DOI: 10.1002/ejoc.200800211

Fluorescent Bis(oligophenylylamino)terephthalates

Yawei Zhang,^[a] Przemysław Starynowicz,^[b] and Jens Christoffers*^[a]

Keywords: Enamines / Cross coupling / Fluorescence / Oligophenylenes / Oxidation / Terephthalates

The reaction of succinyl succinates with aniline, iodoaniline and iodobiphenylamine yielded 2,5-bis(arylamino)terephthalates. Suzuki cross-coupling reactions of the iodofunctionalized compounds with phenyl- and biphenylylboronic acids gave 2,5-diaminoterephthalates with *N*-biphenylyl, *N*-terphenylyl and *N*-quaterphenylyl substituents. Some of the products show interesting fluorescence behaviour.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)

Introduction

Since the first report by Liebermann in 1914,^[1] the reaction of succinyl succinates with aniline has developed into an extraordinarily important step in the synthesis of 2,5diaminoterephthalates. These compounds are essential precursors for the industrial synthesis of quinacridone pigments, which involves three steps: aminolysis (enamine formation), oxidative aromatization and condensation (Scheme 1).^[2]

Scheme 1. Industrial synthesis of quinacridone pigments from succinyl succinates.

In close relation to our recent work on double-Michael reactions with succinyl succinates^[3] we were interested in improving the solubility of *p*-functionalized *p*-terphenylyland *p*-quaterphenylylamines by attaching them to

WWW under http://www.eurjoc.org or from the author.

3488

terephthalate moieties. Oligo-*p*-phenylenes have proven to be versatile building blocks for the generation of self-assembled nanoaggregates with interesting optical properties.^[4] A major drawback of these materials, however, is their very low solubility, which makes their purification and handling relatively difficult. In order to improve this property, we planned to build up *p*-phenylene units by Suzuki cross-coupling reactions on a terephthalate scaffold with octvl ester groups.

Results and Discussion

The reaction of succinvl succinates 1 with aniline derivatives 2 to give 2,5-diaminoterephthalates 3a-3f proceeds via a mono- and a bis-enamine and is completed by oxidative aromatization. The latter step has been reported to be achieved with stoichiometric amounts of bromine.^[5] In our hands this oxidation step proceeded quickly in the presence of catalytic amounts of Pd on charcoal with atmospheric oxygen.^[6] However, as the mono-enamine can also oxidize to give the aminohydroxyterephthalic acid derivative, careful control of reaction conditions, in particular, the partial pressure of oxygen, was crucial for the success of this reaction. Finally, it turned out that oxidative aminolysis is best performed without any Pd or other catalyst by simple heating of the starting materials in air (Scheme 2, Table 1).^[7] Reactions of the ethyl and octyl esters 1a and 1b with aniline (2a) and iodoaniline (2b) proceeded with good yields (86–93%) at 60 °C in toluene in the presence of catalytic amounts of HCl. The better solubility of the octyl esters 3b and 3d facilitated purification by column chromatography or recrystallization. The reactions of 1a and 1b with biphenyl derivative 2c was performed in AcOH at 100 °C and the yields of the products 3e and 3f were satisfactory (both 67%). The preparation of starting materials 1a and 1b has been reported previously.^[3] The iodobiphenylamine (2c) was prepared in two steps from biphenyl (4) by following two literature procedures (Scheme 3).^[8] The first step is an

[[]a] Center of Interface Science (CIS) and Institut für Reine und Angewandte Chemie, Carl von Ossietzky-Universität Oldenburg, 26111 Oldenburg, Germany Fax: +49-441-798-3873 E-mail: jens.christoffers@uni-oldenburg.de
[b] Wydział Chemii, Uniwersytet Wrocławski,

⁵⁰³⁸³ Wrocław, Poland Supporting information for this article is available on the

Product	Starting materials	R	i	Y	% Yield	$\lambda_{\max}^{[b]} [nm]$	$\varepsilon [dm^3 mol^{-1} cm^{-1}]$	$\lambda_{\rm em}$ [nm]	Φ
3a	1a, 2a	Et	1	Н	89	326	29200	577	0.096
3b	1b, 2a	Oct	1	Н	92	325	28500	589	0.23
3c	1a, 2b	Et	1	Ι	86	337	23200	573	0.10
3d	1b, 2b	Oct	1	Ι	93	337	34000	570	0.10
3e	1a, 2c	Et	2	Ι	67	355	53500	_	_
3f	1b, 2c	Oct	2	Ι	67	356	43000	586	0.075

Table 1. Synthesis of diaminoterephthalates 3a-3f and their spectroscopic properties.^[a]

[a] The spectroscopic data were determined for solutions in CH₂Cl₂. [b] Only the largest of three absorption bands is listed.

electrophilic nitration/iodination that yields an inseparable mixture of 4,4'-diiodobiphenyl (5) and 4-iodo-4'-nitrobiphenyl (6). After reduction of this mixture the amino compound **2c** can be separated from the diiodo compound **5**.

Scheme 2. Synthesis of fluorescence materials **3a–3f** by oxidative aminolysis of succinyl succinates **1**. For yields and substituents R and Y, see Table 1. Reagents and conditions: a) cat. HCl, air, toluene, 60 °C, 2 d (for **3a**, **3b**, **3d**), 16 h (for **3c**); b) air, AcOH, 100 °C, 16 h (for **3e**, **3f**).

Scheme 3. Two-step synthesis of biphenyl derivative **2c**. Reagents and conditions: a) 1 equiv. I₂, 2.5 equiv. concd. HNO₃, 5 equiv. concd. H₂SO₄, AcOH, 110 °C, 2 h; b) Zn, HCl, EtOH, 78 °C, 1 h.

The Suzuki cross-coupling reaction of iodo compounds 3c-3f with boronic acids 7a-7d was performed according to a standard protocol.^[9] [Pd(PPh₃)₄] (5 mol-%) was used as the catalyst, Na₂CO₃ as the base. The reactions proceeded in toluene/EtOH/water at reflux overnight. After work up, the products 3g-3s directly crystallized from the organic extracts. Again, the yields of the octyl esters are (with two exceptions) better than those of the ethyl esters as purification of the latter is difficult due to lower solubility. All the compounds 3g-3s were obtained as deeply coloured (red to violet in solution) crystalline materials in 42-85% yield (Scheme 4, Table 2). Even in highly dilute solutions, they show fluorescence behaviour. For terephthalates with biphenyl (n = 2) and terphenyl (n = 3) moieties, electron-do-

Scheme 4. Synthesis of fluorescence materials 3g-3s by Suzuki cross-coupling reaction. For yields and substituents R and X, see Table 2. Reagents and conditions: a) 5 mol-% [Pd(PPh_3)₄], 4 equiv. Na₂CO₃, toluene/EtOH/H₂O (1:1:1.5), reflux, 16 h.

Table 2. Preparation of the fluorescent materials 3g-3s by Suzuki cross-coupling and their spectroscopic properties.^[a]

Product	Starting materials	R	n = i + j	Х	% Yield	λ_{\max} [nm]	$\varepsilon [\mathrm{dm^3 mol^{-1} cm^{-1}}]$	$\lambda_{\rm em}$ [nm]	Φ
3g	3c, 7a	Et	2	Н	70	350	43200	592	0.036
3h	3d, 7a	Oct	2	Н	49	350	44600	589	0.052
3i	3c, 7b	Et	2	OMe	42	348	37900	602	0.013
3j	3d, 7b	Oct	2	OMe	42	348	47000	603	0.028
3k	3c, 7c	Et	2	CF_3	55	359	37700	581	0.074
31	3d, 7c	Oct	2	CF_3	57	359	38000	581	0.11
3m	3c, 7d	Et	3	Н	54	355	38400	_	_
3n	3d, 7d	Oct	3	Н	72	359	48300	592	0.046
30	3e, 7b	Et	3	OMe	60	358	33900	_	_
3р	3f, 7b	Oct	3	OMe	85	359	60800	593	0.028
3q	3e, 7c	Et	3	CF_3	61	365	13500	_	_
3r	3f, 7c	Oct	3	CF_3	73	287, ^[b] 362	38400, ^[b] 30700	589	0.069
3s	3f, 7d	Oct	4	Н	42	305, ^[b] 355	39800, ^[b] 23700	-	_

[a] For details, see Table 1. [b] The first of the three bands, showing the largest intensity.

FULL PAPER

nating (X = OMe) and -withdrawing (X = CF_3) substituents were introduced, originating from the corresponding boronic acids **7b** or **7c**.

