can be assimilated to linear spacers:

This shows the analogy of 1a with 6 (5,6,12,13-tetrahydrobispyrazolo[1,2-a:1',2'-e][1,2,5,6] tetrazocinediium cation) and 7 (5,6,11,12-tetrahydrodibenzo[a,e]cyclooctene).¹⁹⁻²¹ These systems present two conformations of minimum energy, a chair C (+-+-+) and a boat B (+0-+0-) which interconvert by a pyrazolium flip (or a benzene flip in the case of 7). The corresponding activation barriers are 13.5 kcal mol⁻¹ for 6^{22} and 10.5

kcal mol⁻¹ for $7.^{23,24}$ In all these systems, the chair C is a perfect chair but the boat **B** is a twisted boat (actually two chiral boats interconverting through the perfect boat with a very low energy barrier).¹⁹⁻²⁴ The six torsional angles which characterize compounds 6 and 7 are reported in Table 1.

		τ, (
Compound	τι	τ2	τ3	τ4	τ5	τ6
6 (chair, X-ray) ¹⁹	72	-105	75	-75	105	-72
6 (chair, calc.)	74.5	-105	74.5	-74.5	105	-74.5
6 (boat, calc.)	72	0	-72	72	0	-72
7 (chair, X-ray) ²⁰	74	-109	73	-73	109	-74
7 (chair, calc.)	74.5	-109	74.5	-74.5	109	-74.5
7 (boat, calc.)	74	0	-74	74	0	-74
1a (chair A, X-ray)	78.3	-104.4	77.8	-78.3	104.4	-77.8
1a (chair B, X-ray)	82.1	-103.5	72.1	-82.1	103.5	-72.1
1a (chair, calc.)	75.3	-98.2	75.3	-75.3	98.2	-75.3
la (boat, calc.)	75.0	0.0	-75.0	75.0	0.0	-75.0
1a (TS [‡] , calc.)	71.2	-65.1	56.1	-85.6	56.4	34.9

Table 1. Conformation (torsion angles) of compound 1a and model compounds

NMR Spectroscopy. a) Static Aspects. For [14]paracyclo-bis-(1,2)pyrazoliumphane dibromide 1a two species are in equilibrium in solution (Tables 2 and 3). ¹H NMR spectra, both in D_2O and in DMSO-d₆, show that they are in a 56/46 ratio. To assign these species to the chair (54%) and the boat (46%) we have used symmetry considerations similar to those that differentiate *d*,*l* and *meso* isomers. The AA'BB' (neglecting benzylic couplings) systems of the four aromatic protons are different for the chair (an inversion center) and for the boat (a mirror plane):

Table 2. ¹ H	NMR Chem	ical Shifts (8	in ppm) a	nd Coupling	Constants (J	in Hz) of (Compound	s la-lc	
Compound	Solvent	CH ₂ CH ₂ ′	H2 H2 [~]	H3 H3′	H4 H4´	H5 H5 [~]	H6 H5	H7 H7	Aryl protons
1 _a ª.b 54% C	D20	5.49 (M) 5.83 (N) ² J _{gen} = 16.9		8.46(d) 3 <i>J</i> = 3.02	6.88(t)	8.46(d) ³ J = 3.02	1		6.19(d) (A), 6.85(d) (B) $^{3}J = 8.0, ^{4}J = 2.25$ $^{5}J = 0.3$
1a 46% B		5.49 (M) 5.84 (N) ² J _{gem} = 16.9	I	8.43(d) ³ <i>J</i> = 3.01	6.84(1)	8.43(d) ³ J = 3.01			6.12(d) (A), 6.98(d) (B) $^{3}J = 8.0, ^{4}J = 2.2$ $^{5}J = 0.3$
1a ^a 54% C	DMSO-46	5.80 (M) 6.03 (N) ² J _{gem} = 16.7		8.91(d) 3 <i>J</i> = 2.9	7.15(1)	8.91(d) 3 <i>J</i> =2.9			6. 10(d) (A), 6.96(d) (B) 3 <i>J</i> = 8.0 4 <i>J</i> = 1.9
1a 46% B		5.79 (M) 6.02 (N) ² J _{gem} = 16.7	1	8.88(d) 3 <i>J</i> = 2.9	7.11(t)	8.88(d) 3 <i>J</i> = 2.9			6.06(d) (A), 7.09(d) (B) 4 <i>J</i> = 1.5
1	DMSO-d6 D20	5.33(s) 5.27(s)	7.39(s) 7.39(s)		7.96(s) 7.68(s)	7.96(s) 7.68(s)			7.36(s) 7.34(s)
lc	DMSO-46 80 °C	5.66(s)	7.91(s)	1	8.30-8.35 (m)	7.80-7.85 (m)	7.80-7.85 (m)	8.30-8.35 (m)	7.51(s)
^a Assignments ma	ade on the basis o	if (¹ H- ¹ H) Cosy 90	and Noesy exl	periments; ^b Data	obtained by iterativ	e analysis using	the WIN-DA	ISY 3.0 prog	ğram.

Hz) of Compounds
in
5
Constants
Coupling
and
(mqq
3.
6
Shifts
Chemical
H NMR
د ۲
ۍ.

