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Summary: The asymmetric aldol reaction of tosylmethyl 
isocyanide and aldehydes in the presence of 1 mol 70 of 
chiral silver(1) catalysts gave optically active 5-alkyl-4- 
tosyl-2-oxazolines (up to 86% ee), which were converted 
to optically active a-alkyl-P-(N-methy1amino)ethanols by 
LiA1H4 reduction. 

Earlier, we reported' that the asymmetric aldol reaction 
of methyl a-isocyano carboxylates (CNCHRCOOMe) and 
aldehydes proceeded with high stereoselectivity (up to 97% 
ee) when catalyzed by gold(1) complexes with a chiral 
N,N,N',N'-tetraalkylethylenediamino-substituted bis(di- 
pheny1phosphino)ferrocene ligand (1). The complexes 
were also efficient catalysts for the asymmetric aldol re- 
actions of a-isocyano carboxamides (CNCH2CONR2)'avg,2 
and (isocyanomethy1)phosphonates (CNCH2PO(OR)2).1a*3 

Now we report that  the silver(1) analogues of such 
complexes are the chiral catalysts of choice for the ste- 
reoselective aldol reaction of tosylmethyl isocyanide 
(TosMIC) (2) and aldehydes. This reaction was also 
catalyzed by chiral gold(1) complexes, but the product 
trans-4-tosyl-2-oxazolines were formed with low stereose- 
lectivity (ca. 20% ee).4p5 The potentiality of the chiral 
silver(1) complexes as catalysts for the asymmetric aldol 
reaction was first revealed by NMR studies of the com- 
plexes in the presence of a-isocyan~acetate.'~~~~~ 

The reaction of TosMIC (2) with benzaldehyde (3a) was 
typical. To a solution of silver triflate (2.8 mg, 0.011 
mmol), ligand lb'a~C (7.4 mg, 0.010 mmol), and 2 (195 mg, 
1.00 mmol) in dry CH2Clz (5.0 mL) was added 3a (160 mg, 
1.5 mmol). The mixture was stirred under N2 at  25 "C for 
2 h. The catalyst was removed by passing the mixture 
through a bed of Florisil (17 mm X 30 mm, EtOAc), and 
MPLC purification (silica gel, CH2C12/EtOAc, 15:l) gave 
288 mg (96 TO) of trans-5-phenyl-4-(p-tolylsulfonyl)-2-ox- 
azolines (4a), [aImD +212O. An enantiomeric excess of 83% 
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E.; Hayashizaki, K.; Hayashi, T. Tetrahedron 1988,44,5253. (g) Itq Y.; 
Sawamura, M.; Hamashima, H.; Emura, T.; Hayashi, T. Tetrahedron 
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rahedron 1987,43,5073. 
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(7) Other isocyanides also underwent the silver-catalyzed aldol reac- 
tion with benzaldehyde with la as the chiral ligand. The parent iso- 
cyanide, enantiomeric excess, configuration, and reaction temperature 
were as follows: CNCH,COOMe, 13% ee, 4S,5R, 25 OC; CNCH2CONMe2, 
racemic, 25 OC; CNCH,PO(OPh),, 56% ee, 4R,5R, 40 "C. 

Scheme I 

AgOTf 1 mOl% , 1 
R+xSOzTOl-P 

RCHO + CNCH$QTd+ 
2 CH&, 25% 0-N 

3 
(4R ,5R)-4 

a: R = P h  H Me 

g: R =  t-Bu 
h: R = (E)-MeCH=CH 

Scheme I1 

(4R ,5R )-4 
a: R=Ph 

c: R = 3,4-(Me0)&H3 

e: R = M e  
1: R=i -P r  

h: R = (E)-MeCH=CH 

was found by HPLC analysis with a chiral stationary 
phase.g 

The results summarized in Table I were obtained under 
similar conditions. The silver catalyst was effective with 
substituted aromatic (3b-d), saturated aliphatic (3e-g), 
and u,P-unsaturated aldehydes (3h). The oxazolines shown 
in Table I had 4R,5R absolute configuration, the same as 
observed in the gold-catalyzed asymmetric aldol reactions. 
Changing the alkyl groups on the terminal nitrogen atom 
of the N,N,N',N'-tetraalkylethylenediamino substituents 
of ligands 1 hardly affected the rate of reaction and pro- 
duced only small changes in the enantiomeric excess of the 
products. The use of chiral ligand 5,  whose substituent 
is longer than that of 1 by one methylene unit, caused a 
dramatic decrease in the enantiomeric purity of oxazoline 
4a (to 44% ee), and also produced an inversion of con- 
figuration (4R,5R to 4S,5S). The same chain length effect 
was observed in the gold-catalyzed asymmetric aldol re- 
actions. With chiral ligands 6 and 7, which lack a terminal 