In order to gain an insight into the structural features of the compounds, crystal structure determinations of **3b** and **3d** were performed at T = 100 K with R(F) = 0.0821 and 0.0243, respectively.^[10] The former compound (**3b**) crystallizes in the monoclinic $P2_1/c$ space group and has the parameters a = 7.776(3), b = 37.825(15), c = 11.053(4) Å, β $= 92.29(3)^{\circ}$. There are two independent molecules in the unit cell, each having crystallographic $\overline{1}$ (C_s) symmetry and a similar geometry, therefore only one (labelled as a) is shown in Figure 1. The C–N distances [N(a)–C8a 1.389(4) and N(a)–C6a 1.411(4) Å], shorter than for the typical single C–N bond (1.47 Å), and the C8a–N(a)–C6a angle [127.1(3)°] indicate that the C–N bonds have partial π character. The planes of the peripheral phenyl rings are, however, twisted 51.0° with respect to the central benzene ring.

Figure 1. ORTEP view of one (molecule a) of the two independent molecules of compound **3b** in the unit cell.

Compound 3d (Figure 2) forms triclinic crystals with the space group $P\overline{1}$ and has the parameters a = 4.500(3), b =11.144(8), c = 17.238(12) Å, a = 88.56(6), $\beta = 88.63(5)$, γ = $89.05(5)^{\circ}$. As in the previous example the molecules are crystallographically centrosymmetric. The parameters of the C4-N-C8 fragment are also similar [C4-N 1.400(3) Å, C8–N 1.400(3) Å and C4–N–N8 127.5(2)°]. The twisting of the peripheral phenyl rings (-41.8°) with respect to the central benzene ring is, however, less than in the previous case. Note that the presence of long octyl chains results in bending of the carboxy group towards the phenyl rings in the two molecules, which is reflected in the values of the C-C-O angles: O2a–C10a–C9a 112.9(3) (3b, molecule a), O2b– C10b-C9b 113.5(3) (3b, molecule b) and O2-C10-C9 112.4(2)° (3d). At the same time the O-C-C angles are O1a-C10a-C9a 125.4(3) (3b, molecule a), O1b-C10b-C9b 125.7(3) (**3b**, molecule b) and O1–C10–C9 125.1(2)° (**3d**).

The results of the preliminary spectroscopic investigations of compounds **3a–3d**, **3f–3l**, **3n**, **3p** and **3r** are collected in Tables 1 and 2. Generally they all show three bands in the absorption range 220–600 nm. The first band is located near 230–240 nm and has a large molar absorp-

Figure 2. ORTEP representation of the structure of compound **3d** in the solid state.

tion coefficient (between 20000 and 40000 dm³ mol⁻¹ cm⁻¹). The second is with two exceptions the most intense (ε between 23200 and 60800 dm³ mol⁻¹ cm⁻¹) and lies between 325 and 370 nm. The third, the weakest one (ε between 6800 and 9500 dm³ mol⁻¹ cm⁻¹), occurs near 465 nm. In the cases of compounds **3r** and **3s**, the first band has the highest intensity and is therefore listed in Table 2 together with the second band. Compounds **3** are orange luminophores (the emission maxima were located between 570 and 603 nm). The absorption and emission spectra for **3d** are given as examples in Figure 3.

Figure 3. The absorption (solid) and emission (dotted) spectra of **3d**. The absorption spectrum is shown in molar absorption units; the emission spectrum (excited by 350 nm light) is given in arbitrary units.

The luminescence was excited with 350 or 320 nm radiation. However, when some of the samples (namely those with biphenyl or terphenyl moieties, 3g, 3i-3k, 3n, 3p and 3r) were excited with 300 nm light, additional emission bands with maxima located below 400 nm were observed. For 3r, this emission (with a maximum at 384 nm) even dominated the orange luminescence, the latter being faint in this case. Moreover, an additional emission band with a maximum at 784 nm appeared (Figure 4). Quantum yields were determined with an external standard (aqueous solution of [bpy₃Ru]Cl₂) and calculated using a modified Parker–Rees method.^[11]

Figure 4. The absorption (solid) and emission [excited at 350 nm (dashed) and 300 nm (dotted)] spectra of **3r**. The absorption spectrum is shown in molar absorption units and the emission spectra in arbitrary units.

Conclusions

In summary, (oligophenylyl)amino-substituted terephthalates have been readily accessed in two steps: oxidative aminolysis of succinyl succinates with aniline derivatives followed by Suzuki cross-coupling. Diethyl and dioctyl esters **1a** and **1b** were utilized as electrophiles in the first step. As amines, aniline (**2a**), iodoaniline (**2b**) and iodobiphenylamine (**2c**) were used. Four different boronic acids were used in the cross-coupling step: PhB(OH)₂ (**7a**), 4-Me-OC₆H₄B(OH)₂ (**7b**), 4-F₃CC₆H₄B(OH)₂ (**7c**) and 4-PhC₆H₄B(OH)₂ (**7d**). Some of the products possess interesting optical properties. More detailed spectroscopic studies on this new class of compound are currently underway in our laboratories.

Experimental Section

General Methods: Preparative column chromatography was carried out using Merck SiO₂ (0.035–0.070 mm, type 60 A) with petroleum ether (PE, boiling range 40–60 °C) and ethyl acetate (EA) as eluents. TLC was performed on Merck SiO₂ F₂₅₄ plates on aluminium sheets. ¹H and ¹³C NMR spectra were recorded with Bruker Avance DRX 500 and Avance DPX 300 spectrometers. Multiplicities were determined by DEPT experiments. EI-MS, CI-MS and HRMS spectra were obtained with a Finnigan MAT 95 spectrometer and ESI-MS spectra with a Waters Q-TOF Premier. IR spectra were recorded with a Bruker Tensor 27 spectrometer equipped with a "GoldenGate" diamond-ATR unit. Elemental analyses were measured with a Euro EA-CHNS instrument from HEKAtech. Esters **1** were prepared according to procedures reported previously.^[3] All other starting materials were commercially available.

4-Iodo-4'-nitrobiphenyl (6): A solution of iodine (3.30 g, 13.0 mmol) in AcOH (15 mL) was added to biphenyl (4) (2.00 g, 13.0 mmol) and the mixture was stirred at 50 °C for 10 min. A mixture of concd. H_2SO_4 (6.37 g, 65.0 mmol) and concd. HNO₃ (65%, 3.20 g, 35.1 mmol) was slowly added dropwise. The reaction mixture was stirred for a further 2 h at 110 °C. Then KOH (30% solution in

water, ca. 80 mL) was added at 0 °C. After separation of the phases, the aqueous phase was extracted three times with CH_2Cl_2 (each 50 mL). The organic phases were combined and dried with MgSO₄. After filtration the solvent was evaporated and the residue was recrystallized from PE/EtOAc (1:4, 50 mL). A yellow solid of an inseparable mixture (2.46 g) of 4-iodo-4'-nitrobiphenyl (6) (1.51 g, 4.64 mmol, 36%) and 4,4'-diiodobiphenyl (5) (0.95 g, 2.34 mmol, 18%) was obtained.

4-Iodo-4'-nitrobiphenyl (6): ¹H NMR (CDCl₃, 500 MHz): δ = 7.30–7.50 (m, 2 H, 3,5-H), 7.58–7.72 (m, 2 H, 2,6-H), 7.81–7.95 (m, 2 H, 2',6'-H), 8.20–8.40 (m, 2 H, 3',5'-H) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ = 93.50 (C-4), 109.57 (C), 124.23 (2 CH), 127.59 (2 CH), 129.05 (2 CH), 138.31 (2 CH), 139.55 (C), 146.43 (C) ppm. GC–MS (EI, 70 eV): *m/z* (%) = 325 (100) [M]⁺, 295 (32), 267 (19), 152 (93), 139 (26), 126 (16), 102 (7), 76 (27), 63 (23).

4,4'-Diiodobiphenyl (5): ¹H NMR (CDCl₃, 500 MHz): δ = 7.20–7.30 (m, 4 H, 3,5-H, 3',5'-H), 7.73–7.80 (m, 4 H, 2,6-H, 2',6'-H) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ = 93.50 (C-4, C-4'), 128.67 (4 CH), 137.99 (4 CH), 139.55 (2 C) ppm. GC–MS (EI, 70 eV): *m*/*z* (%) = 406 (54) [M]⁺, 280 (12), 203 (11), 152 (100), 126 (18), 102 (8), 76 (53), 63 (25).