P. Cabildo et al. / Tetrahedron 55 (1999) 2327-2340

2331

Compound	Solvent	CH2	С С	చ	C _{3a}	J	చ	ర	C ₇	Aryl c	arbons
		CH ₂	C ₂ ,	C3,	c_{7a}	C4	Ç,			Cipso	С-Н
12ª	0žQ	52.67		139.24		106.91	139.24			131.09	125.53
J		$^{1}J = 145.8$		$^{1}J = 204.3$		1J = 191.0	$^{1}J = 204.3$				¹ <i>J</i> =162.0
				$^{2}J = 4.0$		$^{2}J = ^{2}J = 6.3$	$^{2}J = 4.0$				128.16
,				³ J = 6.8			³ J = 6.8				1 <i>J</i> =162.1
1a		52.55		139.35	*		139.35			131.13	126.05
8		¹ J = 145.9		$^{1}J = 204.0$		107.01	1J = 204.0				1 <i>J</i> =163.9
		$^{3}J = ^{3}J = 4.3$		$^{2}J = 3.4$		$^{1}J = 190.9$	$^{2}J = 3.4$				128.18
				³ J = 6.2		$^{2}J = ^{2}J = 6.5$	³ J = 6.2				1 <i>J</i> =162.1
1b	D ₂ O+TFA	51.8	132.3			122.0	121.9		1	132.9	129.4
		$^{1}J = 146.5$				$^{1}J = 210.0$					1 <i>J</i> =162.9
	DMSO-d6										
		52.4	134.9	I	1	122.9	122.9	I	I	136.1	129.8
		$^{1}J = 146.0$	$^{1}J = 215.0$			$^{1}J = 208.0$					$^{1}J = 163.5$
lc	DMSO-d6	50.0	140.1	I	131.6	113.9	127.2	127.2	113.9	134.4	130.8
	2. 08	¹ <i>J</i> = 146.8	$^{1}J = 220.0$			¹ <i>J</i> = 166.0	¹ <i>J</i> = 165.0				¹ <i>J</i> =162.0
^a At 400 MHz.											

ო

ო

~

2332

In the chair J_{AB} is a ${}^{3}J_{ortho}$ coupling (8.0 Hz) while in the boat J_{AB} is a ${}^{4}J_{meta}$ coupling (2.2 Hz). The experimental spectra have been analyzed using an iterative program (Table 2). The geminal protons of the four equivalent CH₂ groups as well as the A and B aromatic protons have been identified through a small ${}^{5}J_{zig-zag}$ coupling, which results in a broadening of some signals. This coupling is observed only if the protons are in a coplanar disposition. An examination of the models (AM1 calculations) shows that H_N is synperiplanar while H_M is anticlinal with regard to the phenyl ring. Thus the ${}^{5}J_{zig-zag}$ coupling involves H_N and H_B in C and H_N and H_A in **B**, thus allowing the assignments reported in Table 2. The assignment is moreover consistent with shieldings by phenyl and pyrazolium aromatic rings.

b) Dynamic Aspects. The ¹H NMR spectrum of compound **1a** has been recorded in D₂O between 50 and 80 °C and in DMSO-d₆ between 50 and 110 °C with intervals of 5 °C. Several coalescences were observed at different temperatures [T_c (K)] which allow determination of the corresponding values of ΔG^{\ddagger}_{Tc} (Table 6). Although the use of several coalescences in the same compound is not a precise method to determine ΔH^{\ddagger} and ΔS^{\ddagger} ,^{25a} it has been used successfully in other cases.²⁶ A representation of $\Delta G^{\ddagger}_{Tc} vs T$ (K) for four (D₂O) or five signals (DMSO-d₆) shows a linear variation allowing an estimation of ΔH^{\ddagger} and ΔS^{\ddagger} . In D₂O, $\Delta H^{\ddagger} = 11.7$ kcal mol⁻¹ and $\Delta S^{\ddagger} = -18$ cal mol⁻¹ K⁻¹ and in DMSO-d₆, $\Delta H^{\ddagger} = 10.9$ kcal mol⁻¹ and $\Delta S^{\ddagger} = -21$ cal mol⁻¹ K⁻¹ (these large values of ΔS^{\ddagger} are probably overestimated²⁷ and are given here more for the sign than for the absolute value). At 298 K, $\Delta G^{\ddagger}_{298} = 17.0$ kcal mol⁻¹ (D₂O) and 17.2 kcal mol⁻¹ (DMSO-d₆). The barrier in compound **1a** is thus considerably higher than in the related compound **6** (13.5 kcal mol⁻¹).²²

Solid State Crystal Structure of 1a. In [14]paracyclo-bis-(1,2)pyrazoliumphane dibromide 1a there are two independent half-molecules in the unit cell (labelled A and B, Figures 1 and 2). Both are in the C conformation with torsion angles reported in Table 1. Although the bond lengths and angles in both molecules are identical within the levels of accuracy of the refinement, there are small, but significant differences in torsion angles between the two molecules (examples are given in Table 4). The pyrazolium and phenyl rings are planar to within < 0.025 Å. Within each molecule, the phenyl rings are forced to be parallel by symmetry across a centre of inversion. There are no intermolecular stacking effects. The bromide anions are located outside the macrocyclic ring. The distances between the bromides and the protons of the pyrazolium rings are in the range of 2.717-2.972 Å which is shorter than the sum of the van der Waals radius of a H-atom radius and the ionic radius of a bromide anion (3.17 Å).

