

Tetrahedron: Asymmetry 11 (2000) 2653-2659

Stereoselective synthesis of 2-substituted 3-azabicyclo[3.2.0]heptan-2-ones by [2+2]-cycloaddition of N-allyl- β -N-keteniminium salts derived from (R)-vinylglycinol

Giuliano Delle Monache,^a Domenico Misiti,^b Patrizia Salvatore,^b Giovanni Zappia^{b,*} and Marco Pierini^c

 ^aCentro di Studio per la Chimica dei Recettori e delle Molecole Biologicamente Attive-Istituto di Chimica, Università Cattolica del S. Cuore, Largo F. Vito 1, 00168 Roma, Italy
 ^bDipartimento di Studi di Chimica e Tecnologia delle Sostanze Biologicamente Attive, Università 'La Sapienza', P.le A. Moro 5, 00185 Roma, Italy
 ^cDip. Scienze del Farmaco, Via dei Vestini 31, 66013 Chieti, Italy

Received 8 May 2000; accepted 14 June 2000

Abstract

A stereoselective synthesis of (1R, 2R, 5S)-2-benzyloxymethyl-3-azabicyclo[3.2.0]heptan-2-one was achieved, by intramolecular [2+2]-cycloaddition of (*R*)-vinylglycinol-derived *N*-allyl- β -*N*-keteniminium salts, with high facial diastereoselection. The regio- and stereochemical courses have been qualitatively investigated by Molecular Mechanics calculations. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The diastereoselective synthesis of natural or synthetic substituted pyrrolidines is an important topic in organic synthesis because of their presence as constituents of biologically active compounds. For instance, α -kainic acid¹ and acromelic acids¹ show remarkable neuroexcitatory effects,² although with different modes of action.³ On the other hand, 2,3,4-trisubstituted pyrrolidines are components of cyclic peptides⁴ or alkaloids.⁵ In particular, 3,4-dihydroxy-2-hydroxymethyl pyrrolidines are inhibitors of several glycosidases.⁶ Therefore, chiral 2-substituted-3-azabicyclo[3.2.0]heptan-6-ones are useful intermediates for the synthesis of chiral heterocycles by elaboration of the four-membered ring.

The inter- and intramolecular [2+2]-cycloadditions of keteniminium salts to an olefin were first introduced by Ghosez et al.⁷ as an alternative to the [2+2]-cycloaddition of a ketene⁸ with olefins. Cyclobutanones,^{7a} fused bicyclobutanones^{7b} and azabicyclobutanones^{7c} were prepared in good

^{*} Corresponding author. E-mail: g.zappia@caspur.it

yields by this method. Moreover, high enantioselectivity⁹ was observed in the inter- and intramolecular [2+2]-cycloaddition of chiral keteniminium salts. Less attention,¹⁰ however, has been paid to the stereochemical course of this [2+2]-cycloaddition when a stereogenic centre is part of the olefin compound.

Following our studies¹¹ on the electrophile-mediated functionalization of chiral allyl amines, we focused our interest on the intramolecular asymmetric [2+2]-cycloaddition of *N*-allyl- β -*N*-keteniminium salts **1** derived from (*R*)-vinylglycinol as a way to prepare compounds **2**. This communication deals with our first results.

For this purpose, compound **8** was prepared (Scheme 1) starting from L-serine, which was converted into the known¹² Weinreb amide **3**. After protection of the hydroxyl group as a silyl ether (*t*-BuPh₂SiCl, imidazole, CH₂Cl₂; 89%), the α -amino amide was converted¹³ into the allyl amine¹⁴ **4**, by treatment with LiAlH₄ (1 M, THF; 0°C), followed by Wittig methylation (Ph₃P⁺CH₃Br⁻/KHMDS, -78°C \rightarrow rt; 73% from **3**).

The Boc-protecting group in **4** was removed (Scheme 1), according to the method of Ohfune et al.,¹⁵ under neutral conditions (TBDMSOTf, 2,6-lutidine, CH₂Cl₂, rt, 20 min; NH₄Cl; 98%) to give the corresponding free amine, which in turn, by a Michael-type reaction with methyl acrylate in MeOH, afforded the α -amino ester¹⁶ **5** in 94% yield. The secondary amine **5** was protected (TsCl, CH₂Cl₂, Et₃N, 0°C \rightarrow rt; 98%) as *N*-Ts **6**, and the ester function was hydrolyzed (LiOH, acetone/H₂O; 86%). The coupling¹⁷ (BOPCl, DMAP cat., CH₂Cl₂, 80%) of acid **7** with pyrrolidine finally afforded the required amide **8**.