4-Amino-4'-iodobiphenyl (2c): A solid mixture of 4-iodo-4'-nitrobiphenyl (6) and 4,4'-diiodobiphenyl (5) (3.25 g, ratio 2:1) was suspended in EtOH (20 mL). After addition of concd. hydrochloric acid (1 mL) the mixture was stirred at reflux for 10 min and then Zn powder (1.69 g, 25.8 mmol) was added in small portions. The mixture was stirred at reflux for another hour and then cooled to 23 °C, then hydrochloric acid (18%, 50 mL) was added slowly. The yellow solution was extracted with CH_2Cl_2 (3 × 50 mL). After separating and discarding the organic phase, the aqueous phase was neutralized with KOH (20% solution in water, ca. 80 mL). The precipitate was filtered off and discarded. The filtrate was extracted with CH_2Cl_2 (4 × 50 mL). The combined organic layers were dried with MgSO4 and filtered. After evaporation of the solvent 4-amino-4'-iodobiphenyl (2c) (1.32 g, 4.47 mmol, 73%) was obtained as a dark-yellow solid, m.p. 152–154 °C. ¹H NMR (CDCl₃, 500 MHz): $\delta = 3.74$ (br. s, 2 H, NH), 6.70–6.80 (m, 2 H, 3',5'-H), 7.20–7.30 (m, 2 H, 2',6'-H), 7.31-7.40 (m, 2 H, 2,6-H), 7.64-7.73 (m, 2 H, 3,5-H) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): $\delta = 91.49$ (C-4'), 115.37 (2 CH), 127.77 (2 CH), 128.23 (2 CH), 130.21 (C), 137.66 (2 CH), 140.65 (C), 146.23 (C) ppm. IR (ATR): $\tilde{v} = 3407$ (s), 3290 (s), 3189 (s), 3029 (m), 2983 (s), 1600 (s), 1519 (s), 1475 (s), 1389 (s), 1270 (s), 1201 (m), 1180 (m), 1139 (s), 1064 (s), 993 (s), 847 (s), 808 (vs) cm⁻¹. MS (EI, 70 eV): m/z (%) = 295 (100) [M]⁺, 167 (18), 139 (6), 84 (11). HRMS: calcd. for C₁₂H₁₀IN [M]⁺ 294.9858; found 294.9857.

Diethyl 2,5-Bis(phenylamino)terephthalate (3a): Aniline (**2a**) (4.4 g, 4.3 mL, 47 mmol) and four drops of concd. hydrochloric acid were added to a solution of diethyl succinyl succinate **1a** (1.0 g, 3.9 mmol) in toluene (6 mL). The reaction mixture was stirred for 2 d at 60 °C and then concentrated under reduced pressure. The residue was purified by chromatography on Al₂O₃ [activity I, PE/CH₂Cl₂, 2:1, $R_f(SiO_2) = 0.23$]. The crude product was recrystallized from PE/EtOAc (2:3, 25 mL) to yield **3a** (1.40 g, 3.46 mmol, 89%) as a red solid, m.p. 140 °C. The ¹H and ¹³C NMR and IR data are in accordance with the literature.^[12] MS (EI, 70 eV): *m/z* (%) = 404 (100) [M]⁺, 312 (22), 284 (5), 255 (5). C₂₄H₂₄N₂O₄ (404.46): calcd. C 71.27, H 5.98, N 6.93; found C 70.94, H 5.95, N 6.94.

Dioctyl 2,5-Bis(phenylamino)terephthalate (3b): In analogy to the procedure reported for compound **3a**, aniline (**2a**) (5.3 g, 5.2 mL, 57 mmol), 10 drops of concd. hydrochloric acid, dioctyl succinyl succinate **1b** (2.00 g, 4.71 mmol) were allowed to react in toluene

(20 mL) to give product **3b** (2.48 g, 4.33 mmol, 92%) as an orange solid, m.p. 109 °C, after chromatography on Al₂O₃ [activity I, PE/ CH_2Cl_2 , 10:1, $R_f(SiO_2) = 0.45$]. ¹H NMR (CDCl₃, 500 MHz): $\delta =$ 0.88 (t, J = 6.9 Hz, 6 H, CH₃), 1.21-1.34 (m, 16 H, CH₂), 1.38(quint, J = 7.0 Hz, 4 H, CH₂), 1.69 (quint, J = 7.0 Hz, 4 H, CH₂), 4.25 (t, J = 6.5 Hz, 4 H, OCH₂), 6.93–7.03 (m, 2 H, 4'-H), 7.13– 7.22 (m, 4 H, 2',6'-H), 7.25-7.34 (m, 4 H, 3',5'-H), 8.05 (s, 2 H, 3,6-H), 8.81 (s, 2 H, NH) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): $\delta = 14.06$ (CH₃), 22.62 (CH₂), 26.03 (CH₂), 28.52 (CH₂), 29.18 (CH₂), 29.20 (CH₂), 31.77 (CH₂), 65.26 (OCH₂), 118.43 (CH), 119.11 (C), 119.51 (2 CH), 121.86 (CH), 129.31 (2 CH), 137.71 (C), 142.06 (C), 167.49 (C=O) ppm. IR (ATR): $\tilde{v} = 3347$ (s), 3054 (w), 2954 (m), 2921 (s), 2852 (s), 1683 (vs), 1598 (s), 1585 (s), 1495 (s), 1436 (s), 1409 (vs), 1304 (m), 1252 (s), 1208 (vs), 1100 (s), 779 (s), 744 (s), 693 (s) cm⁻¹. MS (EI, 70 eV): m/z (%) = 572 (100) [M]⁺, 460 (4), 312 (10), 285 (4). C₃₆H₄₈N₂O₄ (572.79): calcd. C 75.49, H 8.45, N 4.89; found C 75.56, H 8.46, N 4.84.

Diethyl 2,5-Bis(4-iodophenylamino)terephthalate (3c): 4-Iodoaniline (2b) (5.13 g, 23.4 mmol) and three drops of concd. hydrochloric acid were added to a solution of diethyl succinyl succinate 1a (500 mg, 1.95 mmol) in toluene (6 mL). The reaction mixture was stirred for 16 h at 60 °C. On cooling to 23 °C the crude product precipitated and was filtered off. Recrystallization from EtOAc (20 mL) yielded 3c (1.10 g, 1.68 mmol, 86%) as a red solid, m.p. 209–210 °C. ¹H NMR (CDCl₃, 500 MHz): δ = 1.36 (t, J = 7.1 Hz, 6 H, CH₃), 4.34 (q, J = 7.1 Hz, 4 H, OCH₂), 6.90–7.00 (m, 4 H, 2',6'-H), 7.51-7.63 (m, 4 H, 3',5'-H), 7.98 (s, 2 H, 3,6-H), 8.82 (s, 2 H, NH) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ = 14.24 (CH₃), 61.50 (OCH₂), 83.66 (C-4'), 118.90 (CH), 119.69 (C), 121.07 (2 CH), 137.29 (C), 138.21 (2 CH), 141.93 (C), 167.27 (C=O) ppm. IR (ATR): $\tilde{v} = 3337$ (s), 3067 (w), 2984 (m), 1680 (vs), 1575 (s), 1535 (vs), 1477 (s), 1451 (s), 1428 (s), 1386 (s), 1247 (s), 1210 (vs), 1105 (s), 1062 (s), 1012 (s), 827 (s), 811 (s), 797 (s), 785 (s), 694 (s) cm⁻¹. MS (EI, 70 eV): m/z (%) = 656 (100) [M]⁺, 628 (3), 529 (6), 437 (3), 328 (4), 310 (20), 283 (6), 155 (4). HRMS: calcd. for C₂₄H₂₂I₂N₂O₄ [M]⁺ 655.9669; found 655.9669.

Dioctyl 2,5-Bis(4-iodophenylamino)terephthalate (3d): In analogy to the procedure reported for compound 3a, 4-iodoaniline (2b) (4.94 g, 22.6 mmol), four drops of concd. hydrochloric acid and dioctyl succinyl succinate 1b (800 mg, 1.88 mmol) were allowed to react in toluene (10 mL) to give product 3d (1.44 g, 1.75 mmol, 93%) as an orange solid, m.p. 143 °C, after chromatography on Al_2O_3 [activity I, PE/CH₂Cl₂, 2:1, $R_f(SiO_2) = 0.51$]. ¹H NMR $(CDCl_3, 500 \text{ MHz}): \delta = 0.89 \text{ (t, } J = 6.7 \text{ Hz}, 6 \text{ H}, \text{ CH}_3\text{)}, 1.23-1.35$ (m, 16 H, CH₂), 1.35–1.43 (m, 4 H, CH₂), 1.71 (quint, J = 6.8 Hz, 4 H, CH₂), 4.27 (t, J = 6.4 Hz, 4 H, OCH₂), 6.90–7.00 (m, 4 H, 2',6'-H), 7.51-7.61 (m, 4 H, 3',5'-H), 7.99 (s, 2 H, 3,6-H), 8.83 (s, 2 H, NH) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ = 14.12 (CH₃), 22.66 (CH₂), 26.08 (CH₂), 28.54 (CH₂), 29.24 (2 CH₂), 31.81 (CH₂), 65.53 (OCH₂), 83.71 (C-4'), 118.65 (CH), 119.48 (C), 121.17 (2 CH), 137.29 (C), 138.17 (2 CH), 141.79 (C), 167.30 (C=O) ppm. IR (ATR): $\tilde{v} = 3349$ (s), 3066 (w), 2949 (m), 2922 (s), 2846 (s), 1679 (vs), 1584 (s), 1568 (s), 1525 (vs), 1486 (s), 1463 (s), 1424 (s), 1388 (s), 1251 (s), 1216 (vs), 1106 (s), 1003 (s), 830 (s), 795 (s), 783 (s), 725 (s), 696 (s) cm⁻¹. MS (EI, 70 eV): m/z (%) = 824 (100) [M]⁺, 698 (4), 310 (5). HRMS: calcd. for C₃₆H₄₆I₂N₂O₄ [M]⁺ 824.1559; found 824.1546.