Ta	b	le	4.	Some	relevant	crystal	llograph	ic f	features
----	---	----	----	------	----------	---------	----------	------	----------

Selected torsion angles (°)	А	В	
N(1)-N(5)-C(6)-C(7)	74.77(2.28)	-80.06(2.21)	
N(5)-C(6)-C(7)-C(8)	65.00(2.21)	-54.33(2.34)	
Angle between planes of phenyl and pyrazolium rings	80.59(0.60)	81.27(0.70)	
Br…H contact distances (Å)	2.717-2.932	2.780-2.972	

Figure 1. Compound 1a showed in two differents views and the atomic numbering used: a) molecule A, b) molecule B.

Figure 2. View of the packing present in compound 1a. Molecule A is at $(1/2 \ 0 \ 0)$ and molecule B at $(1/2 \ 1/2 \ 1/2)$.

AM1 calculations of the chair (C) and the boat (B) conformations and the interconversion barrier. The calculations reported in Table 1 for compound 1a show that the X-ray structures for molecules A and B correspond to the calculated chair conformation. The experimental geometries of the two independent molecules and the calculated geometry for the chair are very similar, not only in torsion angles (Table 1). The calculated energies of the boat B and the chair C are 577.51 and 577.35 kcal mol⁻¹, therefore, the conformation C is more stable than conformation B by 0.16 kcal mol⁻¹. The experimental result (54% C/46% B at 300 K), corresponds to 0.10 kcal mol⁻¹. The C \Rightarrow B interconversion process is a "one-pyrazolium" flip accompanied by a twist of the "planar" pyrazolium ring, the transition state is 11.5 kcal mol⁻¹ higher than the ground states (almost identical in energy), therefore, the calculated value of the barrier is lower than the experimentally determined one (17.0 kcal mol⁻¹).

CONCLUDING REMARKS

Comparing the central eight-membered ring of compounds 6 and 7 with the sixteen-membered ring of compound 1a, both the difference in stability $\Delta G(C/B)$ and the inversion barrier $\Delta G^{\ddagger}(C \rightleftharpoons B)$ are modified.

	7 (bz)	6 (pz+)	1a (pz+, ph)
$\Delta G(C/B)$	-1.2 (12% C)	>1.8 (>95% C)	0.1 (54% C)
$\Delta G^{\ddagger}(C \rightleftharpoons B)$	10.5	13.5	17.0

To compound 7 corresponds the lowest barrier and the greatest stability of the boat **B**. The replacement of the benzene rings by pyrazolium rings, realized in compound 6, destabilizes considerably the boat **B** by electrostatic repulsion and increases the barrier by modification of the geometry (pentagonal instead of hexagonal lateral rings). In compound 1a, increasing the distance between the pyrazolium rings compared with 6, decreases the discrimination of the boat **B** relatively to the chair C; actually both pyrazolium rings are so far apart that C and **B** have almost the same energy. On the other hand, the barrier in 1a increases considerably with regard to 6 due to the increased rigidity of the central ring as a consequence of the two *p*-phenyl spacers.

EXPERIMENTAL SECTION

General Methods.

Melting points were determined on a hot-stage microscope and are uncorrected. Analytical thin layer chromatography was performed on silica gel Merck 60F254 with a layer thickness of 0.2 mm. Column chromatography was carried out with silica gel Merck 60 (70-230 mesh, ASTM). Nuclear magnetic resonance (NMR) spectra were obtained on Bruker AC-200 and DRX-400 instruments. The ¹H and ¹³C NMR chemical shifts (δ , ppm) are given relative to tetramethylsilane. In all cases, integrals correspond to the number of protons. ¹H NMR variable temperature experiments were performed with the Bruker AC-200 spectrometer under standard conditions. IR spectra (KBr) were recorded on a Philips PU 9714 between 1000 and 2000 cm⁻¹. Combustion analyses were performed with a Perkin-Elmer 2400 CHN instrument.

*p***-Bromomethylbenzylpyrazole 2a.** A mixture of pyrazole (0.68 g, 10 mmol) and α, α' -dibromo-*p*-xylene (3.0 g, 12 mmol) in 20 mL of xylene was stirred at 130 °C for 6 h. After evaporation of the xylene, the residue was chromatographed with dichloromethane as eluent to give 2a as a white solid (40%), mp 56-57 °C. ¹H NMR (CDCl₃) δ 4.46 (s, CH₂Br), 5.32 (s, CH₂Pyrazole), 7.40 (d, H₃, ³J = 1.5 Hz), 6.29 (q, H₄, ³J = 1.5 and 2.1 Hz), 7.55 (d, H₅, ³J = 2.1 Hz), 7.15-7.37 (m, Aryl protons); ¹³C NMR (CDCl₃) δ 32.9 (¹J = 152.9 Hz), 55.3 (¹J = 139.6), 139.6 (C₃, ¹J = 185.3, ³J = 8.4, ²J = 5.8 Hz), 106.0 (C4, ¹J = 176.7, ²J = 8.7, ²J = 10.3 Hz), 129.2 (C₅, ¹J = 185.5 Hz), 136.9, 137.4, 127.8 (¹J = 159.5 Hz), 129.4 (¹J = 160.0 Hz). IR (KBr) cm⁻¹ 1510, 1435, 1420, 1400, 1350, 1270, 1210, 1090. Analysis Calcd. for C₁₁H₁₁N₂Br: C 52.61, H 4.41, N 11.16. Found C 52.84, H 4.50, N 10.98.