Reaction of compound **8** with triflic anhydride and 2,6-di-*t*-butyl-4-methylpyridine in 1,2dichloroethane under reflux for 3 h, followed by hydrolysis (H_2O/CCl_4 , reflux), gave a complex mixture of products. A cleaner reaction occurred when the cycloaddition reaction was carried out at room temperature with ultrasound activation, but the main product (60% yield) was the alcohol **9**. To overcome these by-reactions we turned our attention to the use of benzyl ether as a protecting group for the hydroxyl. This switch was performed by treatment of **8** with TBAF (1 M THF; 98% yield), followed by conversion (NaH, BnBr, TBAI, THF; 85%) of the free alcohol **9** into benzyl ether **10** (Scheme 2).

The results of the [2+2]-cycloaddition reaction on the allyl amine **10** under different conditions are reported in Table 1. A solution of Tf_2O was added to a solution of substrate **10** and 2,6-di-*t*-butyl-4-methylpyridine at room temperature. The resulting mixture was held under reflux or sonicated. In both cases, compound **10** was converted into a mixture of (1R,2R,5S)-2-benzyloxymethyl-*N*-(4-methylbenzenesulfonyl) 3-azabicyclo[3.2.0]heptan-6-one **11** and the [3.1.1]-isomer **12** (Scheme 3).

 Table 1

 Results of intramolecular cycloaddition of keteniminium salt derived from protected (R)-vinylglycinol 10

Reaction conditions	Yield (%)	11	12
1. ClCH ₂ CH ₂ Cl/reflux, 3 h	35	4	1
2. ClCH ₂ CH ₂ Cl/ultrasound activation, 24 h	60	11	1
3. $CH_2Cl_2/reflux$, 24 h	68	10	1

Scheme 3.

As shown in Table 1 the [3.2.0]-isomer 11 (dr = >95/5) was obtained as the major product, when the reaction was run at room temperature under ultrasound activation (entry 2), although similar results were obtained in CH_2Cl_2 under reflux (entry 3).

The two adducts were assigned the structures **11** and **12** on the basis of the ¹H and ¹³C NMR spectral data (Table 2), as well as COSY and HETCOR experiments. The assignments are in agreement with the values reported in the literature for similar compounds.¹⁸

Selected H-	and "C INMIK's	pectral data for aza	bicyclo compou	inds 11 and 12
Position	11		12	
	$\delta_{\rm C}$	δ_H (mult)	δ_{C}	δ_H (mult)
C-1	32.88	2.99 (ddd)	56.10	2.94 (br q)
C-2	65.19	4.03 (dd)	64.45	4.53 (dd)
C-4	50.18	$ \left\{ \begin{array}{l} 3.83 \ (dd) \\ 3.56 \ (dd) \end{array} \right. $	52.10	$ \left\{ \begin{array}{l} 4.02 \ (dd) \\ 3.80 \ (dd) \end{array} \right. $
C-5	64.28	3.60 (m)	58.99	3.16 (br t)
C-7	51.73	{ 3.07 (ddd) 3.56 (dd)	19.34	$ \left\{ \begin{array}{l} 3.45 \ (ddd) \\ 1.69 \ (dt) \end{array} \right. $
C-6	208.06		208.60	

	Table 2	
Selected ¹ H- and	¹³ C NMR spectral data for azabicyclo compounds 11 and 1	2

Coupling constants (Hz): **11**, $J_{1,2} \cong 0$, $J_{1,5} = 7$, $J_{1,7A} = 9$, $J_{1,7B} = 3.5$, $J_{4A,5} = 1$, $J_{4B,5} = 8$, $J_{5,7A} = 4.5$, $J_{5,7B} = 3.5$; **12**, $J_{1,2} = 5$, $J_{1,7A} = 6.5$, $J_{1,7B} = 5.5$, $J_{4A,5} = 5.5$, $J_{4B,5} = 1$, $J_{5,7A} = 7.5$, $J_{5,7B} = 5.5$