Diethyl 2,5-Bis(4'-iodobiphenyl-4-ylamino)terephthalate (3e): A mixture of diethyl succinyl succinate **1a** (180 mg, 702 μ mol) and 4-amino-4'-iodobiphenyl (**2c**) (1.66 g, 5.62 mmol) was stirred in AcOH (15 mL) for 16 h at 100 °C. After cooling to ambient temperature, the precipitated product was filtered off, washed with

CH₂Cl₂ (30 mL) and H₂O (20 mL) and dried in vacuo. The product **3e** (382 mg, 473 µmol, 67%) was obtained as a reddish-brown solid, m.p. 239 °C. ¹H NMR (CDCl₃, 500 MHz): δ = 1.36 (t, *J* = 7.0 Hz, 6 H, CH₃), 4.35 (q, *J* = 7.1 Hz, 4 H, OCH₂), 7.20–7.29 (m, 4 H, 3',5'-H), 7.30–7.36 (m, 4 H, 2',6'-H), 7.48–7.55 (m, 4 H, 2'',6''-H), 7.70–7.79 (m, 4 H, 3'',5''-H), 8.11 (s, 2 H, 3,6-H), 8.93 (s, 2 H, NH) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ = 14.26 (CH₃), 64.70 (OCH₂), 93.55 (C-4'), 118.29 (CH), 119.13 (C), 119.18 (2 CH), 127.77 (2 CH), 128.40 (2 CH), 133.76 (C), 137.80 (2 CH), 137.86 (C), 140.46 (C), 141.33 (C), 167.64 (C=O) ppm. IR (ATR): \tilde{v} = 3342 (s), 3034 (m), 2975 (s), 2927 (m), 1685 (vs), 1606 (s), 1578 (s), 1556 (s), 1530 (vs), 1476 (s), 1429 (s), 1403 (s), 1388 (m), 1369 (m), 1318 (s), 1283 (s), 1255 (s), 1208 (vs), 1180 (s), 1098 (vs), 1017 (s), 997 (s), 815 (s) cm⁻¹. MS (ESI): *m*/*z* (%) = 808 (100) [M]⁺. HRMS: calcd. for C₃₆H₃₀I₂N₂O₄ [M]⁺ 808.0295; found 808.0300.

Dioctyl 2,5-Bis(4'-iodobiphenyl-4-ylamino)terephthalate (3f): A mixture of dioctyl succinyl succinate 1b (433 mg, 1.02 mmol) and 4amino-4'-iodobiphenyl (2c) (3.01 g, 10.2 mmol) was stirred in AcOH (30 mL) for 16 h at 100 °C. After cooling to ambient temperature, the precipitate was isolated by filtration and washed with EtOAc (40 mL). Recrystallization from CH₂Cl₂ (80 mL) yielded 3f (666 mg, 682 µmol, 67%) as a reddish-brown solid, m.p. 208 °C. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.84$ (t, J = 6.9 Hz, 6 H, CH₃), 1.13– 1.26 (m, 12 H, CH₂), 1.26–1.35 (m, 4 H, CH₂), 1.40 (quint, J =7.4 Hz, 4 H, CH₂), 1.72 (quint, J = 7.0 Hz, 4 H, CH₂), 4.30 (t, J = 6.5 Hz, 4 H, OCH₂), 7.20–7.28 (m, 4 H, 3',5'-H), 7.29–7.35 (m, 4 H, 2',6'-H), 7.45-7.55 (m, 4 H, 2'',6''-H), 7.68-7.77 (m, 4 H, 3'',5''-H), 8.12 (s, 2 H, 3,6-H), 8.95 (s, 2 H, NH) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): $\delta = 14.10$ (CH₃), 22.61 (CH₂), 26.10 (CH₂), 28.56 (CH₂), 29.26 (2 CH₂), 31.79 (CH₂), 65.46 (OCH₂), 92.14 (C-4'), 118.87 (CH), 119.30 (2 CH), 119.43 (C), 127.72 (2 CH), 128.35 (2 CH), 133.25 (C), 137.38 (C), 137.80 (2 CH), 140.23 (C), 141.82 (C), 167.42 (C=O) ppm. IR (ATR): $\tilde{v} = 3312$ (s), 3036 (m), 2952 (s), 2918 (s), 2848 (s), 1682 (vs), 1607 (s), 1584 (s), 1558 (s), 1538 (vs), 1478 (s), 1460 (s), 1434 (s), 1390 (m), 1326 (s), 1246 (s), 1216 (s), 1108 (s), 1067 (s), 1006 (s), 997 (s), 843 (s), 809 (s), 785 (s) cm⁻¹. MS (EI, 70 eV): m/z (%) = 976 (100) [M]⁺, 850 (7), 716 (4), 488 (3), 295 (4). HRMS: calcd. for C₄₈H₅₄I₂N₂O₄ [M]⁺ 976.2173; found 976.2171.

Diethyl 2,5-Bis(biphenyl-4-ylamino)terephthalate (3g): A flamedried Schlenk tube was filled under nitrogen with diethyl ester 3c (150 mg, 229 µmol), PhB(OH)₂ (7a) (61 mg, 504 µmol), Na₂CO₃ (97 mg, 916 µmol) and [Pd(PPh₃)₄] (13 mg, 11 µmol). Degassed solvent (toluene/EtOH, 1:1, 6 mL) was added dropwise followed by stirring for 30 min at 23 °C. Subsequently, degassed H₂O (4.5 mL) was added and the reaction mixture heated at reflux for 16 h. After cooling to ambient temperature, the precipitate was isolated by filtration, washed with EtOAc (20 mL) and H₂O (10 mL) and dried in vacuo. Compound 3g (89 mg, 160 µmol, 70%) was obtained as a reddish-brown solid, m.p. 209 °C. ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.37$ (t, J = 7.1 Hz, 6 H, CH₃), 4.36 (q, J = 7.1 Hz, 4 H, OCH₂), 7.22-7.29 (m, 4 H, 3',5'-H), 7.29-7.37 (m, 2 H, 4''-H), 7.39-7.48 (m, 4 H, 3",5"-H), 7.54-7.65 (m, 8 H, 2',6'-H, 2",6"-H), 8.12 (s, 2 H, 3,6-H), 8.91 (s, 2 H, NH) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ = 14.23 (CH₃), 61.35 (OCH₂), 119.00 (CH), 119.31 (2 CH), 119.51 (C), 126.58 (2 CH), 126.72 (CH), 127.99 (2 CH), 128.75 (2 CH), 134.57 (C), 137.51 (C), 140.77 (C), 141.54 (C), 167.45 (C=O) ppm. IR (ATR): $\tilde{v} = 3342$ (s), 3320 (s), 3034 (m), 2983 (s), 2904 (m), 1684 (vs), 1605 (m), 1573 (s), 1530 (vs), 1482 (s), 1421 (s), 1394 (s), 1314 (s), 1251 (s), 1209 (vs), 1091 (s), 1022 (s), 838 (s), 784 (s), 758 (s), 690 (s) cm⁻¹. MS (EI, 70 eV): m/z (%) $= 556 (100) [M]^+$, 464 (20), 278 (7), 218 (3). HRMS: calcd. for C₃₆H₃₂N₂O₄ [M]⁺ 556.2362; found 556.2361.

