

Tetrahedron Letters 40 (1999) 5979-5982

TETRAHEDRON LETTERS

Total Syntheses of Squamocin A and Squamocin D

Ulrich Emde and Ulrich Koert*

Institut für Chemie, Humboldt Universität. Hessische Straße 1-2. D 10115 Berlin Received 4 June 1999; accepted 21 June 1999

Abstract: The total syntheses of two acetogenins, squamocin A and squamocin D, have been achieved. The adjacent bis-THF subunit was constructed by a multiple Williamson reaction. The left and the right side chain were added by addition of organomagnesium compounds to aldehyde functions. The conversion of a carboxylic acid into the butenolide moiety concluded both syntheses. © 1999 Elsevier Science Ltd. All rights reserved.

Squamocin A and squamocin D belong to a subclass of Annonaceous acetogenins¹) with an adjacent bis-THF subunit and an extra hydroxy group in the left side chain (C-28). The relative and absolute configuration of squamocin A^{2a} - also called annonin- I^{2b} was established by X-ray structural analysis of a degradation product and by spectroscopic studies.^{2,3} Squamocin D^{4a} - also called asiminacin,^{4b} is the C-24 epimer of squamocin A. Its structure was assigned by combined spectroscopic methods.⁴ Both natural products show remarkable cytotoxic activity and are interesting antitumor candidates. As mode of action of the Annonaceous acetogenins a blockage of mitochondrial complex I is discussed.¹

The total synthesis of adjacent bis-THF acetogenins is an active field.⁵⁾ Here we report on the total syntheses of squamocin A and squamocin D. The bis-THF core with the relative configuration *threo-trans-threo* was constructed by an established multiple Williamson reaction (1 -> 2).⁶⁾ Monoprotection of 2 followed by oxidation gave the aldehyde 3.

0040-4039/99/\$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved. *PII:* S0040-4039(99)01225-3

The right side chain was attached by the sequence Grignard addition to 3, PCC oxidation of the resulting alcohol and stereoselective L-selectride[®] reduction⁷⁾ of the ketone (98:2) leading to the alcohol 4. The latter could be converted into the aldehyde 5 by standard reactions.

The left side chain with the chiral center at C-28 was addressed next. An enantioselective (96% ee by GC) allylation of heptanal following Keck's procedure⁸⁾ produced the alcohol **6**. After TBDMS protection and hydroboration the resulting alcohol was converted into the bromide **7**. The bromide was transformed into the corresponding Grignard reagent, which was allowed to react with the aldehyde **5**. The two epimers **8** and **9**, which were formed in a 2:1 ratio, were separated by SC. The stereochemical assignment of the two epimers was based on the ¹³C-NMR chemical shift of the new stereocenter (**8**: 74.0 ppm, **9**: 71.2 ppm).

The final synthetic sequence elaborated the butenolide part. Silyl protection of the C-24 hydroxy group and hydrogenolytic cleavage of the benzyl-ether function of 8 and 9 gave two primary alcohols, which were converted into the carboxylic acids 10 and 11. The dianion of 10 was allowed to react with S-propenoxide. After a mixed anhydride cyclization the γ -lactone 12 was obtained. The C-2-C-35 double bond was introduced by a known selenylation/elimination procedure.⁵⁾ Final deprotection of the three silyl ethers gave the target compound squamocin D. Along the same route squamocin A was obtained from the carboxylic acid 11 via the γ -lactone 13. The spectrocopic data for squamocin A and squamocin D matched the literature data.⁹⁾

In conclusion the total syntheses of two acetogenins, squamocin A and squamocin D, have been achieved. The synthetic strategy allows variations in the left and right side chain and should be useful for the synthesis of pharmacologically interesting analogs.

Acknowledgements: This work was supported by the Fonds der Chemischen Industrie and ASTA Medica AG. We greatfully acknowledge stimulating discussions with Prof. Dr. Bernhard Kutscher and Dr. Eckhard Günther.