1,4-Bis(pyrazol-1-ylmethyl)benzene 3a. This compound was prepared by Hartshorn and Steel²⁸ [mp 103-104 °C (using phase transfer catalysis conditions)] and by Goodgame *et al.*²⁹ [mp 103-105 °C]. Our sample, a white solid, had mp 108 °C. ¹H NMR (CDCl₃) δ 5.30 (s, CH₂Pyrazole), 7.54 (d, H₃, ³J = 1.4 Hz), 6.27 (q, H₄, ³J = 1.4 and 2.2 Hz), 7.37 (d, H₅, ³J = 2.2 Hz), 7.17 (s, Aryl protons); ¹³C NMR (CDCl₃) δ 55.4 (¹J = 139.4 Hz), 139.6 (C₃, ¹J = 185.3, ³J = 8.4, ²J = 5.9 Hz), 105.9 (C₄, ¹J = 176.6, ²J = 8.7, ²J = 10.4 Hz), 129.2 (C₅, ¹J = 187.8 Hz), 136.5, 127.9 (¹J = 160.1 Hz). IR (KBr) cm⁻¹ 1505, 1435, 1420, 1395, 1355, 1285, 1230, 1165, 1090, 1050, 1020.

Dipicrate (4a), a yellow solid, had mp 176-179 °C. ¹H NMR (DMSO-d₆) δ 5.31 (s, CH₂Pyrazole), 7.85 (s, H₃), 6.29 (s, H₄), 7.52 (s, H₅), 7.15 (s, Aryl protons). Picryl protons: 8.59 (s) and 10.11-10.17 (bs); ¹³C NMR (DMSO-d₆) δ 54.3 (¹J = 140.3 Hz), 138.7 (C₃, ¹J = 185.5, ³J = 8.0, ²J = 6.0 Hz), 105.8 (C₄, ¹J = 177.5, ²J = ²J = 9.5 Hz), 130.8 (C₅, ¹J = 193.5 Hz), 136.9, 127.8 (¹J = 161.8 Hz). Picryl carbons: 125.0, 125.3 (¹J = 168.4, ³J = 5.6 Hz), 141.8 and 160.4. IR (KBr) cm⁻¹ 1600, 1570, 1530, 1425, 1360, 1340, 1315, 1270, 1160, 1090, 1080. Analysis Calcd. for C₂₆H₂₀N₁₀O₁₄: C 44.84, H 2.89, N 20.11. Found C 44.67, H 3.01, N 19.97.

1,4-Bis(imidazol-1-ylmethyl)benzene 3b. This compound was described by Dhal and Arnold³⁰ [mp 148-150 °C (sodium hydride, imidazole and α, α' -dibromo-*p*-xylene)]. White solid, ¹H NMR (DMSO-d₆) δ 5.14 (s, CH₂Imidazole), 7.72 (s, H₂), 7.14 (s, H₄), 6.87 (s, H₅), 7.22 (s, Aryl protons); ¹³C NMR (DMSO-d₆) δ 49.3 (¹J = 139.8 Hz), 137.5 (C₂, ¹J = 211.2 Hz), 128.8 (C₄, ¹J = 187.8, ³J = 10.6, ²J = 10.6 Hz), 119.8 (C₅, ¹J = 200.6, ²J = 15.5 Hz), 137.4, 128.0 (¹J = 159.9 Hz). IR (KBr) cm⁻¹ 1505, 1450, 1435, 1420, 1395, 1355, 1285, 1230, 1170, 1090, 1050, 1020.