Dioctyl 2,5-Bis(biphenyl-4-ylamino)terephthalate (3h): In analogy to the procedure reported for compound 3g, dioctyl ester 3d (500 mg, 606 µmol), PhB(OH)₂ (7a) (163 mg, 1.33 mmol), Na₂CO₃ (257 mg, 2.42 mmol) and [Pd(PPh₃)₄] (35 mg, 30 µmol) were allowed to react in degassed solvent (10 mL toluene, 10 mL EtOH, 5 mL H₂O). The precipitated product was isolated by filtration, washed with EtOAc (50 mL) and H₂O (30 mL) and dried in vacuo. Compound 3h (215 mg, 297 µmol, 49%) was obtained as an orange solid, m.p. 206 °C. ¹H NMR (CDCl₃, 500 MHz): δ = 0.84 (t, J = 6.6 Hz, 6 H, CH₃), 1.22–1.27 (m, 12 H, CH₂), 1.29–1.33 (m, 4 H, CH₂), 1.41 (quint, J = 7.2 Hz, 4 H, CH₂), 1.73 (quint, J = 7.0 Hz, 4 H, CH₂), 4.29 (t, J = 6.5 Hz, 4 H, OCH₂), 7.23–7.29 (m, 4 H, 3', 5'-H), 7.29– 7.35 (m, 2 H, 4''-H), 7.39-7.46 (m, 4 H, 3'',5''-H), 7.52-7.63 (m, 8 H, 2',6'-H, 2'',6''-H), 8.13 (s, 2 H, 3,6-H), 8.92 (s, 2 H, NH) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ = 14.06 (CH₃), 22.59 (CH₂), 26.09 (CH₂), 28.56 (CH₂), 29.24 (2 CH₂), 31.78 (CH₂), 65.41 (OCH₂), 118.78 (CH), 119.33 (C), 119.41 (2 CH), 126.55 (2 CH), 126.72 (CH), 127.95 (2 CH), 128.74 (2 CH), 134.62 (C), 137.53 (C), 140.75 (C), 141.42 (C), 167.51 (C=O) ppm. IR (ATR): $\tilde{v} = 3309$ (s), 3063 (m), 3031 (s), 2954 (s), 2921 (s), 2848 (s), 1685 (vs), 1607 (s), 1585 (s), 1572 (s), 1538 (vs), 1486 (s), 1463 (s), 1426 (s), 1398 (s), 1250 (s), 1209 (vs), 1105 (s), 834 (s), 785 (s), 758 (s), 690 (s) cm⁻¹. MS (EI, 70 eV): m/z (%) = 724 (100) [M]⁺, 464 (10), 437 (4), 362 (3), 168 (3). C₄₈H₅₆N₂O₄ (724.98): calcd. C 79.52, H 7.79, N 3.86; found C 79.78, H 7.92, N 3.58.

Diethyl 2,5-Bis(4'-methoxybiphenyl-4-ylamino)terephthalate (3i): In analogy to the procedure reported for compound 3g, diethyl ester **3c** (150 mg, 229 μ mol), 4-MeOC₆H₄B(OH)₂ (**7b**) (77 mg, 504 µmol), Na₂CO₃ (97 mg, 916 µmol) and [Pd(PPh₃)₄] (13 mg, 11 µmol) were allowed to react in degassed solvent (3 mL toluene, 3 mL EtOH, 4.5 mL H₂O). The precipitated product was isolated by filtration, washed with EtOAc (20 mL) and H₂O (10 mL) and dried in vacuo. Compound 3i (59 mg, 96 µmol, 42%) was obtained as a brown solid, m.p. 265-269 °C. ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.36$ (t, J = 7.1 Hz, 6 H, CH₃), 3.86 (s, 6 H, CH₃), 4.35 (q, J = 7.1 Hz, 4 H, OCH₂), 6.92–7.01 (m, 4 H, 3',5'-H), 7.20–7.28 (m, 4 H, 3'',5''-H), 7.48–7.57 (m, 8 H, 2',6'-H, 2'',6''-H), 8.09 (s, 2 H, 3,6-H), 8.87 (s, 2 H, NH) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): $\delta = 14.24 (CH_3), 55.37 (CH_3), 61.31 (OCH_2), 114.12 (2 CH), 118.86$ (CH), 119.40 (C), 119.51 (2 CH), 127.55 (2 CH), 127.60 (2 CH), 133.44 (C), 134.36 (C), 137.61 (C), 140.98 (C), 158.77 (C), 167.49 (C=O) ppm. IR (ATR): $\tilde{v} = 3311$ (s), 3030 (m), 2985 (s), 2941 (s), 2836 (s), 1682 (vs), 1604 (s), 1584 (m), 1572 (m), 1538 (s), 1495 (vs), 1431 (s), 1367 (s), 1320 (s), 1275 (s), 1240 (s), 1205 (vs), 1174 (m), 1093 (s), 819 (s), 784 (s), 689 (s) cm⁻¹. MS (EI, 70 eV): m/z $(\%) = 616 (100) [M]^+$, 524 (6), 262 (11). HRMS: calcd. for C₃₈H₃₆N₂O₆ [M]⁺ 616.2573; found 616.2572.

Dioctyl 2,5-Bis(4'-methoxybiphenyl-4-ylamino)terephthalate (3j): In analogy to the procedure reported for compound 3g, dioctyl ester **3d** (300 mg, $364 \mu mol$), $4-MeOC_6H_4B(OH)_2$ (**7b**) (122 mg, 801 µmol), Na₂CO₃ (154 mg, 1.46 mmol) and [Pd(PPh₃)₄] (21 mg, 18 µmol) were allowed to react in degassed solvent (4 mL toluene, 4 mL EtOH, 5 mL H₂O). The precipitated product was isolated by filtration, washed with CH₂Cl₂ (30 mL) and H₂O (30 mL) and dried in vacuo. Compound 3j (120 mg, 153 µmol, 42%) was obtained as a red solid, m.p. 208-209 °C. ¹H NMR (CDCl₃, 500 MHz): δ = 0.77 (t, J = 6.9 Hz, 6 H, CH₃), 1.00–1.27 (m, 16 H, CH₂), 1.28–1.38 (m, 4 H, CH₂), 1.65 (quint, J = 6.9 Hz, 4 H, CH₂), 3.78 (s, 6 H, OCH₃), 4.21 (t, J = 6.5 Hz, 4 H, OCH₂), 6.80–7.00 (m, 4 H, 3',5'-H), 7.08-7.26 (m, 4 H, 3'',5''-H), 7.30-7.62 (m, 8 H, 2',6'-H, 2'',6''-H), 8.04 (s, 2 H, 3,6-H), 8.82 (s, 2 H, NH) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): $\delta = 14.08$ (CH₃), 22.60 (CH₂), 26.09 (CH₂), 28.56 (CH₂), 29.26 (2 CH₂), 31.80 (CH₂), 55.35 (CH₃),

65.36 (OCH₂), 114.19 (2 CH), 118.62 (CH), 119.19 (C), 119.61 (2 CH), 127.50 (2 CH), 127.57 (2 CH), 133.45 (C), 134.42 (C), 137.63 (C), 140.86 (C), 158.77 (C), 167.54 (C=O) ppm. IR (ATR): $\tilde{v} = 3311$ (s), 3010 (m), 2957 (s), 2918 (s), 2847 (s), 1683 (vs), 1607 (s), 1586 (s), 1575 (m), 1543 (vs), 1496 (s), 1456 (s), 1434 (s), 1397 (m), 1330 (vs), 1276 (s), 1212 (vs), 1175 (s), 1107 (s), 822 (s), 783 (s), 689 (s) cm⁻¹. MS (EI, 70 eV): m/z (%) = 784 (100) [M]⁺, 392 (3), 392 (4), 198 (4). HRMS: calcd. for C₅₀H₆₀N₂O₆ [M]⁺ 784.4451; found 784.4451.

Diethyl 2,5-Bis[4'-(trifluoromethyl)biphenyl-4-ylamino]terephthalate (3k): In analogy to the procedure reported for compound 3g, diethyl ester 3c (150 mg, 229 µmol), 4-F₃CC₆H₄B(OH)₂ (7c) (96 mg, 504 µmol), Na₂CO₃ (97 mg, 916 µmol) and [Pd(PPh₃)₄] (13 mg, 11 µmol) were allowed to react in degassed solvent (6 mL toluene, 3 mL EtOH, 4.5 mL H₂O). The precipitated product was isolated by filtration, washed with CH2Cl2 (20 mL) and H2O (10 mL) and dried in vacuo. Compound 3k (87 mg, 126 µmol, 55%) was obtained as a brownish-yellow solid, m.p. 286-287 °C. ¹H NMR (CDCl₃, 500 MHz): δ = 1.38 (t, J = 7.1 Hz, 6 H, CH₃), 4.30 (q, J $= 7.1 \text{ Hz}, 4 \text{ H}, \text{ OCH}_2$, 7.28-7.38 (m, 4 H, 3',5'-H), 7.50-7.62 (m,4 H, 3'',5''-H), 7.62–7.75 (m, 8 H, 2',6'-H, 2'',6''-H), 8.14 (s, 2 H, 3,6-H), 8.98 (s, 2 H, NH) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): $\delta = 14.25 \text{ (CH}_3), 61.47 \text{ (OCH}_2), 119.06 (2 \text{ CH}), 119.27 \text{ (CH}), 119.77$ (C), 125.71 (q, ${}^{3}J$ = 3.2 Hz, 2 CH, C-3'', C-5''), 126.08 (q, ${}^{1}J$ = 247.7 Hz, 1 C, CF₃), 126.67 (2 CH), 128.20 (2 CH), 130.11 (q, ²J = 30.7 Hz, 1 C, C-4"), 134.03 (C), 135.65 (C), 142.39 (C), 144.47 (C), 167.35 (C=O) ppm. IR (ATR): $\tilde{v} = 3343$ (s), 3042 (m), 2983 (s), 1685 (vs), 1602 (s), 1585 (s), 1567 (s), 1527 (vs), 1501 (s), 1475 (s), 1431 (s), 1399 (m), 1324 (vs), 1278 (s), 1256 (s), 1210 (s), 1169 (s), 1113 (s), 1071 (vs), 1012 (s), 827 (s), 784 (s), 726 (s) cm⁻¹. MS (EI, 70 eV): m/z (%) = 692 (100) [M]⁺, 673 (4), 600 (25), 572 (4), 346 (4). HRMS: calcd. for $C_{38}H_{30}F_6N_2O_4$ [M]⁺ 692.2110; found 692.2111.