b: R = 4-MeOC6Hd 

d: R = 4-CICsH4 

g: R =  1 - b  

(8) The trans geometry was established by the value (6.0 Hz) of the 
coupling constant between the vicinal protons on the oxazoline ring. A 
small amount (tramcis = 1001) of cis isomer was detected by 'H NMR. 
The cis isomer displayed a vicinal (H4-H5) coupling constant of 10.1 Hz. 
Trans-4,5-disubstituted 2-oxazolines always display smaller vicinal cou- 
pling constants than do cis isomers. 

(9) To determine the enantiomeric excess, 50-rL aliquots of the re- 
action mixture were reduced with LiA1H4. Hydrolysis, filtration, and 
evaporation gave crude 8a (Scheme 11). The crude amino alcohol was 
dissolved in CHC1, (0.5 mL) and was treated with a-naphthyl isocyanate 
(2 rL) at room temperature for 5 min. The solution was then passed 
through a short column of silica gel and was eluted with EtOAc (2 mL). 
The eluant containing the enantiomeric N-(2-hydroxy-2-phenylethyl)-N- 
methyl-N'-(1-naphthy1)urea was analyzed by HPLC with a chiral sta- 
tionary phase (Sumitomo Chemical Co., Sumipax OA-2000; hexane/l,2- 
dichloroethane/EtOH, 15:51). 
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Tab le  I. Aldol Reaction of TosMIC (2) a n d  Aldehydes 3 Catalyzed by Ch i ra l  Si lver  Complexesa a n d  Reduct ion  of Oxazolines 
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4 wi th  L i th ium Aluminum Hydr ide  T o  P roduce  a-AlkyI-i3-(N-methylamino)ethanols 8 
4 8 

ratio [a]"D; deg yield! [ f f ly~?  deg 
3 1 time,b h trans:cis (4) yield,' 70 % eed (% eel) % (configuration) 

3a la 2 100: 1 92 77 (4R,5R)' 

3b la 2 1OO:l 96 74 (4R,5R)j 
l b  2 1OO:l 96 83 (4R,5R)' +212 (86) 90 -35.6k (R)  

-28.7 ( R )  l b  2 60: 1 95 77 (4R,5R)j +239 (79) 82 
3c la 2 1OO:l 91 80 (4R,5R)' +218 (77) 91 -15.8' ( R )  

l b  2 1OO:l 97 73 (4R,5R)' 
3d la 1 

l b  1 
3e la 2 

l b  2 
3f la 2 

l b  2 
3g la 7 

l b  7 
3h la 9 

l b  9 

1OO:l 
1OO:l 
> 20: 1 
> 20: 1 
100: 1 
1OO:l 
100: 1 
1OO:l 
30:l 
40: 1 

94 
94 
94 
93 
94 
91 
93 
97 
96 
95 

73 (4R,5R)' 
77 (4R,5R)' +200 (89) 89 -32.4 ( R )  
83 (4R,5R)' +300 (87) 71 -19.1m ( R )  
75 (4R,5R)I 
86 (4R,5R)' +341 (95) 68 -27.8 (R)  
79 (4R,5R)' 
80 (4R,5R)' +321 (86) 73 -37.7 ( R )  
85 (4R,5R)' 
85 (4R,5R)' +296 (88) 70 -2.3 (R)  
83 (4R,5R)' 

