3 Modern Friedel–Crafts Chemistry. Part 37. Efficient Syntheses of Some New Julolidines via Cyclialkylations of Heteroaryl Carbinols

Hassan A. K. Abd El-Aal,* Ali A. Khalaf, and Ahmed M. A. El-Khawaga Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt

*E-mail: Hassank of baseline, Assult Oniversity, Assult, 71510, Egypt *E-mail: Hassankotb33@yahoo.com Received April 16, 2012 DOI 10.1002/jhet.1797 Published online 00 Month 2013 in Wiley Online Library (wileyonlinelibrary.com). $\begin{array}{c} & & \\ & &$

A simple and convenient procedure for the synthesis of some novel alkyl-substituted and aryl-substituted juloidines is reported. Juloidines were smoothly synthesized in excellent isolated yields via Friedel–Crafts intramolecular alkylations of heteroarylalkanols in the presence of both Brønsted (PPA) and Lewis (AlCl₃/CH₃NO₂) acid catalysts. The precursors alkanols, **1a–i**, were readily prepared both by reaction of selectively synthesized carboxylic acid esters and ketones with different Grignard reagents and also by reduction of the synthesized ketones with LAH. A plausible carbocation mechanism is proposed to account for the results. The structures of the compounds are established using both spectral and analytical data.

J Heterocyclic Chem., 00, 00 (2013).

INTRODUCTION

The chemistry of julolidine (2,3,6,7-tetrahydro-1H), 5H-pyrido[3,2,1-ij]quinoline) as well as lilolidine has been the focus of interest of many investigations during recent years. This growing interest can be explained because of their importance as synthetic intermediates [1-6] and as the key structural element exhibit interesting biological activities [7-9] in several natural products and fluorescent dyes [10–13]. Moreover, julolidines are the core structures of many pharmacological agents and drug molecules such as anticancer drugs [14], antidiabetic or cardiovascular agents [15], pesticides [16], and potential antidepressants [17]. Consequently, synthetic methodologies for preparing julolidine derivatives have attracted considerable interest; however, few methods offering good results have been reported for the synthesis of julolidines [18] and julolidinones [19] and to generate bicyclic systems with one ring junction nitrogen atom [20,21] (Fig. 1).

Despite numerous advances in the field of synthetic organic chemistry, the developments of valuable and efficient strategies for the construction of these ring systems remain as a significant challenge. Among these methods, intramolecular Friedel–Crafts cyclialkylations [22–27] promoted by both Brønsted and Lewis acid catalysts is promising as an efficient method to prepare substituted julolidines.

In our previous work, we developed a synthetic pathway for the construction of seven nitrogen and nitrogen–sulfur polycycles [28] containing quinoline, tetrahydroquinoline, acridine, phenothiazine, and indole moieties via Friedel– Crafts cyclialkylations of suitable synthesized alcohols. The results showed that a number of difficult substituted heterocycles can be easily obtained with the advantages of short reaction time and high yield.

This prompted us to apply these procedures in developing the synthesis of nine julolidines substituted from tetrahydroquinoline via Friedel–Crafts cyclialkylation of suitable synthesized heteroarylalkanols **1a–i** (Scheme 1).

RESULTS AND DISCUSSION

Synthesis of heteroarylalkanols 1a–i. The required 3-(3,4-dihydroquinolin-1(2*H*)-yl)-3-methylbutanenitrile (4)

Figure 1. Heterocycles containing tetrahydroquinoline scaffold.

Scheme 1. Heteroarylalkanols 1a-i.

\sim		\mathbf{R}_1	\mathbf{R}_2		\mathbf{R}_1	\mathbf{R}_2
	a	Me	Me	f	Ph	Me
N	b	Et	Et	g	Me	Η
- Сон	с	Ph	Ph	ĥ	Et	Η
′ H ₂	d	Me	Et	i	Ph	Η
1 a-i	e	Et	Ph			

Scheme 2. Reagents and conditions: (a) $BnMe_3NOH$, dioxane, $90^{\circ}C$, 4 h, 86%; (b) H_2SO_4 , EtOH, reflux 7 h, 82%; (c) 2RMgX, Et_2O , NH_4Cl soln, Table 1.

was readily synthesized in one step by the reaction of tetrahydroquinoline (2) with 3-methylcrotononitrile (3) in the presence of a catalytic amount of Triton B; 4 was successively converted to its ethyl ester 5. The ethyl 3-(3,4-dihydroquinolin-1(2*H*)-yl)-3-methylbutanoate (5) was finally reacted with two equivalents of Grignard reagents to afford alcohols **1a–c**. The results are presented in Scheme 2 and Table 1 (Entries 1–3).

Two-step syntheses of alcohols **1–f** and **1g–i** are outlined in Scheme 3 and Table 1 (Entries 4–6 and 7–9). These alcohols were prepared separately via two routes starting with nitrile **4**. The nitrile **4** was allowed to react with Grignard reagents affording the corresponding ketones **6a–c**. The resulting ketones were further reacted by two different routes, (i) addition of Grignard reagents to yield alcohols **1d–f** and (ii) reduction with LAH to afford alcohols **1g–i**. The structures of all new alcohols were appropriately established by the usual spectroscopic methods.

The structural elucidation of alcohols **1a–c** was mainly based on IR, ¹H NMR, MS, and elemental analyses. The IR spectra of alcohols **1a–c** showed absorption bands for an OH groups as broad bands in the range $3780-3250 \text{ cm}^{-1}$. The ¹H NMR data allowed an unambiguous statement of the heterocyclic alkanols formation. Thus, the ¹H NMR spectrum

Scheme 3. Reagents and conditions: (a) RMgX, PhH/Et₂O, HCl; (b) RMgX, Et₂O, NH₄Cl soln; (c) LAH, E₂O, rt, Table 1.

Scheme 4. Cyclialkylations of heteroarylalkanols 1a-i.

displayed eight signals for compound **1a**, the four aromatic protons at δ 6.8–7.4. The aliphatic acyclic protons of the methylenes and four methyl groups of the new alcohol appeared as three singlets: thus, the gem-dimethyls at C-2 and C-4 appear at δ 1.1 and δ 1.3, respectively. A third singlet at δ 1.6 was assigned to the up-field proton CH₂. A broad singlet at δ 2.2 was assigned to OH. In all IR spectra of the synthesized carbinols, the characteristic peak of carbonyl groups was absent.

