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Abstract Using continuous-flow techniques, a small collection of 2H-
azirines was prepared from oxime precursors via mesylation and base-
promoted cyclisation. The 2H-azirines were either isolated after in-line
purification or derivatised into a selection of 2-substituted aziridines
through a telescoped reaction sequence involving nitrile, trifluorometh-
yl, or hydride nucleophilic addition. Importantly, these 2-substituted
aziridines were produced with high cis diastereoselectivity providing ac-
cess to small chiral heterocyclic entities that hold promise for medicinal
chemistry programs because of their druglike features.

Key words flow synthesis, heterocycles, azirine, aziridine, microreac-
tor, monolith, in-line purification

2H-Azirines and their saturated aziridine counterparts
represent intriguing small heterocyclic components.1 Syn-
thesis of 2H-azirines commonly involves the photolysis of
vinyl azides2 or the Neber rearrangement of activated oxim-
es.3 Due to the inherently high ring strain of the 2H-azirine
structures, their conversion into aziridines through nucleo-
philic attack at the imine carbon is a very thermodynami-
cally favourable process accompanied by release of ~20
kcal/mol.4 In addition 2H-azirines readily undergo ring
opening into synthetically valuable nitrile ylide dipoles
(Scheme 1).5

Current synthetic protocols towards 2H-azirines involve
time- and labour-intensive batch manipulations where
product instability results in decreased yield and the re-
quirement for extensive purification. In the past we have
successfully demonstrated several efficient flow processes
yielding selections of chiral6 and achiral7 heterocyclic archi-
tectures displaying various versatile functionalization sites.
We therefore aimed to harness the processing power of
flow chemistry to deliver a stream of 2H-azirines based on
an interrupted Neber rearrangement process. The interme-
diate 2H-azirines would be subsequently converted through
a second reaction step involving addition of various nucleo-
philes to furnish di- and trisubstituted aziridines.8

We commenced our studies with the synthesis of differ-
ent substrates bearing a 4-pyridyl moiety adjacent to the
methylene carbon of the oxime motif that itself would be
derived from the corresponding ketone precursor.9 It was
quickly established that these ketone structures 3 could be
readily accessed through the addition of lithiated picolines
1 into nitriles 2 (Scheme 2, see Supporting Information for
full details). The desired oximes 4 were subsequently pre-
pared by condensation of the ketones 3 with hydroxyl-
amine hydrochloride under basic conditions.

Scheme 1  Synthetic approaches towards 2H-azirines
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Having gained rapid entry to quantities of the oxime
precursors we next turned our attention towards develop-
ing a flow process for their conversion into 2H-azirines and
related aziridines. To this end we configured a Vapourtec E-
series flow system so that a stream (stream A, Scheme 3)
containing the oxime substrate (4, 0.1 M MeCN) and tri-
ethylamine (1.2 equiv) was mixed at a T-piece with a sec-
ond stream containing methanesulfonyl chloride (0.12 M,
MeCN; stream B, Scheme 3) before entering a tubular con-
vection flow coil (CFC, 10 mL volume) maintained at 40 °C.
The resultant mesylated oxime would then enter a packed
glass column filled with silica-supported pyridine (2.5 g,
1.39 mmol/g functional loading10) as a base to promote dis-
placement of the mesylate and thus formation of the de-
sired 2H-azirines via a 3-exo-trig cyclisation.

Scheme 3  Flow set-up generating 2H-azirines 5

It was shown that this simple set-up was indeed suit-
able for delivering the desired 2H-azirine products 5 in a
mild and efficient flow sequence within an overall resi-
dence time of 20 minutes (16 minutes mesylation in CFC
and 4 minutes cyclisation in the glass column). 1H NMR
spectroscopic analysis of the crude output indicated >85%
conversion of the oxime substrates to the 2H-azirine prod-
ucts. We therefore slightly modified the set-up to incorpo-
rate a small plug of silica gel (1 g) following the immobilised
pyridine base in order to trap the triethylamine hydrochlo-
ride salt formed in the process. This not only resulted in a
simple yet effective in-line purification, but also removed
coloured impurities from the product stream. The set-up
was used to rapidly generate a small selection of 2H-azirine
products as depicted in Figure 1.