Table 2 shows that the signal of the 7-methylene in the ¹³C NMR in **11** is shifted downfield due to the proximity of the C=O group. By contrast, in compound **12**, the corresponding signal appears to highfield, whereas the resonance of the C-1 methine is now shifted downfield by the carbonyl group. In **11** the value of the $J_{1,5}$ (7 Hz) established a *cis*-relationship between H-1 and H-5 protons,¹⁸ while the small coupling ($J_{1,2}\cong0$) requires the dihedral angle between H-1 and H-2 to be close to 90°. The assignment of the structure was confirmed by facile ring expansion of **11**, under Baeyer–Villiger¹⁹ conditions, to give the lactone **13**. Notably, the long-range coupling between 7-CH₂ protons and H-5 in **11** (see Table 2) disappeared in the bicyclo compound **13**.

The regio- and stereochemical course of the cycloaddition was qualitatively investigated by Molecular Mechanics calculations. Two possible transition state structures TS1 and TS2 were envisaged. TS1 leads to the stereoisomers with a *syn* relationship between H-1 and H-2, i.e. the products not experimentally observed. On the other hand, TS2 showed the correct geometry of the keteniminium and olefin fragments to give both the regioisomers **11** and **12**.

A conformational search²⁰ was performed on the keteniminium salt structure 1 (R = Ts, R' = Bn). The analysis of the data showed that, within 6 kcal/mol from the global minimum,²⁰ this structure exists only in conformations, such as **C**, leading to TS2 (Fig. 1).

A conformational search²⁰ was also carried out on the regioisomers **11** and **12** and the relative stability of the two isomers was obtained from the computed energies²¹ of their more stable conformers. The results indicated a strong preference (-5.75 kcal/mol) for the [3.2.0]-isomer **11**.

Figure 1. Structure C describes one of the conformations found in the conformational search of 1 (R = Ts, R' = Bn). Aromatic rings are omitted for the sake of clarity

In conclusion, this communication has shown that intramolecular [2+2]-cycloaddition of an N-allyl- β -N-keteniminium salt derived from protected (R)-vinylglycinol 10, affords the azabicyclo compounds 11 with high facial diastereoselectivity. Studies on the utilization of compounds 11 and 13 for the synthesis of biologically relevant 2,3,4-trisubstituted pyrrolidines are in progress.

Acknowledgements

This work was supported by MURST (Ministero dell'Università e della Ricerca Scientifica, Italy) and by CNR (Consiglio Nazionale delle Ricerche, Italy).

References

- (a) Murakami, S.; Takemoto, T.; Shimizu, Z. J. Pharm. Soc. Jpn. 1953, 73, 1026. (b) Konno, K.; Shirahama, H.; Matsumoto, T. Tetrahedron Lett. 1983, 24, 939. (c) For a review, see: Parsons, A. F. Tetrahedron 1996, 4149.
- See: (a) Excitatory Amino Acids; Simon, R. P., Ed.; Thieme Medical Publishers: New York, 1992. (b) Shinozaki, H.; Ishida, M.; Okamoto, T. Brain Res. 1986, 399, 395. (c) Maruyama, M.; Takeda, K. Brain Res. 1989, 504, 328.
- 3. Shinozaki, H.; Ishida, M.; Gotoh, Y.; Kwak, S. Brain Res. 1989, 503, 330.
- (a) Helms, G. L.; Moore, R. E.; Niemczyra, W. P.; Patterson, G. M. L.; Tomer, K. B.; Gross, M. L. J. Org. Chem. 1988, 53, 1298. (b) Benz, F.; Knüsel, F.; Nüesch, J.; Treischler, H.; Voser, W.; Nyfeher, R.; Keller-Schierlein, W. Helv. Chim. Acta 1974, 57, 2459. (c) Keller-Jushen, C.; Kuhn, M.; Loosli, H.-R.; Petcher, T. J.; Weber, H.; von Wartburg, A. Tetrahedron Lett. 1976, 4147.
- (a) Liddell, J. R. Natural Prod. Rep. 1999, 16, 419. (b) Takahata, H.; Momose, T. The Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 1993; Vol. 44.
- 6. Look, G. C.; Fotsch, C. H.; Wong, C.-H. Acc. Chem. Res. 1993, 26, 182.
- (a) Sidani A.; Marchand-Brynaert, J.; Ghosez, L. Angew. Chem., Int. Ed. Engl. 1974, 13, 267; Org. Synth. 1990, 69, 199. (b) Markò, I.; Ronsmans, B., Hesbain-Frisque, A.-E.; Dumas, S.; Ghosez, L.; Ernst, B.; Grenter, H. J. Am. Chem. Soc. 1985, 107, 2192; (c) Falmagne, J.-B.; Escudero, J.; Taleb-Sahraoni, S.; Ghosez, L. Angew. Chem., Int. Ed. Engl. 1981, 20, 879. (d) Gobeaux, B.; Ghosez, L. Heterocycles 1989, 28, 29.
- 8. Snider, B. B. Chem. Rev. 1988, 88, 793.
- 9. (a) Houge, C.; Frisque-Hesbain, A-M.; Mockel, A.; Ghosez, L. J. Am. Chem. Soc. 1982, 104, 2920. (b) Chen, L.; Ghosez, L. Tetrahedron Lett. 1990, 31, 4467. (c) Chen, L.; Ghosez, L. Tetrahedron: Asymmetry 1991, 2, 1181. (d) Genicot, C.; Ghosez, L. Tetrahedron Lett. 1992, 33, 7357.
- 10. Cholerton, T. J.; Collington, E. W.; Finch, H.; Williams, D. Tetrahedron Letters 1988, 29, 3369.