Cyclialkylations of heteroaryl alcohols to substituted julolidine. The cyclialkylations of alcohols **1a–i** were carried out in the presence of both AlCl₃/CH₃NO₂

Entry	Substrate	ibstrate R ₁		Conditions ^a	mp (°C)	Product (%) ^b
1	5	Me	Me	MeMgI, Et ₂ O, rt, 10h	112	1a (91)
2	5	Et	Et	EtMgBr, Et ₂ O, rt, 12 h	90	1b (89)
3	5	Ph	Ph	PhMgBr, Et ₂ O, rt, 10 h	153	1c (84)
4	6a	Me	Et	EtMgBr, Et ₂ O, rt, 5 h	75	1 (85)
5	6b	Et	Ph	PhMgBr, Et ₂ O, rt, 8 h	89	1e (90)
6	6c	Ph	Me	MeMgI, Et ₂ O, rt, 6 h	122	1f (88)
7	6a	Me	Н	LAH, Et ₂ O, rt, 2h	136	1 g (82)
8	6b	Et	Н	LAH, Et ₂ O, rt, 2 h	105	1h (87)
9	6c	Ph	Н	LAH, Et ₂ O, rt, 3h	132	1i (93)

 Table 1

 vnthesis of heteroarvlalkanols (1a

^aAll reactions were performed using (0.1 equiv) excess of RMgX and LAH than calculated. ^bIsolated yield refers to substrate.

Cyclialkylation conditions and results of heteroarylalkanols 1a–f .							
Entry	Substrate	Catalyst type	Solvent	Temperature (°C)	Time (h)	Product (%) ^a	
1	1a	AlCl ₃ /CH ₃ NO ₂ ^b	DCM ^c	RT	2	8a (84)	
2	1a	PPA^d	_	160	1	8a (75)	
3 ^c	1b	AlCl ₃ /CH ₃ NO ₂	PE^{e}	RT	2	8b (86)	
4	1b	PPA	_	160	1	8b (73)	
5	1c	AlCl ₃ /CH ₃ NO ₂	DCM	RT	50	8c (81)	
6	1c	PPA	_	250	14	8c (75)	
7 ^e	1d	AlCl ₃ /CH ₃ NO ₂	PE	RT	2	8d (82)	
8	1d	PPA	_	160	2	8d (74)	
9	1e	AlCl ₃ /CH ₃ NO ₂	DCM	RT	2	8e (78)	
10	1e	PPA	_	160	4	8e (76)	
11	1f	AlCl ₃ /CH ₃ NO ₂	PE	RT	4	8f (79)	
12	1f	PPA	—	160	4	8f (76)	

 Table 2

 vclialkylation conditions and results of heteroarylalkanols 1a-4

^aIsolated yield refers to substrate.

^bWith AlCl₃/CH₃NO₂ catalyst, reactant proportions were as follows: carbinol (0.002 mole), AlCl₃ (0.0024 mole), CH₃NO₂ (0.024 mole), and solvent (10 mL).

^cDichloromethane.

^dWith PPA catalyst, reactant proportions were as follows: carbinol (0.5 g) and PPA (3 g).

^ePetroleum ether (60–80°).

and PPA catalysts (Scheme 4). Under mild conditions, cyclialkylations of carbinols **1a,b,d–i** proceeded smoothly in the presence of $AlCl_3/CH_3NO_2$ and PPA catalysts under different reaction conditions gave substituted 2,3,6, 7-tetrahydro-1*H*,5*H*-pyrido[3,2,1-*ij*]quinolines, **8a,b,d–i** in good overall yields (Table 2).

Cyclialkylations of 3-(3,4-dihydroquinolin-1(2H)-yl)-3-methyl-1,1-diphenylbutan-1-ol (1c) required more severe reaction conditions compared with their methyl substituted analog 1a (Scheme 5; Table 2, Entry 6). Accordingly, the

best results were obtained by promoted cyclialkylation under more strenuous conditions in the presence of PPA for 14 h at 250° C and with AlCl₃/CH₃NO₂ for 50 h in DCM at room temperature to yield 3,3-dimethyl-1,1-diphenyl-2,3,6,7-tetrahydro-1*H*,5*H*-pyrido[3,2,1-*ij*]quinoline (**8c**) as the sole product.

The results reflect that the steric interaction exerted by two phenyl groups encountered in ring closure of tertiary benzylic carbocation [29,30].

On the other hand, cyclialkylations of secondary alcohols **1g–i** required less strenuous reaction conditions in the ring

Scheme 6. Cyclialkylation of heteroarylalkanols 1g-i.

 Table 3

 Cyclialkylation conditions and results of heteroarylalkanols 1g-i.

Entry	Substrate	Catalyst type	Solvent	Temperature (°C)	Time (h)	Product (%)
1	1g	AlCl ₃ /CH ₃ NO ₂	DCM	RT	6	8g (82)
2	1g	PPA	_	160	4	8g (76)
3	1h	AlCl ₃ /CH ₃ NO ₂	DCM	RT	6	8h (82)
4	1h	PPA	_	160	4	8h (76)
5	1i	AlCl ₃ /CH ₃ NO ₂	DCM	RT	6	8i (77)
6	1i	PPA	—	160	8	8i (75)

closure step than alcohol **1c**. Thus, upon treatment of **1g–i** with acidic catalysts, the products were solely the julolidines **8g–i** (Table 3). The results can be explained in terms of less stability of the secondary than tertiary carbocation intermediates (Scheme 6).

CONCLUSIONS

In summary, we have developed a concise and catalytic protocol for the synthesis of alkyl-substituted and aryl-substituted julolidines that had not been reported before, via direct intramolecular Friedel–Crafts cyclization reaction of heteroaryl alkanols **1a–i** catalyzed by AlCl₃/CH₃NO₂ and PPA. The simplicity of the processes, moderate cost, and the results of this study proved that the development of Friedel–Crafts cyclialkylation reactions in heterocyclic chemistry can be considered as one of the most useful pathways to the synthesis of heteropolycycles.

EXPERIMENTAL

General. All reagents were purchased from Merck (Merck KGaA, Darmstadt, Germany), Sigma, or Aldrich Chemical Co. (New Road, Gillingham, Dorset, SP8 4XT, UK) and were used without further purification. Melting points were measured on a digital Gallenkamp capillary melting point apparatus (London, England) at Assiut university, and are uncorrected. The IR spectra were determined with a Shimadzu 470 Infrared spectrophotometer (3. Kanda-Nishikicho 1-chome, Chiyoda-ku, Tokyo 101-8448, Japan) at the Faculty of Science, Assiut university, Assiut, Egypt, using KBr wafer and thin film techniques ($v \text{ cm}^{-1}$). The ¹H NMR spectra were recorded on Jeol LA 400 MHz FT-NMR (400 MHz) (1-2, Musashino 3-chome Akishima, Tokyo 196-8558, Japan) and Varian 90 MHz NMR (Palo Alto, California USA) spectrometers at Assiut university, using CDCl₃ solvent with TMS as internal standard. Chemical shifts (δ) and J values are reported in ppm and Hz, respectively. Elemental analyses were performed on a Perkin-Elmer 2400 Series II analyzer (Waltham, MA 02451 USA) at the Faculty of Science, Assiut university, Assiut, Egypt. The mass spectra were performed by JEOL JMS 600 spectrometer at an ionizing potential of 70 eV using the direct inlet system. Reactions were monitored by TLC using precoated silica plates visualized with UV light. Flash column chromatography was performed on silica gel and basic alumina.