Figure 1  2H-Azirines 5a–c prepared in flow (isolated yields).

Additional experiments also revealed that other sol-
vents such as EtOAc or THF were also suitable for this trans-
formation. However, the diminished solubility of the tri-

ethylamine hydrochloride generated presented a potential
risk of clogging of the narrow-bore tubing connectors. It
was found that although complete exclusion of triethyl-
amine still yielded the desired 2H-azirines, they existed as
their hydrochloride salts due to the embedded pyridyl moi-
ety. As these required base treatment, this approach was
not followed up further.

Next we explored the addition of various nucleophiles,
such as nitrile, trifluoromethyl, and hydride onto the 2H-
azirines 5. To this end we designed an extended process
that would merge the initial reaction stream containing the
2H-azirine product (ca. 0.05 M, MeCN) with an aqueous
solution of sodium cyanide (0.1 M, H2O) in order to gener-
ate the corresponding nitrile derivatives (Scheme 4). After
passing through a second tubular reactor coil (10 mL) main-
tained at ambient temperature the desired nitrile product
was isolated after evaporation and aqueous extraction.
Pleasingly, it was quickly established that the desired ad-
ducts were formed not only in good yield but moreover
with excellent diastereoselectivity (dr >19:1).

Scheme 4  Continuous synthesis of aziridine-2-carbonitriles 6

Using NOESY NMR techniques it was shown that a cis
relationship between the two aryl rings existed as a result
of the nitrile approaching the azirine electrophile from the
sterically least hindered face. In addition, single-crystal X-
ray diffraction was used to confirm the stereochemical as-
signment (Figure 2).

Figure 2  Relative stereochemistry of 6a as established by X-ray crystal-
lography
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One interesting feature of these aziridines bearing a ni-
trile substituent is their distinct red colour when in solid
form; whereas solutions possess an yellow-orange coloura-
tion. This is possibly indicative of a ‘push–pull’ interaction
between the electron-withdrawing nitrile group and the
electron-rich aziridine nitrogen atom. It was furthermore
found that these products slowly undergo decomposition
via a process likely to comprise a sequence of electrocyclic
ring opening of 6a and oxidative dimerization to generate
biscyanoimine species 7, the structure of which was con-
firmed by X-ray crystallography (Scheme 5).

Scheme 5  Decomposition of 6a

Next, we decided to evaluate the viability of introducing
a trifluoromethyl group by reacting the azirine flow stream
with Ruppert’s reagent (TMSCF3) to yield the alternative tri-
fluoromethylaziridines as such fluorinated heterocyclic
structures are predisposed for potential applications in me-
dicinal chemistry programs.11 In order to achieve the syn-
thesis of these entities we decided to draw from our previ-
ous studies that had shown how flow chemical processing
offers a robust solution for safely and efficiently performing
fluorination reactions with various reagents such as DAST,12

Ruppert’s reagent, and Selectfluor.13 Of particular benefit in
these studies was the successful development of a fluoride-
containing ion-exchange monolith that previously had al-
lowed us to activate TMSCF3 towards addition into alde-
hydes without requiring TBAF as a solution-phase reagent
that is often difficult to remove by chromatography. We
therefore prepared a monolithic reactor cartridge and load-
ed it with fluoride as previously reported.13a The crude 2H-
azirine flow stream was therefore mixed via a T-piece with
a stream containing Ruppert’s reagent (0.1 M, 2.0 equiv,
THF) before passing through the fluoride monolith main-
tained at 50 °C. A CFC reactor (10 mL volume, 50 °C) was
placed after the monolithic reactor to increase residence
time for the trifluoromethylation reaction. Finally, a 100 psi
back-pressure regulator was placed at the exit of the reactor
to maintain the system pressure, and the product was iso-
lated by direct evaporation of the output (Scheme 6).