1,4-Bis(benzimidazol-1-ylmethyl)benzene 3c. A mixture of benzimidazole (1.18 g, 10 mmol), α, α' -dibromo-*p*-xylene (1.32 g, 5.0 mmol), NaOH (0.40 g, 10.0 mmol), and Na₂CO₃ (1.06 g, 10.0 mmol) in 20 mL of xylene was stirred at 130 °C for 6 h. The solvent was evaporated under vacuum and the residue chromatographed with dichloromethane to yield 3c (50%) as a white solid, mp 124-126 °C. ¹H NMR (DMSO-d₆) δ 5.44 (s, CH₂Benzimidazole), 8.37 (s, H₂), 7.62-7.67 (m, H₄), 7.14-7.18 (m, H₅ and H₆), 7.44-7.48 (m, H₇), 7.26 (s, Aryl protons); ¹³C NMR (DMSO-d₆) δ 47.2 (¹J = 140.9 Hz), 144.2 (C₂, ¹J = 207.4, ³J = 3.9 Hz), 143.5 (C_{3a}), 119.5 (C₄, ¹J = 160.5, ³J = 6.5, ²J = 2.5 Hz), 121.6 (C₅, ¹J = 158.8, ³J = 7.6 Hz), 122.4 (C₆, ¹J = 161.0, ³J = 7.7 Hz), 110.7 (C₇, ¹J = 162.6, ³J = 5.0), 133.6 (C_{7a}), 136.5, 127.7 (¹J = 160.4 Hz). IR (KBr) cm⁻¹ 1610, 1550, 1490, 1450, 1410, 1370, 1295, 1255, 1240, 1180, 1130, 1005. Analysis Calcd. for C₂₂H₁₈N₄: C 78.08, H 5.36, N 16.56. Found C 78.23, H 5.12, N 16.54.

1-(Imidazol-1-ylmethyl)-4-(pyrazol-1-ylmethyl)benzene 3d. *p*-Bromomethylbenzylpyrazole 2a (251 mg, 1.0 mmol) was heated, with magnetical stirring at 130 °C, with imidazole (136 mg, 2.0 mmol) in 20 mL of xylene during 6 h. The residue obtained after removal of the solvent was purified by column chromatography with dichloromethane. Compound 3d (50%), white solid, had mp 86-88 °C. ¹H NMR (CDCl₃) δ 5.09 (s, CH₂Imidazole), 5.31 (s, CH₂Pyrazole), 7.54 (d, H₃Pyrazole, ³J = 1.4 Hz), 6.28 (q, H₄Pyrazole, ³J = 1.4 and 2.1 Hz), 7.39 (d, H₅Pyrazole, ³J = 2.1 Hz), 7.54 (s, H₂Imidazole), 7.08 (s, H₄Imidazole), 6.87 (s, H₅Imidazole), 7.08-7.20 (m, Aryl protons); ¹³C NMR (CDCl₃) δ 50.2 (CH₂Imidazole, ¹J = 139.6, ²J = ²J = 3.6 Hz), 139.5 (C₃Pyrazole, ¹J = 185.2, ³J = 8.3, ²J = 5.7 Hz), 105.9 (C₄Pyrazole, ¹J = 176.9, ²J = 8.6, ²J = 10.4 Hz), 129.2 (C₅Pyrazole, ¹J = 187.4 Hz), 137.3 (C₂Imidazole, ¹J = 210.0 Hz), 129.6 (C₄Imidazole, ¹J = 189.7, ²J = 10.2 Hz), 119.2 (C₅Imidazole, ¹J = 188.8 Hz), 135.8, 136.7, 127.5 (¹J = 159.0, ³J = 9.9, ²J = 4.1 Hz), 127.9 (¹J = 159.7, ³J = 9.9, ²J = 4.2 Hz). IR (KBr) cm⁻¹ 1500, 1445, 1425, 1390, 1345, 1270, 1230, 1210, 1145, 1110, 1105, 1090, 1080, 1060, 1030. Analysis Calcd. for C₁4H₁₄N₄: C 70.57, H 5.92, N 23.51. Found C 70.67, H 5.84, N 23.39.

[14]Paracyclo-bis-(1,2)pyrazoliumphane dibromide 1a. To a solution of 238 mg (1.0 mmol) of 1,4bis(pyrazol-1-ylmethyl)benzene 3a in 20 mL of acetonitrile, 264 mg (1.0 mmol) of α, α' -dibromo-*p*-xylene were added. The reaction was heated at 60 °C for 6 h, then the solvent was removed and the residue dissolved in hot ethanol. This solution was treated with charcoal, and after filtration, 1a precipitated as a colourless crystal, mp > 350 °C (80%). Cation weight: 342 Da.¹⁷ IR (KBr) cm⁻¹ 1510, 1435, 1405, 1360, 1270, 1220, 1210, 1140, 1095. Analysis Calcd. for C₂₂H₂₂N₄Br₂·1/2H₂O: C 51.68, H 4.53, N 10.96. Found C 51.76, H 4.59, N 10.83. [14]Paracyclo-bis-(1,3)imidazoliumphane dibromide 1b. Compound (1b), a colourless crystal, was prepared starting from 1,4-bis(imidazol-1-ylmethyl)benzene (3b) and proceeding similarly to the experimental procedure described above for 1a (90%). Zhou *et al*¹⁸ reported the cyclophane 1b [mp > 350 °C] although their ¹H chemical shifts (in D₂O at 90 MHz) do not coincide with ours. Cation weight: 342 Da.¹⁷ IR (KBr) cm⁻¹ 1550, 1505, 1450, 1425, 1315, 1130, 1085.

[14]Paracyclo-bis-(1,3)benzimidazoliumphane dibromide 1c. In a similar manner to what has been described for (1a) and (1b), but using 1,4-bis(benzimidazol-1-ylmethyl)benzene (3c) as starting compound. The cyclophane 1c, a colourless crystal, had mp > 320 °C (90%). Cation weight: 442 Da.¹⁷ IR (KBr) cm⁻¹ 1605, 1555, 1480, 1450, 1415, 1370, 1325, 1260, 1175, 1130, 1015. Analysis Calcd. for $C_{30}H_{26}N_4Br_2\cdot 2H_2O$: C 56.44, H 4.74, N 8.78. Found C 56.30, H 4.69, N 8.88.