"The  reaction was performed in CH2C12 a t  25 "C; 23:catalyst = 1:1.5:0.01. bReaction time for the aldol reaction. cYield of product 
isolated by MPLC. Enantiomeric excess as determined by HPLC analysis of the enantiomeric a-naphthylurea derivatives of amino alco- 
hols 8. e c 1.0-1.1 (tetrahydrofuran). 'Enantiomeric excess of the isolated product. g Yield obtained after bulb-to-bulb distillation. c 
1.0-1.5 (ethanol), unless otherwise noted. ' Configuration determined by converting oxazoline 4 into a-alkyl-P-(N-methy1amino)ethanol 8 of 
known absolute configuration. 'Configuration assigned by similarity of optical rotations of 4 and 8. k T h e  reported specific rotation is [a]"D 
-40.7' (c 1.3, ethanol). See: Ito, Y.; Amino, Y.; Nakatsuka, M.; Saegusa, T. J .  Am. Chem. SOC. 1983,105, 1586. 'Specific rotation a t  28 OC. 
The  reported specific rotation for (S)-5c is [a]"D +23.48' (c 0.0921, ethanol). See: Brown, S. D.; Hodgkins, J. E.; Reinecke, M. G. J .  Org. 
Chem. 1972, 37, 773. "'Specific rotation a t  25 OC. The reported specific rotation for (S)-5e is [ff]"D +25.551° (c 10.794, ethanol). See: 
Koepke, S. R.; Kupper, R.; Michejda, C. J. J .  Org. Chem. 1979, 44,  2718. 

nitrogen atom, no oxazoline 4a was produced after 3 h at  
25 "C .  

(8a-h) in good to excellent yield by reduction with LiA1H4 
in THF a t  room temperature. 

The elucidation of the mechanistic differences between 
gold and silver catalysts in the asymmetric aldol reaction 
remains incomplete. 

H Me 

5: X = NMeCH2CH2CH2NMe2 aIf2 ;; 1 bJ#A;rH2CHpOH S u p p l e m e n t a r y  Material Available: Melting points and 'H 
NMR, '% NMR, and infrared spectra for tram-lb-e,g,h and 5f-h 
and  analytical d a t a  (or high-resolution mass spectra) for new 
compounds (2 pages). Ordering information is given on any 
current masthead page. 

The optically active oxazolines (4a-h) were converted 
to optically active a-alkyl-P-(N-methy1amino)ethanols 
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Summary: Pyran-4-ones 5-1 1 bearing hydroxyalkyl side 
chains underwent efficient photocyclization to bicyclic 
oxyallyl zwitterions, and subsequent intramolecular nu- 
cleophilic trapping gave bicyclic cyclopentenone ethers 
12-18 in good to excellent yield. 

Pioneering studies by Barltrop' and Pavlik2 have im- 
plicated bicyclic zwitterionic intermediates in the photo- 
rearrangement of pyran-4-ones to pyran-2-ones. The 
relative locations of substituents in starting materials vs 
products as well as the obvious analogy to the extensively 
studied cyclohexadienone ~ e r i e s ~ - ~  support the interme- 

(1) Barltrop, J. A.; Day, A. C.; Samuel, C. J. J. Am. Chem. SOC. 1979, 
101, 7521. 

(2) (a) Pavlik, J. W.; Kwong, J. Ibid. 1973,95,7914. (b) Pavlik, J. W.; 
Clennan, E. L. Ibtd.  1973,95, 1697. (c) Pavlik, J. W.; Pauliukonis, L. T. 
Tetrahedron Lett. 1976, 1939. 
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diacy of a transient species such as 1 (eq 1). Even more 
compelling is the formation of adducts such as 2 when 
photolysis is carried out in hydroxylic solvents. Beyond 
the intrinsic mechanistic interest of this transformation, 
we were struck by its potential synthetic utility (i.e., for- 
mation of functionalized cyclopentenones of defined 
stereochemistry from planar heterocyclic precursors, and 
a possibly general entry into systems displaying enoloni- 
um-type reactivity). 

(3) (a) Zimmerman, H. E.; Lynch, D. C. J. Am. Chem. SOC. 1985,107, 
7745 and references therein. (b) Zimmerman, H. E. Adv. Photochem. 
1963, 1,  183. 

(4) Schuster, D. I. Acc. Chem. Res. 1978, 1 2 ,  65. 
(5) (a) Schultz, A. G .  Pure Appl. Chem. 1988,60,981. (b) Schultz, A. 

G.; Plummer, M.; Taveras, A. G.; Kulling, R. K. J. Am. Chem. SOC. 1988, 
110, 5547. (c) Schultz, A. G.; Macielag, M.; Plummer, M. J. Org. Chem. 
1988, 53, 391. 
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