Scheme 6  Telescoped flow approach towards trifluoromethylated 
aziridines 8a–c

Pleasingly, this new set-up proved successful for the
telescoped synthesis of a small selection of trifluoromethyl-
ated aziridines starting from the corresponding oxime pre-
cursors. Importantly, all final products where isolated as
single diastereomers in good yield and high purity after col-
umn chromatography. In order to evaluate the relative ste-
reochemistry of our products we firstly turned to 2D NMR
techniques, specifically 1H-19F HOESY experiments, con-
firming the expected cis relationship between the CF3
group and the adjacent proton. It was quickly established
that there was a cis correlation between these groups by the
observation of a through-space coupling at an estimated
spatial distance of ca. 2.7 Å compared to ca. 4.1 Å for the
trans diastereomer. Finally, a single-crystal X-ray structure
of compound 8a was secured and confirmed the assign-
ment unambiguously (Figure 3).

Figure 3  Relative stereochemistry of 8a established by 2D NMR (1H-19F 
HOESY, left) and X-ray crystallography (right)

Finally, we elected to study the conversion of in situ pre-
pared 2H-azirines into their corresponding aziridine deriv-
atives. In order to achieve this reduction, several options
were evaluated including flow-based hydrogenations with
the H-CubeTM system.14 In view of operational simplicity it
was, however, established that collecting the 2H-azirine
stream into a flask containing NaBH4 (1.5 equiv, 0.1 M THF)
would lead to the clean formation of the desired aziridine
products 9a–c that again were isolated as single diastereo-
mers. After aqueous workup and column chromatography
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the relative stereochemistry of these entities was estab-
lished using NOESY NMR spectroscopy confirming the ex-
pected cis relationship (Figure 4).

Figure 4  Disubstituted aziridines 9a–c prepared in flow

In summary, we have developed a simple, yet robust
flow process generating a selection of 2H-azirines from
readily accessible oxime precursors.15 The value of these
species was furthermore demonstrated through a selection
of telescoped reaction sequences showcasing the rapid for-
mation of a number of aziridine derivatives accomplished
by reaction with hydride, trifluoromethyl, and nitrile nucle-
ophiles. Importantly, these structures were obtained in
high yield and with exclusive cis diastereoselectivity pre-
senting opportunities towards further exploitation of this
versatile methodology.
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column chromatography (20–50% EtOAc–hexanes) yielding the
desired 2H-aziridines typically in high yield as yellow oils.
4-{3-[4-(Trifluoromethyl)phenyl]-2H-azirin-2-yl}pyridine
(5a)
Yield 201 mg (0.77 mmol, 77%); yellow oil. 1H NMR (400 MHz,
CDCl3): δ = 8.47 (2 H, d, J = 8.0 Hz), 7.97 (2 H, d, J = 8.0 Hz), 7.79
(2 H, d, J = 8.0 Hz), 7.02 (2 H, d, J = 8.0 Hz), 3.29 (1 H, s). 13C NMR

(101 MHz, CDCl3): δ = 161.9 (C), 149.5 (2 CH), 149.4 (C), 135.1
(C, q, J = 23 Hz), 130.3 (2 CH), 126.4 (2 CH, q, J = 4 Hz), 126.3 (C),
123.3 (CF3, q, J = 271 Hz), 120.9 (2 CH), 33.6 (CH). 19F NMR (376
MHz, CDCl3): δ = –63.3 . IR (neat): ν = 1602 , 1413 , 1322 , 1168 ,
1126 , 1065 , 1017 , 851 cm–1. LC–MS (ESI-TOF): m/z = 263.1
[M + H]. HRMS (ESI-TOF): m/z calcd for C14H10N2F3: 263.0796;
found: 263.0792 (Δ 0.4 mDa).
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