Dioctyl 2,5-Bis[4'-(trifluoromethyl)biphenyl-4-ylamino]terephthalate (31): In analogy to the procedure reported for compound 3g, dioctyl ester 3d (300 mg, 364 μ mol), 4-F₃CC₆H₄B(OH)₂ (7c) (152 mg, 801 µmol), Na₂CO₃ (154 mg, 1.46 mmol) and [Pd(PPh₃)₄] (21 mg, 18 µmol) were allowed to react in degassed solvent (4 mL toluene, 4 mL EtOH, 5 mL H₂O). The precipitated product was isolated by filtration, washed with CH2Cl2 (30 mL) and H2O (30 mL) and dried in vacuo. Compound 31 (177 mg, 206 µmol, 57%) was obtained as a reddish-brown solid, m.p. 222-223 °C. ¹H NMR $(CDCl_3, 500 \text{ MHz}): \delta = 0.86 \text{ (t, } J = 6.8 \text{ Hz}, 6 \text{ H}, \text{ CH}_3), 1.18-1.28$ (m, 12 H, CH₂), 1.28–1.38 (m, 4 H, CH₂), 1.45 (quint, J = 7.4 Hz, 4 H, CH₂), 1.77 (quint, J = 7.0 Hz, 4 H, CH₂), 4.30 (t, J = 6.4 Hz, 4 H, OCH₂), 7.28–7.32 (m, 4 H, 3',5'-H), 7.57–7.64 (m, 4 H, 3'',5''-H), 7.65–7.77 (m, 8 H, 2',6'-H, 2'',6''-H), 8.19 (s, 2 H, 3,6-H), 9.03 (s, 2 H, NH) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ = 14.46 (CH₃), 23.03 (CH₂), 26.57 (CH₂), 29.02 (CH₂), 29.72 (2 CH₂), 32.23 (CH₂), 65.96 (OCH₂), 119.46 (CH), 119.63 (2 CH), 120.02 (C), 124.80 (q, ${}^{1}J$ = 271.4 Hz, 1 C, CF₃), 126.14 (q, ${}^{3}J$ = 3.8 Hz, 2 CH, C-3'', C-5''), 127.07 (2 CH), 128.59 (2 CH), 129.15 (q, ${}^{2}J$ = 32.3 Hz, 1 C, C-4''), 133.26 (C), 137.76 (C), 142.73 (C), 144.59 (C), 167.83 (C=O) ppm. IR (ATR): $\tilde{v} = 3313$ (s), 3009 (m), 2955 (s), 2917 (s), 2848 (s), 1683 (vs), 1607 (s), 1588 (s), 1574 (s), 1541 (vs), 1503 (s), 1460 (s), 1435 (s), 1397 (m), 1325 (vs), 1247 (s), 1218 (m), 1165 (s), 1072 (vs), 1014 (s), 824 (s), 787 (s), 723 (s) cm⁻¹. MS (EI, 70 eV): m/z (%) = 860 (100) [M]⁺, 731 (2), 600 (9), 366 (3). HRMS: calcd. for C₅₀H₅₄F₆N₂O₄ [M]⁺ 860.3988; found 860.3987.

Diethyl 2,5-Bis(1,1':4',1''-terphenyl-4-ylamino)terephthalate (3m): In analogy to the procedure reported for compound 3g, diethyl ester 3c (300 mg, $457 \mu \text{mol}$), 4-PhC₆H₄B(OH)₂ (7d) (200 mg, 1.01 mmol), Na₂CO₃ (194 mg, 1.83 mmol) and [Pd(PPh₃)₄] (27 mg, 23 µmol) were allowed to react in degassed solvent (6 mL toluene, 6 mL EtOH, $9 \text{ mL H}_2\text{O}$). The precipitated product was isolated by filtration, washed with EtOAc (60 mL) and H₂O (60 mL) and dried in vacuo. Compound 3m (49 mg, 206 µmol, 54%) was obtained as a red solid, m.p. 329–331 °C. ¹H NMR (CDCl₃, 500 MHz): δ = 1.38 (t, J = 7.1 Hz, 6 H, CH₃), 4.37 (q, J = 7.1 Hz, 4 H, OCH₂), 7.28-7.30 (m, 4 H, 3',5'-H), 7.32-7.40 (m, 2 H, 4'''-H), 7.42-7.52 (m, 4 H, 3'',5''-H), 7.62–7.73 (m, 16 H, 2',6'-H, 2'',6''-H, 3'',5''-H, 2''',6'''-H), 8.14 (s, 2 H, 3,6-H), 8.94 (s, 2 H, NH) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): $\delta = 14.72$ (CH₃), 61.38 (OCH₂), 118.88 (CH), 119.10 (2 CH), 119.30 (C), 126.85 (2 CH), 126.98 (2 CH), 127.24 (CH), 127.33 (2 CH), 127.91 (2 CH), 128.75 (2 CH), 132.66 (C), 133.66 (C), 139.57 (C), 140.26 (C), 140.79 (C), 141.64 (C), 167.58 (C=O) ppm. IR (ATR): $\tilde{v} = 3343$ (s), 3042 (m), 2983 (s), 1685 (vs), 1602 (s), 1585 (s), 1567 (s), 1527 (vs), 1501 (s), 1475 (s), 1431 (s), 1399 (m), 1324 (vs), 1278 (s), 1256 (s), 1210 (s), 1169 (s), 1113 (s), 1071 (vs), 1012 (s), 827 (s), 784 (s), 726 (s) cm⁻¹. MS (EI, 70 eV): m/z (%) = 708 (75) [M]⁺, 616 (8), 556 (90), 464 (14), 354 (4), 306 (11), 266 (30), 232 (4), 105 (5), 91 (13), 44 (100). HRMS: calcd. for C₄₈H₄₀N₂O₄ [M]⁺ 708.2988; found 708.2988.

Dioctyl 2,5-Bis(1,1':4',1''-terphenyl-4-ylamino)terephthalate (3n): In analogy to the procedure reported for compound 3g, dioctyl ester 3d (300 mg, 364 µmol), 4-PhC₆H₄B(OH)₂ (7d) (159 mg, 801 µmol), Na₂CO₃ (154 mg, 1.46 mmol) and [Pd(PPh₃)₄] (21 mg, 18 µmol) were allowed to react in degassed solvent (4 mL toluene, 4 mL EtOH, 5 mL H₂O). The precipitated product was isolated by filtration, washed with CH₂Cl₂ (20 mL) and H₂O (20 mL) and dried in vacuo. Compound 3n (221 mg, 262 µmol, 72%) was obtained as a reddish-brown solid, m.p. 239-242 °C. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.83$ (t, J = 6.8 Hz, 6 H, CH₃), 1.18–1.29 (m, 12 H, CH₂), 1.28-1.38 (m, 4 H, CH₂), 1.39-1.47 (m, 4 H, CH₂), 1.74 (quint, J = 7.0 Hz, 4 H, CH₂), 4.30 (t, J = 6.5 Hz, 4 H, OCH₂), 7.28-7.32 (m, 4 H, 3',5'-H), 7.33-7.39 (m, 2 H, 4'''-H), 7.43-7.49 (m, 4 H, 3''',5'''-H), 7.56–7.75 (m, 16 H, 2',6'-H, 2'',6''-H, 3'',5''-H, 2''',6'''-H), 8.15 (s, 2 H, 3,6-H), 8.96 (s, 2 H, NH) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ = 14.09 (CH₃), 22.61 (CH₂), 26.12 (CH₂), 28.58 (CH₂), 29.28 (2 CH₂), 31.81 (CH₂), 65.82 (OCH₂), 118.70 (CH), 119.37 (C), 119.41 (2 CH), 126.84 (2 CH), 126.98 (2 CH), 127.23 (CH), 127.48 (2 CH), 127.84 (2 CH), 128.79 (2 CH), 133.07 (C), 134.02 (C), 139.35 (C), 140.79 (C), 141.16 (C), 141.19 (C), 167.83 (C=O) ppm. IR (ATR): v = 3304 (s), 3064 (m), 3029 (m), 2953 (s), 2919 (s), 2849 (s), 1684 (vs), 1607 (m), 1584 (s), 1558 (s), 1539 (s), 1504 (m), 1482 (s), 1462 (s), 1432 (s), 1398 (s), 1327 (s), 1298 (s), 1244 (s), 1207 (m), 1106 (s), 1054 (m), 1003 (m), 823 (s), 785 (s), 762 (s), 726 (s), 691 (s) cm⁻¹. MS (EI, 70 eV): m/z $(\%) = 876 (25) [M]^+, 404 (4), 366 (12), 306 (65), 188 (52), 91 (83),$ 44 (100). HRMS: calcd. for $C_{60}H_{64}N_2O_4\ [M]^+$ 876.4866; found 876.4870.