Synthesis of 3-(3,4-dihydroquinolin-1(2H)-yl)-3-methylbutanenitrile (4). A solution of tetrahydroquinoline 2 (6.9 g, 40 mmol) and β -methylcrotononitrile **3** (3.4 g, 42 mmol) in dioxane (30 mL) was cooled in ice bath and treated with 0.5 mL of Triton B. The reaction mixture was then heated in water bath for 4 h and then concentrated in vacuo. The pasty product triturated with methanol $(3 \times 10 \text{ mL})$ portions and the resulting orange precipitate was filtered off, washed excessively with methanol, and dried to yield the crude nitrile 4 (9.5 g, 92.5%), which was crystallized from acetone (8.9 g, 86.6%) as pale yellow crystals: mp 138°C; IR (KBr) v_{max} 3070, 2950, 2260, 1595, 1480, 1455, 1340, 1170, 745 cm⁻¹; ¹H NMR (90 MHz, CDCl₃, ppm), δ 1.2 (6H, s, 2CH₃), 1.82 (2H, m, J=7.5 Hz, $C^{3}H_{2}$), 2.44 (2H, m, J=7.5 Hz, C⁴H₂), 2.55 (2H, m, J=9 Hz, CH₂), 3.2 (2H, m, $J=9\,\text{Hz}, C^2\text{H}_2$), and 6.9–7.5 (4H, m, Ar–H). Anal. Calcd for $C_{14}H_{18}N_2$ (214); C, 78.5; H, 8.14; N, 13.08. Found; C, 78.9; H, 8.62; N, 12.75.

Synthesis of ethyl 3-(3,4-dihydroquinolin-1(2H)-yl)-3-A mixture of 3-(9H-carbazol-9-yl)-3methylbutanoate (5). methylbutanenitrile 4 (5 g, 20 mmol), absolute ethanol (40 mL), and concentrated sulfuric acid (5 mL) was refluxed for 7 h. The excess alcohol is removed by distillation, and the residue was diluted with water (50 mL), basified with Na₂CO₃ solution (20 mL, 30%), and extracted with ether. The ethereal layer was separated, washed, and dried to give 5 (5 g, 85.7%). The crude yellow oil was subjected to flash column chromatography by using light petroleum and DCM as eluents to yield ethyl 3-(9Hcarbazol-9-yl)-3-methylbutanoate 5 (4.8 g, 82.3%) in the form of a pale yellowish oil: n_D^{25} 1.572; IR (film) v_{max} 3070, 2985, 1750, 1610, 1570, 1485, 1450, 1320, 1170, 745 cm^{-1} ¹H NMR (90 MHz, CDCl₃, ppm), δ 1.2 (6H, s, 2CH₃), 1.22–1.45 (3H, t, J=7.5 Hz, CH₃), 1.75 (2H, m, J=7.5 Hz, C³H₂), 2.4 $(2H, s, J=9 Hz, CH_2), 2.5 (2H, t, J=7.5 Hz, C^4H_2), 3.25 (2H, t, t)$ $J = 7.5 \text{ Hz}, \text{ C}^2\text{H}_2$), 3.9 (2H, m, $J = 7.5 \text{ Hz}, \text{ CH}_2$), and 6.8–7.6 (4H, m, Ar-H). Anal. Calcd for C16H23NO2 (261); C, 73.56; H, 8.81; N, 5.36. Found; C, 73.22; H, 8.85; N, 5.42.

General procedures for synthesis of heteroaryl ketones 6a-c. A solution of nitrile 4 (2.5 g, 10 mmol) in benzene (20 mL) was added rapidly with stirring to an ice-cold Grignard reagent obtained as usual [27] from Mg turnings (15 mmol) and alkyl or aryl halide (15 mmol) in ether (40 mL). After refluxing for 12 h, the reaction mixture was stirred into ice-cold hydrochloric acid (100 mL, 30%) followed by removal of the solvents in vacuo. The crude ketimine was hydrolyzed by refluxing with a mixture of (benzene, 20 mL; HCl, 10 mL; AcOH, 10 mL) until the ketimine disappeared (6-8 h) as monitored by TLC. The solution was cooled, and benzene layer was separated, whereas the aqueous layer was basified by addition of solid Na₂CO₃ with stirring and finally extracted with benzene $(3 \times 20 \text{ mL})$. The combined organic phases were washed with water, dried over MgSO₄, and the solvent was evaporated in vacuo. The crude mixture was purified by flash column chromatography (ethyl acetate-hexane 3:7) to afford the pure products 6a-c.

4-(3,4-Dihydroquinolin-1(2H)-yl)-4-methylpentan-2-one (6a). Brown viscous oil (75%); n_D^{25} 1.588; R_f 0.43 (1:3, EtOAc/hexane); IR (film) v_{max} 3065, 2990, 1740, 1580, 1480, 1440, 1370, 1270, 1020, 740, 695 cm⁻¹; ¹H NMR (90 MHz, CDCl₃, ppm), δ 1.2 (6H, s, 2CH₃), 1.75 (2H, m, *J*=7.5 Hz, C³H₂), 2.1 (3H, s, CH₃), 2.45 (2H, t, *J*=7.5 Hz, C⁴H₂), 2.6 (2H, s, CH₂), 3.3 (2H, t, *J*=7.5 Hz, C²H₂), 3.9 (2H, m, *J*=9 Hz, CH₂), and 7.1–7.6 (4H, m, Ar–H). Anal. Calcd for C₁₅H₂₁NO (231); C, 77.92; H, 9.09; N, 6.06. Found; C, 77.6; H, 8.85; N, 5.82.

5-(3,4-Dihydroquinolin-1(2H)-yl)-5-methylhexan-3-one (6b). Reddish viscous oil (77%); n_D^{25} 1.592; R_f 0.46 (1:3, EtOAc/hexane); IR (film) v_{max} 3060, 2990, 2910, 1745, 1580, 1470, 1450, 1360, 1250, 1030, 680 cm⁻¹; ¹H NMR (90 MHz, CDCl₃, ppm), δ 0.9 (3H, t, J = 9 Hz, CH₃), 1.2 (6H, s, 2CH₃), 1.8 (2H, m, C³H₂), 2.4–2.7 (4H, m, C⁴H₂, CH₂), 2.65 (2H, s, CH₂), 3.2 (2H, t, J = 7.5 Hz, C²H₂), and 7.0–7.6 (4H, m, Ar–H). *Anal.* Calcd for C₁₆H₂₃NO (245); C, 78.3; H, 9.38; N, 5.71. Found; C, 78.5; H, 9.33; N, 5.84.