Quaternary salts (5a), (5b), (5c) and (5d). All derivatives were obtained by methylation of the corresponding neutral molecules (3a), (3b), (3c) and (3d), with an excess of methyl iodide in acetonitrile at room temperature during 24 h. The diiodides precipitated as colourless crystals and were collected by filtration from the reaction mixture.

- α,α'-Bis-(2-methylpyrazolium)-*p*-xylene diiodide 5a. mp 214-216 °C (70%). Analysis Calcd. for C₁₆H₂₀N₄I₂: C 36.80, H 3.86, N 10.73. Found C 36.46, H 3.80, N 10.48. ¹H NMR (D₂O) δ 4.02 (s, CH₃), 5.75 (s, CH₂Pyrazolium), 8.23 (d, H₃), 6.80 (t, H₄, ${}^{3}J = {}^{3}J = 3.0$ Hz), 8.22 (d, H₅,), 7.36 (s, Aryl protons); ¹³C NMR (D₂O) δ 35.7 (${}^{1}J = 146.0$ Hz), 51.4 (${}^{1}J = 145.7$ Hz), 136.4 (C₃, ${}^{1}J = 203.8$ Hz), 106.1 (C₄, ${}^{1}J = 190.3$, ${}^{2}J = 6.7$ Hz), 137.5 (C₅, ${}^{1}J = 203.3$ Hz), 131.4, 127.4 (${}^{1}J = 162.2$ Hz). IR (KBr) cm⁻¹ 1525, 1460, 1435, 1385, 1330, 1300, 1240, 1100, 1090, 1075, 1010. Analysis Calcd. for C₁₆H₂₀N₄I₂: C 36.80, H 3.86, N 10.73. Found C 36.80, H 3.91, N 10.88.

 $-\alpha,\alpha'$ -Bis-(3-methylimidazolium)-*p*-xylene diiodide 5b. mp 260-262 °C (90%). Analysis Calcd. for C₁₆H₂₀N₄I₂ C 36.80, H 3.86, N 10.73. Found C 36.54, H 3.81, N 10.69. ¹H NMR (DMSO-d₆) δ 3.84 (s, CH₃), 5.41 (s, CH₂Imidazolium), 9.20 (s, H₂), 7.75 (s, H₄), 7.70 (s, H₅), 7.45 (s, Aryl protons); ¹³C NMR (D₂O) δ 36.1 (¹J = 144.8 Hz), 52.6 (¹J = 146.4 Hz), 138.0 (C₂, ¹J = 222.8 Hz), 124.1 (C₄, ¹J = 202.8 Hz), 122.5 (C₅, ¹J = 207.2 Hz), 134.8, 129.6 (¹J = 161.0 Hz). IR (KBr) cm⁻¹ 1500, 1425, 1405, 1360, 1335, 1315, 1245, 1235, 1150, 1110, 1095, 1085. Analysis Calcd. for C₁₆H₂₀N₄I₂: C 36.80, H 3.86, N 10.73. Found C 36.76, H 3.75, N 10.77.

- α,α'-Bis-(3-methylbenzimidazolium)-*p*-xylene diiodide 5c. mp 295 °C (dec) (78%). Analysis Calcd. for C₂₄H₂₄N₄I₂ C 46.32, H 3.89, N 9.00. Found C 46.20, H 4.07, N 8.61. ¹H NMR (DMSO-d₆) δ 4.11 (s, CH₃), 5.73 (s, CH₂Benzimidazolium), 9.90 (s, H₂), 7.90 (d, H₄, ³J = 7.9 Hz), 7.52-7.65 (m, H₅ and H₆), 7.82 (d, H₇, ³J = 8.0 Hz), 7.49 (s, Aryl protons); ¹³C NMR (DMSO-d₆, 318 K) δ 33.3 (¹J = 143.9 Hz), 49.2 (¹J = 143.9 Hz), 142.8 (C₂, ¹J = 220.3 Hz), 131.9 (C_{3a}), 113.6 (C₄, ¹J = 170.5 Hz), 126.6 (C₅, ¹J = 166.0 Hz), 126.7 (C₆, ¹J = 166.2 Hz), 113.4 (C₇, ¹J = 170.3 Hz), 130.5 (C_{7a}), 134.3, 128.7 (¹J = 162.5 Hz). IR (KBr) cm⁻¹ 1600, 1555, 1480, 1445, 1415, 1370, 1360, 1320, 1270, 1255, 1175, 1130, 1010. Analysis Calcd. for C₂₄H₂₄N₄I₂: C 46.32, H 3.89, N 9.00. Found C 46.22, H 4.03, N 8.98.