References and Footnotes:

 a) A. Cavé, B. Figadère, A. Laurens, D. Cortes in Progress in the Chemistry of Organic Natural Prod. (Eds.: W. Herz, G.W. Kirby, R. E. Moore, W. Steglich, Ch. Tamm), New York, 1997, 70, 81-288; b) M. C. Zafra-Polo, B. Figadère, T. Gallardo, J. Tormo, D. Cortes, *Phytochemistry* 1998, 48, 1087-1117; c) F. Q. Alali, L. Rogers, Y. Zang, J. L. McLaughlin, *Tetrahedron* 1998, 54, 5833-5844; c) N. H. Oberlies, C. Chang, J. L. McLaughlin, *J. Med. Chem.* 1997, 40, 2102-2106.

- a) Y. Fujimoto, T. Eguchi, K. Kakinuma, N. Ikekawa, M. Sahai, Y. K. Gupta, Chem. Pharm. Bull. 1988, 36, 4802-4806; b)
 L. Born, F. Lieb, J. P. Lorentzen, H. Moeschler, M. Nonfon, R. Söllner, D. Wendisch, Planta Med. 1990, 56, 312-316.
- a) S. Nishioka, H. Araya, C. Murasaki, M. Sahai, Y. Fujimoto, Nat. Prod. Lett. 1994, 5, 117-121; b) Z.-M. Gu, X.-P. Fang,
 T. Colman-Saizarbitoria, M. Huo, J. L. McLaughlin, J. Org. Chem. 1994, 59, 5162-5172.
- a) M. Sahai, S. Singh, M. Singh, Y. K. Gupta, S. Akashi, R. Yuji, K. Hirayama, H. Asaki, H. Araya, N. Hara, T. Eguchi, K. Kakinuma, Y. Fujimoto, Chem. Pharm. Bull. 1994, 42, 1163-1174; b) G.-X. Zhao, L. R. Miesbauer, D. L. Smith, J. L. McLaughlin, J. Med. Chem. 1994, 37, 1971-1974.
- 5) Recent total syntheses of adjacent bis-THF Annonaceous acetogenins: a) A. Sinha, S. C. Sinha, S. C. Sinha, E. Keinan, J. Org. Chem. 1999, 66, 2381-2386; b) J. A. Marshall, H. Jiang, J. Org. Chem. 1999, 64, 971-975; c) Z.-M. Wang, S.-K. Tian, M. Shi, Tetrahedron Lett. 1999, 40, 977-980; d) J. A. Marshall, K. W. Hinkle, Tetrahedron Lett. 1998, 39, 1303-1306; e) (adjacent THF-THP) S. E. Schaus, J. Branalt, E. N. Jacobsen, J. Org. Chem. 1998, 63, 4876-4877; f) A. Yazbak, S. C. Sinha, E. Keinan, J. Org. Chem. 1998, 63, 5863-5868; g) J. A. Marshall, K. W. Hinkle, J. Org. Chem. 1997, 62, 5989-5995; h) J. A. Marshall, M. Chen, J. Org. Chem. 1997, 62, 5996-6000; i) (tris-THF) S. C. Sinha, A. Sinha, S. C. Sinha, E. Keinan, J. Am. Chem. Soc. 1997, 119, 12014-12015; j) B. M. Trost, T. L. Calkins, C. G. Bochet, Angew. Chem. 1997, 109, 2746-2748; Angew. Chem. Int. Ed. Engl. 1997, 36, 2632-2634; k) T. R. Hoye, Z. Ye, J. Am. Chem. Soc. 1996, 118, 1801-1802; l) S. C. Sinha, A. Sinha, A. Yazbak, E. Keinan, J. Org. Chem. 1996, 61, 7640-7641; m) I. Wöhrle, A. Claßen, M. Peterek, H.-D. Scharf, Tetrahedron Lett. 1996, 37, 7001-7004; n) X. Frank, B. Figadère, A. Cavé, Tetrahedron Lett. 1996, 37, 1593-1594; o) H. Konno, H. Makabe, A. Tanaka, T. Oritani, Tetrahedron 1996, 52, 9399-9408; for work prior to 1996 see ref. 1.