- For an account of our work in this field, see: (a) Delle Monache, G.; Misiti, D.; Zappia, G. Tetrahedron: Asymmetry 1999, 10, 2961. (b) Delle Monache, G.; Di Giovanni, M. C.; Misiti, D.; Zappia, G. Tetrahedron: Asymmetry 1997, 8, 231. (c) Di Giovanni, M. C.; Misiti, D.; Zappia, G.; Delle Monache, G. Gazz. Chim. Ital. 1997, 127, 475. (d) Di Giovanni, M. C.; Misiti, D.; Villlani, C.; Zappia, G. Tetrahedron: Asymmetry 1996, 7, 2277. (e) Misiti, D.; Delle Monache, G.; Zappia, G. Liebigs Ann. Chem. 1996, 235.
- 12. Campbell, A. D.; Raynham, T. M.; Taylor, R. J. K. Synthesis 1988, 1707.
- 13. Fehrentz, J.-A.; Castro, B. Synthesis 1983, 676.
- 14. Melting points were determined in open capillaries and are uncorrected. ¹H (300 MHz) and ¹³C NMR (75 MHz) were run in CDCl₃, unless otherwise reported. Coupling constants are given in hertz. The proton and carbon signals of the protecting groups (t-BuPh₂Si, Ts) are not reported. Optical rotations were determined at 23°C (concentration g/100 ml). Compound 4: m.p. $41-42^{\circ}$ C; $[\alpha]_{D} = +25.4$ (c 1.7, CHCl₃); anal. calcd for C₂₅H₃₅NO₃Si: C, 70.55; H, 8.29; N, 3.29; found: C, 70.56; H, 8.30; N, 3.28; ¹H NMR δ: 5.84 (1H, ddd, *J*=17.0, 10.0, 5.0, =CH), 5.22 (1H, dt, J = 17.0, 1.5, $=CH_AH_B$), 5.16 (1H, dt, J = 10.0, 1.5, $=CH_AH_B$), 4.24 (1H, m, $\sum J = 25.0$, CHN), 3.74 $(1H, dd, J = 10.0, 4.5, CH_{C}H_{D}OSi), 3.64 (1H, dd, J = 10.0, 4.5, CH_{C}H_{D}OSi); {}^{13}C NMR \delta: 155.45 (s, NCO), 136.49$ (d, CH=), 115.65 (t, =CH₂), 66.06 (t, CH₂OSi), 64.30 (d, CHN). Compound 5: $[\alpha]_D = -2.2$ (c 2.0, CHCl₃); ¹H NMR δ: 5.56 (1H, ddd, J=17.0, 10.0, 8.0, CH=), 5.16 (1H, br d, J=17.0, =CH_AH_B), 5.13 (1H, br d, J=10.0, =CH_A*H*_B), 3.68 (3H, s, OCH₃), 3.62 (1H, dd, *J*=10.0, 5.0, C*H*_CH_DSi), 3.57 (1H, dd, *J*=10.0, 9.0, CH_C*H*_DSi), 3.22 (1H, td, J = 8.5, CHN), 2.91 (1H, dt, J = 12.0, 6.5, CH_EH_FN), 2.79 (1H, dt, J = 12.0, 6.5, CH_EH_FN), 2.57 (1H, dt, $J = 17.0, 6.5, CH_GH_LCO), 2.49 (1H, J = 17.0, 6.5, CH_GH_LCO); {}^{13}C NMR \delta: 173.07 (s, COO), 137.22 (d, =CH),$ 117.97 (t, =CH₂), 66.64 (t, CH₂OSi), 61.10 (d, CHN), 51.58 (q, OCH₃), 42.37 (t, CH₂N), 34.43 (t, CH₂CO). Compound 6: $[\alpha]_{D} = -3.4$ (c 3.5, CHCl₃); anal. calcd for C₃₁H₃₉NO₅SSi: C, 65.81; H, 6.95; N, 2.48; found: C, 65.80; H, 6.97; N, 2.49; ¹H NMR δ: 5.60 (1H, ddd, J=17.0, 10.0, 6.0, CH=), 5.11 (1H, dt, J=10.5, 1.5, $=CH_{A}H_{B}$, 4.98 (1H, dt, $J=17.0, 1.5, =CH_{A}H_{B}$), 4.48 (1H, qt, J=6.0, 1.5, CHN), 3.74 (1H, dd, J=11.0, 6.0, 1.5, CHN), 3.75 (1 CH_CH_DOSi), 3.70 (1H, dd, J=11.0, 