- α -(3-Methylimidazolium), α' -(2-methylpyrazolium)-*p*-xylene diiodide 5d. mp 169-170 °C (60%). ¹H NMR (D₂O) δ 3.79 (s, CH₃Imidazolium), 3.93 (s, CH₃Pyrazolium), 5.33 (s, CH₂Imidazolium), 5.66 (s, CH₂Pyrazolium), 6.72 (t, H₄Pyrazolium), 8.14 (bs, H₃ and H₅Pyrazolium), 8.68 (s, H₂Imidazolium), 7.36 (s, H₄ and H₅ Imidazolium), 7.18-7.49 (m, Aryl protons); ¹³C NMR (DMSO-d₆) δ 36.0 (CH₃Pyrazolium, ¹*J* = 143.4 Hz), 37.2 (CH₃Imidazolium, ¹*J* = 144.8 Hz), 51.2 (CH₂Pyrazolium, ¹*J* = 144.1 Hz), 51.9 (CH₂Imidazolium, ¹J = 146.0 Hz), 138.8 (C₃Pyrazolium, ¹J = 198.3 Hz), 107.4 (C₄Pyrazolium, ¹J = 189.7, ²J = ²J = 6.9 Hz), 137.8 (C₅Pyrazolium, ¹J = 206.2 Hz), 136.6 (C₂Imidazolium, ¹J = 222.0 Hz), 124.0 (C₄Imidazolium, ¹J = 203.4 Hz), 122.2 (C₅Imidazolium, ¹J = 202.6 Hz), 133.0, 135.5, 128.4 (¹J = 161.2 Hz), 129.2 (¹J = 161.8 Hz). IR (KBr) cm⁻¹ 1515, 1500, 1455, 1410, 1360, 1325, 1300, 1255, 1235, 1150, 1110, 1090, 1080. Analysis Calcd. for C₁₆H₂₀N₄I₂: C 36.80, H 3.86, N 10.73. Found C 36.94, H 3.52, N 10.61. **Crystal Structure of Compound (1a).** Crystals suitable for X-ray diffraction were obtained by recrystallization from water. Intensity X-ray data were collected on a NONIUS KapaCCD diffractometer using 1kWatt Mo radiation with a graphite monochromator. The data were collected at 20 °C using a 1° rotation in ϕ and 40 sec exposure per image. A total of 200 exposures were collected at $\chi = 0^{\circ}$ before the crystal was rotated to $\chi = 90^{\circ}$ and a further 37 exposures collected at 1° rotation in ω per image. The data thus obtained were processed using DENZO-SMN.³¹

The structure was solved by direct methods using SHELXS86³² and refined using full-matrix least squares on F^2 in SHELXL97.³³ All non hydrogen atoms were refined anisotropically and hydrogens were placed in geometrically calculated positions and linked to common isotropic temperature factors. Two regions of high electron density (*ca.* 1.3 Å from Br1 and Br2) were not accounted for by the model. There are two independent formula units in the cell. The asymmetric unit consists of the two independent half-heterocyclophanes, each situated on a centre of symmetry [at (1/2 0 0) and (1/2 1/2 1/2)]. Each heterocyclophane is in the chair conformation. The phenyl and pyrazole rings are planar, with maximum deviations from the least-square planes <0.03 Å. The heterocyclophanes pack in herringbone fashion. There are no short intermolecular contacts.

¹H NMR variable temperature experiments. The ¹H NMR variable temperature experiments were carried out on a 200 MHz spectrometer. The barriers at the coalescence temperatures were calculated using the formula $\Delta G^{\ddagger}_{T_c} = 4.57 T_c [9.97 + \log (T_c/\Delta v)]$ which applies to systems, like **1a**, where the populations of the C and B sites are equal.^{25b} The results are reported in Table 5.

	Signal	Δν (Hz)	T _c (K)	ΔG^{\ddagger} (kcal mol ⁻¹)	
D ₂ O					
	H3, H5	5	323	17.4	
	H ₄	8	331	17.5	
	HA	15	343	17.8	
	HB	26	353	17.9	
DMSO-da					
Ŭ	H3. H5	6	338	18.1	
	H4	8	343	18.2	
	HA	8	343	18.2	
	HB	26	368	18.7	
	$C\overline{H}_2$	46	383	19.1	

Table 5. Temperature variable experiments (¹H NMR spectroscopy at 200 MHz)

Computational calculations. The AM1 Hamiltonian³⁵ was used within its original formalism. In all cases, the PRECISE keyword was used and full geometry optimization was carried out (with the Fletcher-Powell algorithm).

ACKNOWLEDGMENTS

To the DGES of Spain (Project number PB96-0001-C03) for financial support. S. A. B. thanks the Departamento de Relaciones Internacionales of CSIC for an A.E.C.I. grant to visit Spain.