3-(3,4-Dihydroquinolin-1(2H)-yl)-3-methyl-1-phenylbutan-1one (6c). Pale yellow viscous oil (72%); n_D^{25} 1.605; R_f 0.34 (1:3, EtOAc/hexane); IR (KBr) v_{max} 3040, 3000, 2970, 1750, 1580, 1480, 1450, 1375, 1275, 1060, 740, 690 cm⁻¹; ¹H NMR (90 MHz, CDCl₃, ppm), δ 1.3 (6H, 2s, 2CH₃), 1.75 (2H, m, $C^{3}H_{2}$), 2.4 (2H, t, J=7.5, $C^{4}H_{2}$), 2.7 (2H, s, CH₂), 3.25 (2H, t, J=7.5 Hz, $C^{2}H_{2}$), and 7.15–7.7 (9H, m, Ar–H). *Anal*. Calcd for $C_{20}H_{23}NO$ (293); C, 81.9; H, 7.85; N, 4.77. Found; C, 82.3; H, 7.45; N, 4.4.

General procedure for the synthesis of alcohols 1a–f. To an ice-cold Grignard reagent obtained as usual [26] from Mg turnings (0.2 g, 8 mmol) and alkyl or aryl halide (8 mmol) in ether (25 mL) was added with ester 5 (1.0 g, 3.6 mmol) and/or ketone 6a–c (7.3 mmol). The reaction mixture was stirred at required temperature for the appointed time (Table 1) and decomposed by sat. aq. NH₄Cl soln. The product was extracted with ether (3×15 mL), and the combined organic phases were washed with water, dried over anhydrous Na₂SO₄, and the solvent was evaporated *in vacuo*. The residue was purified by flash column chromatography (basic alumina, ethyl acetate/hexane, 2:3) to afford the desired pure product 1a–f. The conditions and yields are shown in Table 1 (Entries 1–6), and spectral data are given in the following.

4-(3,4-Dihydroquinolin-1(2H)-yl)-2,4-dimethylpentan-2-ol (1a). This compound was obtained as white crystals in yield, 84%, mp 112°C (ethanol), R_f 0.62 (1:4, EtOAc/hexane); IR (KBr) v_{max} 3360, 3070, 2950, 1590, 1485, 1450, 1440, 1340, 1145, 750, 670 cm⁻¹; ¹H NMR (90 MHz, CDCl₃, ppm), δ 1.1 (6H, 2s, 2CH₃), 1.3 (6H, 2s, 2CH₃), 1.6 (2H, s, CH₂), 1.8 (2H, m, C³H₂), 2.2 (1H, s, OH exchangeable with D₂O) 2.45 (2H, t, *J*=7.5, C⁴H₂), 3.1 (2H, t, *J*=7.5 Hz, C²H₂), and 6.8–7.4 (4H, m, Ar–H). *Anal.* Calcd for C₁₆H₂₅NO (247); C, 77.7; H, 10.1; N, 5.66. Found; C, 78.1; H, 9.85; N, 5.4.

3-Ethyl-5-(3,4-dihydroquinolin-1(2H)-yl)-5-methylhexan-3-ol (1b). This compound was obtained as white crystals in yield, 80%, mp 90°C (ethanol), R_f 0.58 (1:4, EtOAc/hexane); IR (KBr) v_{max} 3570, 3060, 2970, 2850, 1590, 1480, 1460, 1450, 1340, 1230, 1120, 720 cm⁻¹; ¹H NMR (90 MHz, CDCl₃, ppm), δ 0.85 (6H, m, 2CH₃), 1.1 (6H, 2s, 2CH₃), 1.25 (6H, 2s, 2CH₃), 1.4 (4H, m, 2CH₂), 1.55 (2H, s, CH₂), 1.75 (2H, m, C³H₂), 2.35 (1H, s, OH exchangeable with D₂O) 2.6 (2H, t, *J* = 7.5, C⁴H₂), 3.2 (2H, t, *J* = 7.5 Hz, C²H₂), and 6.8–7.7 (4H, m, Ar–H). *Anal.* Calcd for C₁₈H₂₉NO (275); C, 78.54; H, 10.54; N, 5.09; Found; C, 78.82; H, 10.36; N, 5.25.

3-(3,4-Dihydroquinolin-1(2H)-yl)-3-methyl-1,1-diphenylbutan-1ol (1c). This compound was obtained as pale yellow crystals in yield, 75%, mp 153 °C (methanol), R_f 0.28 (1:4, EtOAc/hexane); IR (KBr) v_{max} 3380, 3060, 2990, 1580, 1555, 1445, 1370, 1220, 1120, 730 cm⁻¹; ¹H NMR (90 MHz, CDCl₃, ppm), δ 1.2 (6H, 2s, 2CH₃), 1.85 (2H, m, C³H₂), 2.1 (2H, s, CH₂), 2.55 (2H, t, *J*=7.5, C⁴H₂), 3.3 (2H, t, C²H₂), 4.2 (1H, s, OH exchangeable with D₂O), and 7.1– 7.9 (14H, m, Ar–H). *Anal.* Calcd for C₂₆H₂₉NO (371); C, 84.09; H, 7.81; N, 3.77. Found; C, 84.4; H, 7.45; N, 3.9.

5-(3,4-Dihydroquinolin-1(2H)-yl)-3,5-dimethylhexan-3-ol (1d). This compound was obtained as white crystals in yield, 77%, mp 75°C (ethanol), R_f 0.4 (1:4, EtOAc/hexane); IR (KBr) v_{max} 3530, 3050, 2990, 1740, 1600, 1465, 1445, 1340, 1190, 740, 695 cm⁻¹; ¹H NMR (90 MHz, CDCl₃, ppm), δ 0.9 (3H, t, J=9 Hz, CH₃), 1.15 (6H, 2s, 2CH₃), 1.3 (3H, s, CH₃), 1.5 (2H, q, J=9 Hz, CH₂), 1.6 (2H, s, CH₂), 1.8 (2H, m, C³H₂), 2.5 (2H, t, J=7.5, C⁴H₂), 3.3 (2H, t, J=7.5 Hz, C²H₂), 4.5 (1H, s, OH exchangeable with D₂O), and 7.0–7.6 (4H, m, Ar–H). *Anal.* Calcd for C₁₇H₂₇NO (261): C, 78.16; H, 10.34; N, 5.36. Found: C, 78.5; H, 10.25; N, 5.6.