7.0, CH_CH_DOSi), 3.62 (3H, s, OCH₃), 3.51 (1H, ddd, J=16.0, 10.0, 6.0, $CH_{E}H_{E}N$), 3.37 (1H, ddd, $J = 16.0, 10.0, 6.0, CH_{E}H_{E}N$), 2.82 (1H, ddd, $J = 16.0, 10.0, 6.0, CH_{G}H_{L}CO$), 2.71 (1H, ddd, $J = 16.0, 10.0, 6.0, CH_GH_LCO$; ¹³C NMR δ : 171.95 (s, COO), 133.24 (d, =CH), 119.11 (t, =CH₂), 64.64 (t, =CH₂), CH₂OSi), 61.36 (d, CHN), 51.54 (q, OCH₃), 40.59 (t, CH₂N), 35.70 (t, CH₂CO). Compound 7: $[\alpha]_D = -2.4$ (c 1.1, CHCl₃); ¹H NMR δ : 5.60 (1H, br d, J=17.0, 10.0, 6.0, CH=), 5.07 (1H, br d, J=17.0, =CH_AH_B), 4.97 (1H, br d, H_A), 4.97 (1H, J=10.0, =CH_A H_B), 4.41 (1H, br q, J=6.0, CHN), 3.70 (2H, d, J=6.0, CH₂OSi), 3.49 (1H, dt, J=15.0, 7.0, CH_CH_DN), 3.37 (1H, dt, J=15.0, 7.0, CH_CH_DN), 2.71 (1H, dt, J=17.0, 7.0, CH_EH_FCO), 2.64 (1H, dt, J=17.0, 7.0, CH_EH_FCO); ¹³C NMR δ: 177.10 (s, COOH), 133.45 (d, CH=), 64.43 (t, CH₂OSi), 61.34 (d, CHN), 40.94 (t, CH₂N), 36.64 (t, CH₂CO). Compound 8: $[\alpha]_{D} = -9.5$ (c 3.0, CHCl₃); anal. calcd for C₃₄H₄₄N₂O₄SSi: C, 67.51; H, 7.33; N, 4.63; found: C, 67.50; H, 7.35; N, 4.60; ¹H NMR & 5.5.6 (1H, ddd, J=17.0, 10.0, 6.0, CH=), 5.08 (1H, dt, $J=10.5, 1.5, =CH_AH_B$, 4.95 (1H, dt, $J=17.0, 1.5, =CH_AH_B$), 4.53 (1H, dt, J=6.0, 5.0, 1.5, CHN), 3.75 (1H, dd, $J=11.0, 6.5, CH_{C}H_{D}OSi$, 3.71 (1H, dd, $J=11.0, 6.5, CH_{C}H_{D}OSi$), 3.49 (1H, ddd, J=16.0, 10.0, 6.0, 6.0, 10.0, 6.0, 10.0, 6.0, 10.0, 6.0, 10.0, 6.0, 10.0, $CH_{C}H_{D}OSi$), 3.40 (1H, ddd, J = 16.0, 10.0, 6.0, $CH_{E}H_{E}NSO_{2}$), 3.38 (2H, m, $CH_{2}NCO$), 3.31 (1H, dt, J = 10.0, 6.5, $CH_{G}H_{L}NCO$), 3.17 (1H, ddd, J=10.0, 7.0, 6.0, $CH_{G}H_{L}NCO$), 2.82 (1H, ddd, J=16.0, 10.0, 6.0, CH_MH_NNCO), 2.66 (1H, ddd, J=16.0, 10.0, 6.0, CH_MH_NCO), 1.73–1.94 (4H, m, 2×CH₂); ¹³C NMR δ: 169.53 (s, NCO), 133.15 (d, CH=), 119.09 (t, =CH₂), 64.60 (t, CH₂OSi), 61.64 (d, CHN), 46.35 (t, CH₂NCO), 45.40 (t, *C*H₂NCO), 41.05 (t, CH₂NSO₂), 36.55 (t, *C*H₂CO), 25.95 (t, CH₂), 24.35 (t, CH₂). Compound **9**: $[\alpha]_D = -59.5$ (c 1.1, CHCl₃); anal. calcd for C₁₈H₂₆N₂O₄SSi: C, 58.99; H, 7.15; N, 7.64; found: C, 60.04; H, 7.19; N, 7.60; ¹H NMR δ : 5.52 (1H, ddd, J=17.0, 10.5, 6.0, CH=), 5.13 (1H, dt, J=10.5, 1.5, =CH_AH_B), 5.09 (1H, dt, J=17.0, 1.5, -0.5) (1H, dt, J=17.0, 1.5) (1H, dt, J=10.5, 1.5) (1H, dt, J=17.0, 1.5) (1H, dt, $=CH_AH_B$, 4.51 (1H, dddt, J=8.0, 6.0, 5.0, 1.5, CHN), 4.06 (1H, s, OH), 3.82 (1H, br dd, J=12.0, 8.0, 1.5, CHN), 4.06 (1H, s, OH), 3.82 (1H, br dd, J=12.0, 8.0, 1.5, CHN), 4.06 (1H, s, OH), 3.82 (1H, br dd, J=12.0, 8.0, 1.5, CHN), 4.06 (1H, s, OH), 3.82 (1H, br dd, J=12.0, 