Diethyl 2,5-Bis(4''-methoxy-1,1':4',1''-terphenyl-4-ylamino)terephthalate (30): In analogy to the procedure reported for compound 3g, diethyl ester 3e (150 mg, 186 µmol), 4-MeOC₆H₄B(OH)₂ (7b) (62 mg, 409 µmol), Na₂CO₃ (79 mg, 744 µmol) and [Pd(PPh₃)₄] (11 mg, 9.3 µmol) were allowed to react in degassed solvent (3 mL toluene, 3 mol EtOH, 4.5 mL H₂O). The precipitated product was isolated by filtration, washed with CH₂Cl₂ (30 mL) and H₂O (30 mL) and dried in vacuo. Compound 3o (86 mg, 112 µmol, 60%) was obtained as a brown solid, m.p. >350 °C. ¹H NMR (CDCl₃, 500 MHz): δ = 1.37 (t, *J* = 7.1 Hz, 6 H, CH₃), 3.87 (s, 6 H, OCH₃), 4.37 (q, *J* = 7.1 Hz, 4 H, OCH₂), 6.90–7.08 (m, 4 H, 3',5'-H), 7.20–7.32 (m, 4 H, 3''',5'''-H), 7.36–7.70 (m, 16 H, 2',6'-H, 2'',6''-H, 3'',5'''-H, 2''',6'''-H), 8.13 (s, 2 H, 3,6-H), 8.93 (s, 2 H, NH) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ = 14.12 (CH₃), 55.40

(OCH₃), 61.30 (OCH₂), 114.26 (2 CH), 118.72 (CH), 119.24 (C), 119.33 (2 CH), 126.83 (2 CH), 127.01 (CH), 127.04 (2 CH), 127.82 (2 CH), 127.99 (2 CH), 133.88 (C), 137.91 (C), 139.02 (C), 140.60 (C), 141.06 (C), 154.00 (C), 167.50 (C=O) ppm. IR (ATR): $\tilde{v} =$ 3331 (s), 3031 (m), 2982 (m), 2939 (m), 2906 (m), 2837 (s), 1685 (vs), 1607 (s), 1582 (s), 1558 (m), 1540 (vs), 1491 (s), 1456 (m), 1435 (s), 1399 (s), 1370 (s), 1316 (s), 1292 (s), 1248 (s), 1208 (s), 1188 (s), 1099 (s), 814 (s), 784 (s), 717 (m) cm⁻¹. MS (EI, 70 eV): *m/z* (%) = 768 (100) [M]⁺, 677 (40), 546 (57), 384 (21), 339 (7), 275 (21), 259 (63), 215 (11), 44 (4). HRMS: calcd. for C₅₀H₄₄N₂O₆ [M]⁺ 768.3199; found 768.3198.

Dioctyl 2,5-Bis(4''-methoxy-1,1':4',1''-terphenyl-4-ylamino)terephthalate (3p): In analogy to the procedure reported for compound **3g**, dioctyl ester **3f** (150 mg, 154 μ mol), 4-MeOC₆H₄B(OH)₂ (**7b**) (52 mg, 339 µmol), Na₂CO₃ (65 mg, 616 µmol) and [Pd(PPh₃)₄] (9 mg, 7.7 µmol) were allowed to react in degassed solvent (2 mL toluene, 2 mL EtOH, 3 mL H₂O). The precipitated product was isolated by filtration, washed with EtOAc (10 mL) and H₂O (10 mL) and dried in vacuo. Compound 3p (123 mg, 131 µmol, 85%) was obtained as a brown solid, m.p. 239-241 °C. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: $\delta = 0.83$ (t, $J = 6.4 \text{ Hz}, 6 \text{ H}, \text{CH}_3$), 1.08–1.20 (m, 12 H, CH₂), 1.20–1.30 (m, 4 H, CH₂), 1.31–1.40 (quint, J =7.3 Hz, 4 H, CH₂), 1.65 (quint, J = 7.0 Hz, 4 H, CH₂), 3.87 (s, 6 H, OCH₃), 4.30 (t, J = 6.5 Hz, 4 H, OCH₂), 6.85–7.00 (m, 4 H, 3',5'-H), 7.18–7.28 (m, 4 H, 3''',5'''-H), 7.36–7.70 (m, 16 H, 2',6'-H, 2'',6''-H, 3'',5''-H, 2''',6'''-H), 8.07 (s, 2 H, 3,6-H), 8.79 (s, 2 H, NH) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 14.09 (CH₃), 22.61 (CH₂), 26.11 (CH₂), 28.57 (CH₂), 29.26 (2 CH₂), 31.80 (CH₂), 55.37 (OCH₃), 65.43 (OCH₂), 114.26 (2 CH), 118.79 (CH), 119.33 (C), 119.42 (2 CH), 126.81 (2 CH), 127.02 (2 CH), 127.06 (CH), 127.77 (2 CH), 127.97 (2 CH), 133.32 (C), 134.12 (C), 139.02 (C), 139.16 (C), 141.41 (C), 159.16 (C), 167.50 (C=O) ppm. IR (ATR): $\tilde{v} = 3308$ (s), 3030 (m), 2954 (m), 2918 (s), 2849 (s), 1684 (vs), 1606 (s), 1582 (s), 1557 (m), 1538 (vs), 1488 (s), 1463 (s), 1433 (s), 1326 (s), 1330 (s), 1295 (s), 1245 (s), 1209 (vs), 1184 (s), 1105 (s), 811 (s), 785 (s), 712 (s) cm⁻¹. MS (EI, 70 eV): m/z (%) = 936 (63) [M]⁺, 830 (28), 676 (4), 468 (16), 366 (10), 275 (23), 244 (9), 71 (18), 57 (29), 44 (100). HRMS: calcd. for C₆₂H₆₈N₂O₆ [M]⁺ 936.5077; found 936.5088.

Diethyl 2,5-Bis[4''-(trifluoromethyl)-1,1':4',1''-terphenyl-4-ylamino]terephthalate (3q): In analogy to the procedure reported for compound 3g, diethyl ester 3e (127 mg, 157 µmol), 4-F₃CC₆H₄B(OH)₂ (7c) (66 mg, 345 µmol), Na₂CO₃ (67 mg, 628 µmol) and [Pd-(PPh₃)₄] (9 mg, 7.9 µmol) were allowed to react in degassed solvent (2 mL toluene, 2 mL EtOH, 3 mL H₂O). The precipitated product was isolated by filtration, washed with CH₂Cl₂ (35 mL) and H₂O (30 mL) and dried in vacuo. Compound 3q (81 mg, 96 µmol, 61%) was obtained as a reddish-brown solid, m.p. >330 °C. Owing to insufficient solubility of 3q, no NMR spectra could be obtained. IR (ATR): $\tilde{v} = 3336$ (s), 3034 (m), 2983 (m), 1685 (vs), 1597 (s), 1581 (m), 1556 (m), 1530 (s), 1492 (s), 1455 (m), 1433 (s), 1398 (s), 1370 (m), 1324 (vs), 1253 (s), 1209 (s), 1170 (m), 1099 (vs), 1072 (vs), 1002 (s), 816 (vs), 787 (s) cm⁻¹. MS (ESI): *m/z* = 844 [M]⁺. HRMS: calcd. for C₅₀H₃₈F₆N₂O₄ [M]⁺ 844.2736; found 844.2732.