5-(3,4-Dihydroquinolin-1(2H)-yl)-5-methyl-3-phenylhexan-3ol (1e). This compound was obtained as creamy plates in yield, 79%, mp 89°C (ethanol), R_f 0.45 (1:4, EtOAc/hexane); IR (KBr) v_{max} 3450, 3055, 2985, 1600, 1486, 1440, 1370, 1210, 1180, 740, 690 cm⁻¹; ¹H NMR (90 MHz, CDCl₃, ppm), δ 0.9 (3H, t, J = 9 Hz, CH₃), 1.6 (2H, q, J = 9 Hz, CH₂), 1.2 (6H, 2s, 2CH₃), 1.65–1.8 (2H, m, C³H₂), 1.8 (2H, d, J = 6 Hz, CH₂), 2.55 (2H, t, J = 7.5, C⁴H₂), 3.32 (2H, t, J = 7.5 Hz, C²H₂), 4.2 (1H, s, OH exchangeable with D₂O), and 6.8–7.7 (9H, m, Ar–H). *Anal.* Calcd for C₂₂H₂₉NO (323): C, 81.73; H, 8.98; N, 4.33. Found: C, 81.6; H, 8.68; N, 4.75.

4-(3,4-Dihydroquinolin-1(2H)-yl)-4-methyl-2-phenylpentan-2ol (1f). This compound was obtained as white crystals in yield, 78%, mp 122°C (ethanol), R_f 0.41 (1:4, EtOAc/hexane); IR (KBr) v_{max} 3570, 3120, 2970, 1605, 1550, 1520, 1480, 1365, 1145, 950, 740 cm⁻¹; ¹H NMR (90 MHz, CDCl₃, ppm), δ 1.2 (6H, 2s, 2CH₃), 1.5 (3H, s, CH₃), 1.6–1.8 (2H, m, C³H₂), 1.85 (2H, d, *J*=6 Hz, CH₂), 2.6 (2H, t, *J*=7.5, C⁴H₂), 2.9 (1H, s, OH exchangeable with D₂O), 3.4 (2H, t, *J*=7.5 Hz, C²H₂), and 6.9–7.7 (9H, m, Ar–H). Anal. Calcd for C₂₁H₂₇NO (309): C, 81.55; H, 8.73; N, 4.53. Found: C, 81.3; H, 8.9; N, 4.75.

General procedure for the synthesis of heteroaryl alcohols 1g-i. To an ice-cold (0°C) stirred solution of LAH (0.1 g, 2.7 mmol) in 25 mL of ether, a solution of ketone 6a-c (2.5 mmol) in THF (15 mL) was added dropwise over 10 min. The reduction was complete after stirring for appointed time and temperature (monitored by TLC, 20% ethyl acetate/hexane). The cold reaction mixture was quenched at (0°C) by the sequential addition of distilled water (2 mL), NaOH solution (4 mL, 20%), and distilled water (4 mL); then, it was warmed to room temperature. Suction filtration removed the white precipitate of aluminum compounds, which were thoroughly triturated with ethyl acetate. Evaporation of the organic phase afforded crude alcohols 1g-i. The products were purified by flash column chromatography (hexane/ethyl acetate, 3:2) to afford the desired pure product. The conditions and yields are shown in Table 1 (Entries 7-9), and spectral data are given in the following.

4-(3,4-Dihydroquinolin-1(2H)-yl)-4-methylpentan-2-ol (1g). This compound was obtained as white crystals in yield, 70%, mp 136°C (methanol), R_f 0.63 (1:4, EtOAc/hexane); IR (KBr) v_{max} 3380, 3055, 2980, 1610, 1480, 1460, 1370, 1210, 740, 690 cm⁻¹; ¹H NMR (90 MHz, CDCl₃, ppm), δ 1.1 (3H, s, J=9 Hz, CH₃), δ 1.3 (6H, s, 2CH₃), 1.5 (3H, s, CH₃), 1.6 (2H, d, J=7.5 Hz, CH₂), 1.8 (2H, m, C³H₂), 2.55 (2H, t, J=7.5, C⁴H₂), 2.8 (1H, s, OH exchangeable with D₂O), 3.2–3.45 (3H, m, C²H₂, CH), and 6.8–7.5 (4H, m, Ar–H). Anal. Calcd for C₁₅H₂₃NO (233): C, 77.25; H, 9.87; N, 6.0. Found: C, 77.56; H, 9.6; N, 5.85.

5-(3,4-Dihydroquinolin-1(2H)-yl)-5-methylhexan-3-ol (1h). This compound was obtained as white plates in yield, 74%, mp 105°C (ethanol), R_f 0.67 (1:4, EtOAc/hexane); IR (KBr) v_{max} 3640, 3070, 2980, 1595, 1460, 1450, 1370, 1220, 1175, 740, 695 cm⁻¹; ¹H NMR (90 MHz, CDCl₃, ppm), δ 0.9 (3H, t, J=9 Hz, CH₃), 1.2 (6H, s, 2CH₃), 1.4 (2H, q, J=9 Hz, CH₂), 1.55 (2H, d, J=9 Hz, CH₂), 1.8 (2H, m, C³H₂), 2.3 (1H, s, OH exchangeable with D₂O), 2.5 (2H, t, J=7.5, C⁴H₂), 3.4 (2H, t, J=7.5, C²H₂), and 6.8–7.7 (4H, m, Ar–H). Anal. Calcd for C₁₆H₂₅NO (247): C, 77.73; H, 10.1; N, 5.66. Found: C, 77.8; H, 9.84; N, 5.7.

3-(3,4-Dihydroquinolin-1(2H)-yl)-3-methyl-1-phenylbutan-1ol (1i). This compound was obtained as faintly yellow crystals in yield, 80%, mp 132°C (benzene), R_f 0.36 (1:4, EtOAc/hexane); IR (KBr) v_{max} 3440, 3085, 2975, 1600, 1475, 1450, 1375, 1210, 1180, 740, 695 cm⁻¹; ¹H NMR (90 MHz, CDCl₃, ppm), δ 1.2 (6H, s, 2CH₃), 1.85 (2H, m, C³H₂), 2.0 (2H, d, *J*=7.5 Hz, CH₂), 2.5 (2H, t, *J*=7.5, C⁴H₂), 3.4 (2H, t, *J*=7.5, C²H₂), 4.2 (1H, s, OH exchangeable with D_2O), 4.5 (H, m, CH), and 6.9–7.6 (9H, m, Ar–H). *Anal.* Calcd for $C_{20}H_{25}NO$ (295): C, 81.35; H, 8.47; N, 4.74. Found: C, 81.7; H, 8.3; N, 4.38.