8.0, 1.5, CHN), 4.06 (1H, s, OH), 3.82 (1H, br dd, J=12.0, 8.0, 1.5, CHN), 4.06 (1H, s, OH), 3.82 (1H, br dd, J=12.0, 8.0, 1.5, CHN), 4.06 (1H, s, OH), 3.82 (1H, br dd, J=12.0, 8.0, 1.5, CHN), 4.06 (1H, s, OH), 3.82 (1H, br dd, J=12.0, 8.0, 1.5, CHN), 4.06 (1H, s, OH), 3.82 (1H, br dd, J=12.0, 8.0, 1.5, CHN), 4.06 (1H, s, OH), 3.82 (1H, br dd, J=12.0, 8.0, 1.5, CHN), 4.06 (1H, s, OH), 3.82 (1H, br dd, J=12.0, 8.0, 1.5, CHN), 4.06 (1H, s, OH), 3.82 (1H, br dd), J=12.0, 8.0, 1.5, CHN), 4.06 (1H, s, OH), 3.82 (1H, br dd), J=12.0, 8.0, 1.5, CHN), 4.06 (1H, s, OH), 3.82 (1H, br dd), J=12.0, 8.0, 1.5, CHN), 4.06 (1H, s, OH), 3.82 (1H, br dd), J=12.0, 8.0, 1.5, CHN), 4.06 (1H, s, OH), 3.82 (1H, br dd), J=12.0, 8.0, 1.5, CHN), 4.06 (1H, s, OH), 3.82 (1H, br dd), J=12.0, 8.0, 1.5, CHN), 4.05 (1H, br dd), 4.05 (1H $CH_{C}H_{D}OSi$, 3.73 (1H, dd, $J=12.0, 5.0, CH_{C}H_{D}OSi$), 3.49 (1H, ddd, $J=15.0, 9.0, 6.0, CH_{E}H_{F}NTs$), 3.41 (1H, ddd, J=15.0, 6.5, 5.0, CH_FH_FNTs), 3.38 (2H, m, CH₂NCO), 3.33 (2H, t, J=6.5, CH₂NCO), 2.99 (1H, ddd, $J=16.0, 9.0, 6.5, CH_{G}H_{I}CO), 2.53$ (1H, ddd, $J=16.0, 6.0, 5.0, CH_{G}H_{I}CO), 1.92$ (2H, m, CH₂), 1.82 (2H, m, CH₂); ¹³C NMR δ: 169.71 (s, CO), 132.39 (d, CH=), 119.35 (t, =CH₂), 62.68 (t, CH₂OSi), 62.47 (d, CHN), 45.75, 45.55 (t, each, 2×CH₂NCO), 40.11 (t, CH₂NTs), 34.95 (t, CH₂CO), 25.91, 24.28 (t each, 2×CH₂). Compound 10: $[\alpha]_{D} = -27.3$ (c 1.9, CHCl₃); anal. calcd for C₂₅H₃₂N₂O₄S: C, 65.76; H, 7.06; N, 6.14; found: C, 65.68; H, 7.16; N, 6.11; ¹H NMR δ : 7.5–7.3 (5H, m, C₆H₅), 5.60 (1H, ddd, J=17.0, 11.0, 6.0, CH=), 5.13 (1H, br d, J=11.0, 1.1, 0.1) (1.1, 0.1) $=CH_{A}H_{B}$, 5.08 (1H, br d, J=17.0, $=CH_{A}H_{B}$), 4.65 (1H, br q, J=6.0, CHN), 4.51 (1H, d, J=12.0, $OCH_{A}H_{B}C_{6}H_{5}$), 4.44 (1H, d, J=12.0, OCH_AH_BC₆H₅), 3.63 (1H, dd, J=10.0, 7.0, OCH_GH_D), 3.58 (1H, dd, J=10.0, 6.0, OCH_CH_D), 3.48 (1H, ddd, J=15.0, 9.0, 6.0, CH_EH_FNSO₂), 3.42 (1H, ddd, J=15.0, 9.0, 5.5, CH_EH_FNSO₂), 3.37 $(2H, br t, J = 6.0 Hz, CH_2N), 3.35 (1H, dt, J = 10.5, 6.5, CH_GH_LN), 3.23 (1H, dt, J = 10.5, 6.0, CH_GH_LCO), 2.76 (2H, br t, J = 6.0 Hz, CH_2N), 3.35 (1H, dt, J = 10.5, 6.5, CH_GH_LN), 3.23 (1H, dt, J = 10.5, 6.0, CH_GH_LCO), 2.76 (2H, br t, J = 6.0 Hz, CH_2N), 3.35 (1H, dt, J = 10.5, 6.5, CH_GH_LN), 3.23 (1H, dt, J = 10.5, 6.0, CH_GH_LCO), 2.76 (2H, br t, J = 6.0 Hz, CH_2N), 3.35 (1H, dt, J = 10.5, 6.5, CH_GH_LN), 3.23 (1H, dt, J = 10.5, 6.0, CH_GH_LCO), 2.76 (2H, br t, J = 10.5, 6.0, CH_HCO), 2.76 (2H, br t, J = 10.5, 6.0, CH_LCO), 2.76 (2H, br t, J = 10.5, 6.0, CH_LCO),$