Dioctyl 2,5-Bis[4''-(**trifluoromethyl)-1,1**':4',1''-**terphenyl-4-ylamino**]**terephthalate (3r):** In analogy to the procedure reported for compound **3g**, dioctyl ester **3f** (150 mg, 154 µmol), 4-F₃CC₆H₄B(OH)₂ (**7c**) (64 mg, 339 µmol), Na₂CO₃ (65 mg, 616 µmol) and [Pd-(PPh₃)₄] (9 mg, 7.7 µmol) were allowed to react in degassed solvent (2 mL toluene, 2 mL EtOH, 3 mL H₂O). The precipitated product was isolated by filtration, washed with EtOAc (15 mL) and H₂O (10 mL) and dried in vacuo. Compound **3r** (113 mg, 112 µmol, 73%) was isolated as a reddish-brown solid, m.p. 253-255 °C. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.83$ (t, J = 6.5 Hz, 6 H, CH₃), 1.15– 1.28 (m, 12 H, CH₂), 1.28–1.37 (m, 4 H, CH₂), 1.38–1.64 (m, 4 H, CH₂), 1.69–1.78 (m, 4 H, CH₂), 4.30 (t, J = 6.4 Hz, 4 H, OCH₂), 7.27-7.32 (m, 4 H, 3',5'-H), 7.42-7.50 (m, 4 H, 3''',5'''-H), 7.52-7.63 (m, 16 H, 2',6'-H, 2'',6''-H, 3'',5''-H, 2''',6'''-H), 8.15 (s, 2 H, 3,6-H), 8.95 (s, 2 H, NH) ppm. ¹³C{¹H} NMR (CDCl₃, 125 MHz): $\delta = 14.09$ (CH₃), 22.60 (CH₂), 26.12 (CH₂), 28.56 (CH₂), 29.26 (2 CH₂), 31.80 (CH₂), 65.46 (OCH₂), 118.95 (CH), 119.23 (2 CH), 119.48 (CH), 119.50 (CH), 120.58 (C), 125.75 (q, ${}^{3}J = 3.8 \text{ Hz}, 2 \text{ CH}, \text{ C-3'''}, \text{ C-5'''}, 127.64 (q, {}^{1}J = 275.5 \text{ Hz}, 1 \text{ C},$ CF₃), 127.01 (2 CH), 127.62 (2 CH), 127.89 (2 CH), 128.30 (q, ²J = 39.8 Hz, 1 C, C-4'''), 131.90 (C), 134.86 (C), 139.80 (C), 141.19 (C), 142.40 (C), 144.27 (C), 167.42 (C=O) ppm. IR (ATR): v = 3312 (s), 3035 (m), 2955 (m), 2920 (s), 2851 (s), 1684 (vs), 1606 (s), 1585 (s), 1560 (s), 1543 (s), 1494 (s), 1461 (s), 1436 (s), 1401 (s), 1328 (vs), 1249 (s), 1211 (s), 1168 (s), 1109 (vs), 1074 (vs), 1004 (s), 817 (vs), 787 (s) cm⁻¹. MS (ESI): m/z = 1012 [M]⁺. HRMS: calcd. for C₆₂H₆₂F₆N₂O₄4619 [M]⁺ 1012.4614; found 1012.4619.

2,5-Bis(1,1':4',1'':4'',1'''-quaterphenyl-4-ylamino)tere-Dioctyl phthalate (3s): In analogy to the procedure reported for compound 3g, dioctyl ester 3f (150 mg, 154 μ mol), 4-PhC₆H₄B(OH)₂ (7d) (67 mg, 338 µmol), Na₂CO₃ (65 mg, 616 µmol) and [Pd(PPh₃)₄] (9 mg, 7.7 µmol) were allowed to react in degassed solvent (3 mL toluene, 3 mL EtOH, 4.5 mL H₂O). The precipitated product was isolated by filtration, washed with CH2Cl2 (20 mL) and H2O (20 mL) and dried in vacuo. Compound 3s (67 mg, 65 µmol, 42%) was obtained as a reddish-brown solid, m.p. 272 °C. ¹H NMR (500 MHz, CDCl₃): δ = 0.83 (t, J = 6.5 Hz, 6 H, CH₃), 1.12–1.32 (m, 16 H, CH₂), 1.36-1.48 (m, 4 H, CH₂), 1.67-1.80 (m, 4 H, CH₂), 4.30 (t, J = 6.0 Hz, 4 H, OCH₂), 7.27–7.32 (m, 4 H, 3',5'-H), 7.34– 7.42 (m, 2 H, 4''''-H), 7.42-7.50 (m, 4 H, 3'''',5''''-H), 7.62-7.77 (m, 24 H, 2',6'-H, 2'',6''-H, 3'',5''-H, 2''',6'''-H, 3''',5'''-H, 2"",6""-H), 8.15 (s, 2 H, 3,6-H), 8.92–9.01 (m, 2 H, NH) ppm. ¹³C{¹H} NMR (125 MHz CDCl₃): δ = 14.10 (CH₃), 22.61 (CH₂), 26.11 (CH₂), 28.57 (CH₂), 29.27 (2 CH₂), 31.80 (CH₂), 65.45 (OCH₂), 115.72 (2 CH), 117.32 (C), 118.76 (CH), 126.67 (2 CH), 127.15 (CH), 127.33 (2 CH), 127.36 (2 CH), 127.48 (4 CH), 127.54 (2 CH), 128.73 (2 CH), 132.85 (C), 135.21 (C), 140.12 (2 C), 140.22 (C), 140.70 (C), 141.23 (C), 153.72 (C), 167.44 (C=O) ppm. IR (ATR): $\tilde{v} = 3308$ (s), 3030 (m), 2961 (m), 2921 (s), 2849 (s), 1684 (vs), 1602 (s), 1532 (vs), 1479 (s), 1429 (s), 1396 (s), 1322 (s), 1293 (s), 1250 (s), 1207 (vs), 1101 (s), 999 (s), 813 (vs), 761 (s) cm⁻¹. MS (ESI): $m/z = 1028 \text{ [M]}^+$. HRMS: calcd. for $C_{72}H_{72}N_2O_4 \text{ [M]}^+$ 1028.5492; found 1028.5498.

Supporting Information (see also the footnote on the first page of this article): Details of crystal structure analysis, spectroscopy, as well as all of the absorption and emission spectra.

Acknowledgments

This work was generously supported by the Fonds der Chemischen Industrie. We are grateful to Ing. Halina Trelińska for recording the absorption spectra and Dr. Herbert Frey for his assistance in preparing this manuscript.

[1] H. Liebermann, Justus Liebigs Ann. Chem. 1914, 404, 272-321.

- [2] a) S. S. Labana, L. L. Labana, Chem. Rev. 1967, 67, 1–18; b)
 E. F. Paulus, F. J. J. Leusen, M. U. Schmidt, CrystEngComm 2007, 9, 131–143; c) J. Wang, Y. Zhao, C. Dou, H. Sun, P. Xu, K. Ye, J. Zhang, S. Jiang, F. Li, Y. Wang, J. Phys. Chem. B 2007, 111, 5082–5089; d) P.-H. Liu, H. Tian, C.-P. Chang, J. Photochem. Photobiol. A: Chem. 2000, 137, 99–104; e) M. U. Schmidt, T. Schmiermund, M. Bolte, Acta Crystallogr., Sect. C 2006, 62, m37–m40; f) M. U. Schmidt, T. Schmiermund, M. Bolte, Acta Crystallogr., Sect. C 2006, 62, m37–m40; f) M. U. Schmidt, T. Schmiermund, M. Bolte, Acta Crystallogr., Sect. E 2007, 63, o293–o295.
- [3] a) J. Christoffers, Y. Zhang, W. Frey, P. Fischer, *Synlett* 2006, 624–626; b) Y. Zhang, J. Christoffers, *Synthesis* 2007, 3061–3067.
- [4] a) M. Schiek, A. Lützen, R. Koch, K. Al-Shamery, F. Balzer, R. Frese, H.-G. Rubahn, *Appl. Phys. Lett.* 2005, *86*, 153107/1– 153107/3; b) J. Brewer, M. Schiek, A. Lützen, K. Al-Shamery, H.-G. Rubahn, *Nano Lett.* 2006, *6*, 2656–2659; c) M. Schiek, K. Al-Shamery, A. Lützen, *Synthesis* 2007, 613–621; d) M. Schiek, A. Lützen, K. Al-Shamery, F. Balzer, H.-G. Rubahn, *Cryst. Growth Des.* 2007, *7*, 229–233.
- [5] J. Sinnreich, Synthesis 1980, 578–580.
- [6] J. Christoffers, A. Mann, Eur. J. Org. Chem. 1999, 2511–2514.
- [7] H. Musso, D. Döpp, J. Kuhls, Chem. Ber. 1965, 98, 3937-3951.
- [8] a) A. M. Sedov, A. A. Sergeeva, A. N. Novikov, *Izv. Vyssh. Ucheb. Zaved. Khim. Khim. Technol.* **1970**, *13*, 591–592 [*Chem. Abstr.* **1970**, *73*, 87559]; b) for a review, see: E. B. Merkushev, *Synthesis* **1988**, 923–937; c) R. Belcher, A. J. Nutten, W. I. Stephen, *J. Chem. Soc.* **1953**, 1334–1337; d) A. Y. Makarov, I. Y. Bagryanskaya, Y. V. Gatilov, T. V. Mikhalina, M. M. Shakirov, L. N. Shchegoleva, A. V. Zibarev, *Heteroat. Chem.* **2001**, *12*, 563–576.
- [9] J. P. Wolfe, R. A. Singer, B. H. Yang, S. L. Buchwald, J. Am. Chem. Soc. 1999, 121, 9550–9561.
- [10] CCDC-679073 (for 3b) and -679074 (for 3d) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [11] a) C. A. Parker, W. T. Rees, Analyst 1960, 85, 587–600; b) C. A. Parker, Photoluminescence of Solutions, Elsevier, New York, 1968.
- [12] J. Tholander, J. Bergman, *Tetrahedron* 1999, 55, 12577–12594.
 Received: February 25, 2008 Published Online: May 30, 2008