Cyclialkylation procedures. The procedures described earlier for cyclialkylations of arylalkanols with AlCl₃/CH₃NO₂ [23] and PPA [26] were essentially followed. The conditions and yields are shown in Tables 2 and 3, whereas the physical constants and spectral data of the products **8a–i** are given in the following.

1,1,3,3-Tetramethyl-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij] quinoline (8a). This product was isolated as white-yellow crystals in yields indicated earlier, mp 82°C (benzene); IR (KBr) v_{max} 3060, 2980, 1600, 1560, 1480, 1450, 1420, 1330, 1060 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, ppm), δ 1.25 (6H, s, 2CH₃), 1.5 (6H, 2s, 2CH₃), 1.6 (2H, s, CH₂), 1.8 (2H, m, C³H₂), 2.4 (2H, t, *J*=7.5, C⁴H₂), 3.3 (2H, t, *J*=7.5 Hz, C²H₂), and 6.7–7.5 (3H, m, Ar–H); MS (EI, 70 eV) *m/z* (%), 229 (M⁺, 8.5), 214 (M⁺–CH₃, 100), 199 (65.8), 184 (M⁺–2CH₃, 22.8), 165 (25.3), 168 (44.3), 151 (5.4), 132 (9.5), 109 (6.5), 90 (3.3), 78 (5.4), 77 (6.5), 66 (2.2). *Anal.* Calcd for C₁₆H₂₃N (229): C, 83.8; H, 10.0; N, 6.1. Found: C, 84.2; H, 9.75; N, 5.88.

1,1-Diethyl-3,3-dimethyl-2,3,6,7-tetrahydro-1H,5H-pyrido [3,2,1-ij]quinoline (8b). This product was isolated as brownish viscous oil in yields indicated earlier, n_D^{25} 1.615; IR (film) v_{max} 3070, 2995, 1615, 1550, 1450, 1410, 1330, 745 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, ppm), δ 0.95 (6H, t, J=9 Hz, 2CH₃), 1.2 (6H, s, 2CH₃), 1.5 (4H, t, J=9 Hz, 2CH₂), 1.7 (2H, s, CH₂), 1.8 (2H, m, C³H₂), 2.5 (2H, t, J=7.5, C⁴H₂), 3.4 (2H, t, J=7.5 Hz, C²H₂), and 6.9–7.6 (3H, m, Ar–H); MS (EI, 70 eV) *m/z* (%), 257 (M⁺, 6.8), 241 (34), 242 (M⁺–CH₃, 77.4), 228 (M⁺–CH₃CH₂,100), 213 (M⁺–CH₃–CH₃CH₂,83.8), 199 (46.5), 185 (25.5), 173 (26.4), 169 (15.3), 151 (25.5), 132 (13.6), 109 (10.3), 91 (3.4), 78 (2.4), 78 (6.1), 77 (3.7), 67 (2.2). *Anal.* Calcd for C₁₈H₂₇N (257): C, 84.0; H, 10.5; N, 5.44. Found: C, 84.32; H, 9.82; N, 5.5.

3,3-Dimethyl-1,1-diphenyl-2,3,6,7-tetrahydro-1H,5H-pyrido [**3,2,1-ij]quinoline** (8c). This product was isolated as whiteyellow solid in yields indicated earlier, mp 92°C (benzene); IR (KBr) v_{max} 3055, 2974, 1605, 1570, 1465, 1440, 1420, 1335, 1060 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, ppm), δ 1.2 (6H, s, 2CH₃), 1.8 (2H, m, C³H₂), 2.2 (2H, s, CH₂), 2.6 (2H, t, *J*=7.5, C⁴H₂), 3.45 (2H, t, *J*=7.5 Hz, C²H₂), and 6.8–7.4 (3H, m, Ar-H); MS (EI, 70 eV) *m*/*z* (%), 353 (M⁺, 17.2), 352 (M⁺-H, 82.5), 338 (M⁺-CH₃, 100), 323 (13.8), 246 (M⁺-2CH₃-Ph, 45.8), 245 (19.3), 184 (14.7), 178 (11.2), 169 (62.5), 155 (7.6), 132 (18.0), 90 (14.3), 78 (7.5), 77 (6.3), 66 (2.3). *Anal.* Calcd for C₂₆H₂₇N (353): C, 88.38; H, 7.64; N, 3.96. Found: C, 88.5; H, 7.33; N, 4.2.

1-Ethyl-1,3,3-trimethyl-2,3,6,7-tetrahydro-1H,5H-pyrido [3,2,1-ij]quinoline (8d). This product was isolated as white crystals in yields indicated earlier, mp 68°C (benzene/PE 60–80°C); IR (KBr) v_{max} 3060, 2985, 1615, 1580, 1460, 1440, 1335, 1050 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, ppm), δ 0.95 (3H, t, *J*=9 Hz, CH₃), 1.2 (6H, s, 2CH₃), 1.4 (3H, s, CH₃), 1.57 (2H, m, CH₂), 1.61–1.83 (2H, m, CH₂), 1.85 (2H, m, C³H₂), 2.59 (2H, t, *J*=7.5, C⁴H₂), 3.43 (2H, t, *J*=7.5 Hz, C²H₂), and 7.1–7.5 (3H, m, Ar–H); MS (EI, 70 eV) *m/z* (%), 243 (M⁺, 14.2), 242 (M⁺-H, 100), 228 (M⁺-CH₃, 92.5), 214 (38.5), 213 (66.8), 191 (4.7), 184 (22.5), 178 (5.4), 168 (13.3), 150 (2.6), 132 (11.8), 109 (4.3), 91 (4.3), 78 (3.1). *Anal.* Calcd for C₁₇H₂₅N (243): C, 83.95; H, 10.28; N, 5.76. Found: C, 83.9; H, 10.6; N, 5.95. *1-Ethyl-3,3-dimethyl-1-phenyl-2,3,6,7-tetrahydro-1H,5Hpyrido[3,2,1-ij]quinoline (8e).* This product was isolated as white solid in yields indicated earlier, mp 76°C (benzene/PE 60–80°C); IR (KBr) v_{max} 3070, 2980, 1600, 1550, 1455, 1442, 1320, 743 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, ppm), δ 0.9 (3H, t, *J* = 9 Hz, CH₃), 1.21 (6H, s, 2CH₃), 1.8 (2H, m, C³H₂), 2.0 (2H, m, CH₂), 1.9–2.2 (2H, m, CH₂), 2.5 (2H, t, *J* = 7.5, C⁴H₂), 3.35 (2H, t, *J* = 7.5 Hz, C²H₂), and 7.0–7.6 (8H, m, Ar–H); MS (EI, 70 eV) *m/z* (%), 305 (M⁺, 12.4), 304 80.2), 290 (M⁺-CH₃, 75.2), 276 (M⁺-CH₃CH₂,100), 275 (45.3), 246 (M⁺-2CH₃-C₂H₅, 38.4), 228 (18.3), 213 (15.3), 198 (26.2), 199 (5.7), 169 (14.3), 151 (2.6), 132 (14.2), 90 (2.8), 77 (4.2), 66 (1.8). *Anal.* Calcd for C₂₂H₂₇N (305): C, 86.55; H, 8.85; N, 4.6. Found: C, 86.75; H, 8.55; N, 4.82.