 $(1H, ddd, J=15.0, 9.0, 6.0, CH_{M}H_{N}CO), 2.65 (1H, ddd, J=15.0, 9.0, 6.0, CH_{M}H_{N}CO), 2.01 (2H, m, CH_{2}), 1.99$ (2H, m, CH₂). ¹³C NMR δ: 169.55 (s, CON), 137.33 (s, C₆H₅), 133.40 (d, CH=), 128.30 (2×d, C₆H₅), 127.57 (3×d, C₆H₅), 118.93 (t, =CH₂), 72.86 (t, OCH₂), 70.47 (t, OCH₂C₆H₅), 59.28 (d, CHN), 46.38, 45.41 (t each, CH₂N), 40.95 (t, CH₂NSO₂), 36.38 (t, CH₂CO), 25.91 (t, CH₂), 24.32 (t, CH₂). Compound **11**: m.p. = 72–73°C; [α]_D = -6.4 (c 0.9, CHCl₃); anal. calcd for C₂₁H₂₃NO₄S: C, 65.43; H, 6.01; N, 3.63; found: C, 65.44; H, 6.02; N, 3.63; ¹H and ¹³C NMR spectral data are in Table 2. Compound 12: $[\alpha]_D = 29.6$ (c 0.7, CHCl₃); anal. calcd for C₂₁H₂₃NO₄S: C, 65.43; H, 6.01; N, 3.63; found: C, 65.37; H, 5.90; N, 3.55; ¹H and ¹³C NMR spectral data are in Table 2. Compound **13**: [*α*]_D = 95.3 (*c* 1.1, CHCl₃); anal. calcd for C₂₁H₂₃NO₅S: C, 62.83; H, 5.77; N, 3.49; found: C, 62.77; H, 5.71; N, 3.44; ¹H NMR (CD₃COCD₃) δ: 7.77 (2H, d, *J*=8.0, C₆*H*₄CH₃), 7.42–7.20 (7H, m, C₆*H*₅+C₆*H*₄CH₃), 5.07 (1H, ddd, J=6.5, 3.5, 1.5, CHO), 3.89 (1H, dt, J=5.0, 3.5, CHN), 3.85 (1H, dd, J=13.0, 1.5, CH_AH_BN), 3.76 (1H, dd, J=13.0, 4.0, CH_AH_BN), 3.73 (1H, dd, J=9.5, 3.5, CHCH_CH_DO), 3.69 (1H, dd, J=9.5, 5.0, CHCH_CH_DO), 3.28 (1H, ddt, J=9.5, 6.5, 3.5, CH), 2.82 (1H, dd, J=18.0, 9.5, CH_EH_FCO), 2.43 (3H, s, C₆H₄CH₃), 2.27 (1H, dd, J=18.0, 3.5, CH_EH_FCO); ¹³C NMR δ: 178.40 (s, CO), 144.49 (s, 4'-C₆H₄SO₂), 139.25 (s, C₆H₅), 134.04 (s, 1'-C₆H₄SO₂), 130.58 (2×d, 2',6'-C₆H₄SO₂), 129.09 (2×d, C₆H₅), 128.30 (d, C₆H₅), 128.25 (2×d, 3',5'-C₆H₄SO₂), 127.94 (2×d, C₆H₅), 83.71 (d, CHO), 73.76 (t, OCH₂C₆H₅), 73.08 (t, CHCH₂O), 66.86 (d, CHN), 55.12 (t, CH₂N), 43.36 (d, CHN), 34.83 (t, CH₂CO), 21.41 (q, CH₃).