REFERENCES

- Gutsche, C. D. Calixarenes, Royal Society of Chemistry, Cambridge, 1989. 1
- Diederich, F. Cyclophanes, Royal Society of Chemistry, Cambridge, 1991. 2
- 3 Cram, D. J.; Cram, J. M. Container Molecules and Their Guests, Royal Society of Chemistry, Cambridge, 1994.
- 4 Vögtle, F. Cyclophan-Chemie, Teubner, Stuttgart, 1990.
- McMurry, J. E.; Phelan, J. C. Tetrahedron Lett. 1991, 32, 5655. 5
- 6 Collet, A. Cyclotriveratrylene and Related Hosts, in Comprehensive Supramolecular Chemistry (J. L. Atwood, J. É. D. Davies, D. D. MacNicol; F. Vögtle, Eds.), Vol. 6, p. 283, Pergamon, Oxford, 1996.
- 7
- 8
- Lee, W. Y.; Park, C. H.; Kim, Y. D. J. Org. Chem. **1992**, 54, 4074. Kuck, D. Chem. Ber. **1994**, 127, 409. Barbour, L. J.; Steed, J. W.; Atwood, J. L. J. Chem. Soc., Perkin Trans. 2 **1995**, 857. Q
- 10 Král, V.; Gale, P. A.; Anzenbacher, P.; Jursiková, K.; Sessler, J. L. Chem. Commun. 1998, 9.
- Shinoda, S.; Tadokoro, M.; Tsukube, H.; Arakawa, R. Chem. Commun. 1998, 181. 11
- Marzin, M.; Tarrago, G.; Gal, M.; Zidane, I.; Hours, T.; Lerner, D.; Andrieux, C.; Gampp, H.; Savéant, 12 J. M. Inorg. Chem. 1986, 25, 1775.
- Gale, P. A.; Sessler, J. L.; Král, V. Chem. Commun. 1998, 1. 13
- 14 Alcalde, E.; Alemany, M.; Pérez-García, L.; Rodríguez, M. L. J. Chem. Soc., Chem. Commun. 1995, 1239.
- Alcalde, E.; Alemany, M.; Gisbert, M. Tetrahedron 1996, 52, 15171. 15
- Rajakumar, P.; Srisailas, M. Tetrahedron Lett. 1997, 38, 5323. 16
- 17 Cabildo, P.; Claramunt, R. M.; Sanz, D.; Elguero, J.; Enjalbal, Ch.; Aubagnac, J-L. Rapid Commun. Mass Spectrom. 1996, 10, 1071.
- Zhou, C.-H.; Xie, R.-G.; Zhao, H.-M. Org. Prep. Proc. Int. 1996, 28, 345. 18
- Foces-Foces, C.; Cano, F. H.; Cabildo, P.; Claramunt, R. M.; Elguero, J. Acta Crystallogr. Sect. C 19 1991, 47, 2583.
- Domiano, P.; Cozzini, P.; Claramunt, R. M.; Lavandera, J. L.; Sanz, D.; Elguero, J. J. Chem. Soc., 20 Perkin Trans 2 1992, 1609.
- 21
- Claramunt, R. M.; Lavandera, J. L.; Sanz, D.; Elguero, J.; Jimeno, M. L. *Tetrahedron* **1998**, *54*, 9569. Cabildo, P.; Claramunt, R. M.; Cornago, P.; Lavandera, J.-L.; Sanz, D.; Jagerovic, N.; Jimeno, M. L.; Elguero, J.; Gilles, I.; Aubagnac, J.-L. *J. Chem. Soc., Perkin Trans.* 2 **1996**, 701. 22
- Sauriol-Lord, F.; St-Jacques, M. Can. J. Chem. 1975, 53, 3768. 23
- Jimeno, M. L.; Alkorta, I.; Elguero, J.; Anderson, J. E.; Claramunt, R. M.; Lavandera, J. L. New. J. 24 Chem. 1998, in press.
- 25 Oki, M. Applications of Dynamic NMR Spectroscopy to Organic Chemistry, VCH Publishers: Weinheim, Germany, 1985, a) pp. 30-33; b) p. 5.
- 26 Elguero, J.; Fruchier, A.; de la Hoz, A.; Jalón, F. A.; Manzano, B.; Otero, A.; Gómez-de la Torre, F. Chem. Ber. 1996, 129, 589.
- Anet, F. A. L.; Anet, R. in Dynamic Nuclear Magnetic Resonance Spectroscopy (Jackman, L. M.; Cotton, F. A. Eds), Academic Press: New York., 1975, p. 575. 27
- Hartshorn, C. M.; Steel, P. J. Aust. J. Chem. 1995, 48, 1587. 28
- Chen, J.; Goodgame, D. M. L.; Menzer, S.; Williams, D. J. Polyhedron 1997, 16, 1679. 29
- Dahl, P. K.; Arnold, F. H. Macromolecules 1992, 25, 7051. 30
- Otwinowski, Z.; Minor, W. In Processing of X-ray diffraction data collected in oscillation mode, Methods 31 in enzimology: Macromolecular crystallography, Part. A; Carter, C. W., Sweet, J.; Sweet, R. M. Eds.; Academic Press: New York, 1997; Vol. 276, p. 307-326. Sheldrick, G. M. Acta Crystallogr. Sect. A 1990, 46, 467.
- 32
- Sheldrick, G. M. SHELXL97, unpublished. 33
- 34 The authors have deposited atomic coordinates for this structure with the Cambridge Crystallographic Data Centre. The coordinates can be obtained, on request, from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 2EZ, UK.
- Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1977, 99, 4899 35 and 4907 (AMPAC V2.1, QCPE program No. 506).