1,3,3-Trimethyl-1-phenyl-2,3,6,7-tetrahydro-1H,5H-pyrido [3,2,1-ij]quinoline (8f). This product was isolated as pale yellow crystals in yields indicated earlier, mp 64°C (benzene/ PE 60–80°C); IR (KBr) v_{max} 3085, 2990, 1605, 1560, 1455, 1440, 1330, 745 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, ppm), δ 1.21 (6H, s, 2CH₃), 1.65 (3H, s, CH₃), 1.8 (2H, m, C³H₂), 1.9–2.1 (2H, m, CH₂), 2.5 (2H, t, *J*=7.5, C⁴H₂), 3.35 (2H, t, *J*=7.5 Hz, C²H₂), and 6.9–7.4 (8H, m, Ar–H); MS (EI, 70 eV) *m/z* (%), 291 (M⁺, 13.5), 290 (66.8), 276 (M⁺–CH₃, 72.3), 261 (M⁺–2CH₃, 100), 245 (M⁺–3CH₃–H, 49.0), 214 (11.3), 199 (12.6), 169 (24.4), 151 (4.6), 132 (15.4), 91 (4.3), 78 (5.3). *Anal.* Calcd for C₂₁H₂₅N (291): C, 86.59; H, 8.59; N, 4.8. Found: C, 86.82; H, 8.38; N, 5.2.

1,3,3-Trimethyl-2,3,6,7-tetrahydro-1H,5H-pyrido[**3,2,1-i**j] **quinoline** (**8g**). This product was isolated as white solid in yields indicated earlier, mp 52°C (PE 60–80°C); IR (KBr) v_{max} 3080, 2983, 1600, 1553, 1450, 1440, 1325, 740 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, ppm), δ 1.21 (6H, s, 2CH₃), 1.32 (3H, m, J = 6 Hz, CH₃), 1.6–1.8 (2H, m, CH₂), 1.86 (2H, m, C³H₂), 2.5 (2H, t, J = 7.5, C⁴H₂), 2.86 (1H, m, CH), 3.4 (2H, t, J = 7.5 Hz, C²H₂), and 6.8–7.4 (3H, m, Ar–H); MS (EI, 70 eV) *m/z* (%), 215 (M⁺, 100), 214 (82), 200 (M⁺–CH₃, 75.4),185 (66.2), 170 (M⁺–3CH₃, 35.8), 169 (21.3), 158 (14.3), 132 (21.3), 91 (3.3), 77 (3.6). *Anal.* Calcd for C₁₅H₂₁N (215): C, 83.7; H, 9.76; N, 6.5. Found: C, 83.5; H, 10.12; N, 6.47.

1-Ethyl-3,3-dimethyl-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij] quinoline (8h). This product was isolated as reddish viscous oil in yields indicated earlier, n_D^{25} 1.592; IR (film) IR (film) v_{max} 3055, 2986, 1600, 1550, 1445, 1450, 1330, 744 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, ppm), δ 0.85 (3H, t, J = 9 Hz, CH₃), 1.2 (6H, s, 2CH₃), 1.56 (2H, m, CH₂), 1.62–1.82 (2H, m, CH₂), 1.86 (2H, m, C³H₂), 2.5 (2H, t, J = 7.5, C⁴H₂), 2.72 (1H, m, CH), 3.32 (2H, t, J = 7.5 Hz, C²H₂), and 7.2–7.5 (3H, m, Ar–H); MS (EI, 70 eV) m/z (%), 229 (M⁺, 16.2), 228 (M⁺–H, 100), 214 ((M⁺–CH₃, 74.6), 200 (M⁺–CH₃–C₂H₅, 32.2), 199 (18.4), 185 (36.4), 190 (3.7), 170 (4.7), 169 (12.4), 166 (11.3), 155 (5.7), 132 (10.2), 90 (4.3), 77 (2.3). *Anal.* Calcd for C₁₆H₂₃N (229): C, 83.84; H, 10.0; N, 6.1. Found: C, 83.85; H, 10.2; N, 5.82.

3,3-Dimethyl-1-phenyl-2,3,6,7-tetrahydro-1H,5H-pyrido [**3,2,1-ij]quinoline** (**8i**). This product was isolated as white needless in yields indicated earlier, mp 56°C (hexane); IR (KBr) v_{max} 3074, 2970, 1615, 1470, 1450, 1335, 745 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, ppm), δ 1.2 (6H, s, 2CH₃), 1.82 (2H, m, C³H₂), 1.96–2.2 (2H, m, CH₂), 2.52 (2H, t, *J*=7.5, C⁴H₂), 3.35 (2H, t, *J*=7.5Hz, C²H₂), 3.9 (1H, m, CH), and 7.2–7.6 (8H, m, Ar–H); MS (EI, 70 eV) *m*/*z* (%), 277 (M⁺, 9.3), 261 (M⁺–CH₃–H, 100), 247 (55.8), 246 (M⁺–2CH₃–H, 34.5), 200 (12.3), 185 (26.4), 190 (4.7), 170 (13.2), 167 (6.1), 158 (6.6), 131 (2.6), 90 (4.1), 78 (3.5). *Anal.* Calcd for $C_{20}H_{23}N$ (277): C, 86.64; H, 8.3; N, 5.05. Found: C, 86.7; H, 8.1; N, 5.2.

Acknowledgments. The authors are grateful for the financial support and all the facilities received while performing and writing this work by the Chemistry Department, Faculty of Science, Assiut University, Egypt.

REFERENCES AND NOTES

[1] Katritzky, A. R.; Fang, Y.; Qi, M.; Feng, D. Heterocycles 1998, 48, 2535.

[2] Legros, J.; Crousse, B.; Ourévitch, M.; Bonnet-Delpon, D. Synlett 2006, 1899.

[3] Palma, A.; Carrillo, C.; Stashenko, E.; Kouznetsov, V.; Bahsas, A.; Amaro-Luis, J. Tetrahedron Lett 2001, 42, 6247.