- 15. Sakaitani, M.; Ohfune, Y. J. Org. Chem. 1990, 55, 870.
- 16. Bis alkylated product (3%) was isolated.
- 17. (a) Diago-Meseguer, J.; Palomo-Coll, A. L. Synthesis 1980, 547. (b) Cabrè, J.; Palomo, A. L. Synthesis 1984, 413.
- See, for instance: (a) Rey, M.; Roberts, S. M.; Dreiding, A. S.; Roussel, A.; Vanlierde, H.; Toppet, S.; Ghosez, L. *Helvetica Chim. Acta* 1982, 65, 703. (b) Snider, B. B.; Hui, R. A. H. F. J. Org. Chem. 1985, 50, 5167. (c) Snider, B. B.; Allentoff, A. J.; Walner, M. B. *Tetrahedron* 1990, 46, 8031.
- 19. Krow, G. R. Oganic Reactions 1993, 43, 251.
- Batchmin of Macromodel Version 4.5 (Columbia Univ. New York), Amber* Force Field, united atoms, Monte Carlo stocastic algorithm with 5000 generated structures, minimization by PR conjugate gradient, energy window 12 kcal/mol. All the rotatable bonds were explored.
- 21. Structures generated by the conformational search were further optimized with the MMX force field (PC Model 4.0, Serena Software, Bloomington, IN). Energy comparison refers to MMX computed structures.