- a) H. Wagner, U. Koert, Angew. Chem. 1994, 106, 1939-1941; Angew. Chem. Int. Ed. Engl. 1994, 33, 1873-1875; b) U.
 Koert, H. Wagner, M. Stein, Chem. Eur. J. 1997, 3, 1170-1180; for recent routes to 2 see c) P. Li, J. Yang, K. Zhao, J. Org. Chem. 1999, 64, 2259-2263 and ref. 5c.
- 7) B. Figadère, J.-C. Harmange, L. X. Hai, A. Cavé, Tetrahedron Lett. 1992, 33, 5189-5192.
- 8) G. E. Keck, D. Krishnamurthy, Organic Synthesis, 1997, 75, 12-18.
- 9) Spectroscopic data for synthetic squamocin A: $[\alpha]_D \approx +15$; c = 0.08, CHCl₃; ¹H-NMR (300 MHz, CDCl₃): 0.86 (t, J = 6.8 Hz, 3H, H-34), 1.22-1.68 (m, 42 H, H-4-14, 25-27, 29-33, H'-17, 18, 21, 22), 1.38 (d, J = 6.8 Hz, 3 H, H-37), 1.91-2.02 (m, 4 H, H''-17, 18, 21, 22), 2.24 (t, J = 7.2 Hz, 2 H, H-3), 3.34-3.42 (m, 1 H, H-15), 3.55-3.66 (m, 2 H, H-24,28), 3.79-3.94 (m, 4 H, H-16, 19, 20, 23), 4.97 (qq, J = 6.8/1.9 Hz, 1 H, H-36), 6.96 (q, J = 1.5 Hz, 1 H, H-35); ¹³C-NMR (75 MHz, CDCl₃): 14.11 (C-34), 19.21 (C-37), 22.00 (C-26), 22.61 (C-33), 25.16 (C-3), 24.82, 25.63, 25.66, 27.39, 28.35, 28.89, 29.1-29.7 signal overlap, 29.72, 31.83 (C-4 to C-13, C-17, C-18, C-21, C-22, C-30 to C-32), 32.52 (C-25), 33.38 (C-14), 37.26, 37.49 (C-27, C-29), 71.38 (C-24), 71.79 (C-28), 74.10 (C-15), 77.4 (C-36), 82.25, 82.50, 82.79, 83.27 (C-16, C-19, C-20, C-23), 134.34 (C-2), 148.83 (C-35), 173.90 (C-1); HRMS:(EI) cal.: 623.4887 (MH⁺), found: 623.4897. Spectroscopic data for synthetic squamocin D: $[\alpha]_D = +20$; c = 0.097, CHCl₃; ¹H-NMR (300 MHz, CDCl₃): 0.86 (t, J = 6.4 Hz, 3H, H-34), 1.21-1.69 (m, 42 H, H-4-14, 25-27, 29-33, H'-17, 18, 21, 22), 1.38 (d, J = 6.8 Hz, 3 H, H-37), 1.91-2.01 (m, 4 H, H''-17, 18, 21, 22), 2.24 (tt, J = 7.9/1.5 Hz, 2 H, H-3), 3.33-3.42 (m, 2 H, H-15, 24), 3.55-3.60 (m, 1 H, H-28), 3.78-3.89 (m, 4 H, H-16, 19, 20, 23), 4.97 (qq, J = 6.8/1.5 Hz, 1 H, H-36), 6.96 (q, J = 1.5 Hz, 1 H, H-35); ¹³C-NMR (75 MHz, CDCl₃): 14.08 (C-34), 19.22 (C-37), 21.73 (C-26), 22.62 (C-33), 25.17 (C-3), 25.64, 25.65, 27.40, 28.37, 28.93, 28.96, 29.2-29.7 signal overlap, 29.72, 31.84 (C-4 to C-13, C-17, C-18, C-21, C-22, C-30 to C-32), 33.26, 33.45 (C-14, C-25), 37.32, 37.54 (C-27, C-29), 71.80 (C-28), 73.92, 74.10 (C-15, C-24), 77.4 (C-36), 81.76, 81.83 (C-19, C-20), 83.05, 83.20 (C-16, C-23), 134.36 (C-2), 148.82 (C-35), 173.88 (C-1); HRMS:(EI) cal.: 604.4703 (M*-H₂O), found: 604.4705.