[4] Majumdar, K. C.; Taher, A.; Debnath, P. Synthesis 2009, 41, 793.

[5] Bera, P. K.; Misra, A.; Nath, D. N.; Chowdhury, M. J. Photohem. Photobiol. A., 1996, 95, 127.

[6] Banerjee, S.; Guchhait, N.; Chakraborty, A.; Nath, D. N.; Chowdhury, M. Chem Phys Letts. 2001, 346, 387.

[7] Haidekker, M. A.; Brady, T. P.; Lichlyter, D.; Theodorakis, E. A. Bioorg Chem 2005, 33, 415.

[8] Nipper, M. E.; Majd, S.; Mayer, M.; Lee, J. C. M.; Theodorakis, E. A.; Haidekker, M.A. Biochim Biophys Acta 2008, 1778, 1148.

[9] Haidekker, M. A.; Brady, T. P.; Chalian, S. H.; Akers, W.; Theodorakis, D. E. A. Bioorg Chem 2004, 32, 274.

[10] Agbo, S. I.; Hallas, G.; Towns, A. D. Dyes and Pigments 2000, 47, 33.

[11] Shirai, K.; Matsuoka, M.; Fukunishi, K. Dyes and Pigments 2000, 47, 107.

[12] Swanson, S. A.; Wallraff, G. M.; Chen, J. P.; Zhang, W.; Bozano, L. D.; Carter, K. R.; Salem, J. R.; Villa, R.; Scott, J. C. Chem Mater 2003, 15, 2305.

[13] Moran, A. M.; Kelley, A. M.; Tretiak, S. Chem. Phys. Letts 2003, 367, 293.

[14] Madapa, S.; Tusi, Z.; Batra, S. Curr. Org. Chem. 2008, 12,
1116; [b] Berova, N. Chirality 1997, 9, 395; [c] Sulpizi, M.; Carloni, P.;
Hutter, J.; Röthlisberger, U. Chem. Phys. 2003, 5, 4798; [d] Dyachenko,
V. D.; Karpov, E. N. Russian J. Org. Chem. 2011, 47, 1.

[15] Jameson, D. M.; Eccleston, J. F. Methods Enzymol 1997, 278,
363; [b] Akers, W.; Haidekker, M. A. J Biomech Eng 2005, 127, 450;
[c] Kung, C. E.; Reed, J. K. Biochemistry 1986, 25, 6114.

[16] Polyakova, S. M.; Belov, V. N.; Yan, S. F.; Eggeling, C.; Ringemann, C.; Schwarzmann, G.; de Meijere, A.; Hell, S. W. Eur. J. Org. Chem. 2009, 5162; [b] Koerner, T. A. W. Jr.; Prestegard, J. H.; Demou, P. C.; Yu, R. K. Biochemistry 1983, 22, 2676; [c] Poupot, M.; Griffe, L.; Marchand, P.; Maraval, A.; Rolland, O.; Martinet, L.; L'Faqihi-Olive, F. E.; Turrin, C. O.; Caminade, A. M.; Fournié, J. J.; Majoral, J. P.; Poupot, R. FASEB J 2006, 20, 2339.

[17] Vejdelek, Z.; Protiva, M. Collect. Czech. Chem. Commun. 1990, 55, 1290.

[18] Grieco, P. A.; Bahsas, A. Tetrahedron Lett 1988, 29, 5855; [b] Mellor, J. M.; Derryman, G. D. Tetrahedron, 21, 6115 (1995).

[19] Mann, F. G.; Smith, B. B. J Chem Soc 1951, 1898; [b] Smith,
 P. A. S.; Yu, T. Y. J Org Chem 1952, 17, 1281; [c] Smith, P. A. S.; Yu, T.
 Y. J Am Chem Soc 1952, 74, 1096.

[20] Glass, D. B.; Weissberger, A. Org, Synth., Coll; Wiley: New York, (1955); Vol. III, pp 504. [b] Katayama, H.; Abe, E.; Kaneko, K. J. Heterocycl. Chem. 1982, 19, 925; [c] Palma, A.; Agredo, J. S.; Carrillo, C.; Kouznetsov, V.; Stashenko, E.; Bahsas, A.; Amaro-Luis, J. Tetrahedron 2002, 58, 8719.

[21] Katritzky, A. R.; Rachwal, B.; Rachwal, S. J Org Chem 1996, 61, 3117; [b] Katritzky, A. R.; Luo, Z.; Cui, X. -L. J Org Chem 1999, 64, 3328.

[22] Roberts, R. M.; Khalaf, A. A. Friedel-Crafts Alkylation Chemistry. A Century of Discovery; Marcel Dekker: New York, 1984; [b] Olah, G. A.; Krishnamurti, R.; Prakash, G. K. S. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 3, Chapter 1.8, p. 293; [c] Olah, G. A. In Friedel-Crafts Chemistry Ed.; Wiley: New York, NY, 1973; [d] Olah, G. A. In Friedel-Crafts and Related Reactions; Ed.; Wiley-Interscience: New York, NY, 1963–65; Vols. 1–4 and references cited therein; [d] Terrasson, V.; Marcia de Figueiredo, R.; Campagne, J. M. Eur. J. Org. Chem. 2010, 14, 2635.

[23] Khalaf, A. A.; Roberts, R. M. J Org Chem 1969, 34, 3571;
ibid, **31**, 89 (1966); ibid, **37**, 4227 (1972); ibid, **36**, 1040 (1971) and references cited therein; [b] Khalaf, A. A. Rev. Roum Chim. 1974, 19, 1373.

[24] Khalaf, A. A.; Awad, I. M.; El-Emary, T. I.; Abd El-Aal, H. A. K. J. Indian Chem. Soc. 2006, 83, 10.

[25] Khalaf, A. A.; Awad, I. M.; El-Emary, T. I.; Abd El-Aal, H. A. K. J. Indian Chem. Soc. 2008, 85, 6.

[26] Khalaf, A. A.; El-Khawaga, A. M.; Awad, I. M.; Abd El-Aal, H. A. K. Arkivoc 2009, xiv, 314.

[27] Khalaf, A. A.; Awad, I. M.; El-Emary, T. I.; Abd El-Aal, H. A. K. J. Indian Chem. Soc. 2010, 87, 595.

[28] Khalaf, A. A.; El-Khawaga, A. M.; Awad, I. M.; Abd El-Aal, H. A. K. Arkivoc 2010, x, 338.

[29] Weland, G. W. In Advanced Organic Chemistry; John Wiley and Sons, Inc.: New York, 3rd Ed., 1960, p. 591.

[30] Eliel, E. L. In Stereochemistry of Carbon Compounds; McGraw-Hill Co.: New York, 2nd Ed., 1962, p. 169.