Received: September 20, 1975

BILDUNGSWEISEN DES METHYLTRIFLUORSULFURANS, METHYLSULFINYL-FLUORIDS UND METHYL (TRIFLUORMETHYL)DISULFANS

W. GOMBLER und R. BUDENZ

Fachbereich für Anorganische und Physikalische Chemie der Universität des Saarlandes, 66 Saarbrücken (Nest Germany)

To Professor George H. Cady on his 70th birthday

ZUSAMMENFASSUNG

Methyltrifluorsulfuran, CH_3SF_3 , entsteht bei der Umsetzung von Methylchlorsulfan-Dampf mit Silberfluorid und durch Reaktion von CF_3SF mit CH_3SCl oder CH_3SSCH_3 . Die äußerst hydrolyseempfindliche Verbindung reagiert schon mit Feuchtigkeitsspuren und mit Glasoberflächen zu Methylsulfinylfluorid. CH_3SF_3 konnte durch seine ¹⁹F- und ¹H-NMR-Spektren, CH_3SOF durch Codestillation und Massenspektren sowie ¹⁹F- und ¹H-NMR-spektroskopisch charakterisiert werden. Auch CF_3SCl setzt sich mit CH_3SSCH_3 zu CH_2SSCF_3 um, dessen NMR-Daten erstmals angegeben werden.

SUMMARY

Methyltrifluorosulfurane is formed when gaseous methylchlorosulfane reacts with silverfluoride and by reaction of CF_3SF with CH_3SCl or CH_3SSCH_3 . The compound is extremely sensitive to hydrolysis and reacts with traces of moisture and attacs glass yielding methylsulfinylfluoride. CH_3SF_3 could be characterised by ¹⁹F and ¹H NMR spectra, CH_3SOF by codistillation and ¹⁹F, ¹H NMR and mass spectra. CF_3SCl is also able to cleave CH_3SSCH_3 resulting in the formation of CH_3SSCF_2 . Previously unreported NMR data of CH_3SSCF_3 are given.

EINLEITUNG

Obwohl Perfluoralkyldi- und trifluorsulfurane, $(R_{f})_{2}SF_{2}$, $R_{f}SF_{3}$, inzwischen gut bekannte Verbindungen sind, ist nur sehr wenig über einfache aliphatische Sulfurane mit α-ständigen Wasserstoffatomen bekannt. Bisher wurde in der Literatur nur von einem einzigen Alkyltrifluorsulfuran (Alkylschwefeltrifluorid) berichtet, welches jedoch in α -Stellung noch ein Fluoratom enthält: CH3CH2CH2CHFSF3 [1]. Kürzlich konnten NMRspektroskopisch auch cyclische Dialkyldifluorsulfurane nachgewiesen werden [2]. Die von SHEPPARD [1] eingeführte Methode der oxidativen Fluorierung von Fluorbutyl- und Aryldisulfiden mittels AgF, zur Darstellung der entsprechenden Trifluorsulfurane führte bei einfachen aliphatischen Disulfiden nicht zum Erfolg. Cyclische Dialkyldifluorsulfurane sind durch Einwirkung von CF_OF auf die entsprechenden Dialkylsulfide dargestellt worden [2]. Durch Beschreiten neuer Synthesewege ist es uns nun gelungen, das einfachste Alkyltrifluorsulfuran, ${\rm CH}_3{\rm SF}_3,$ darzustellen und insbesondere NMR-spektroskopisch zu charakterisieren.

ERGEBNISSE UND DISKUSSION

1. Methyltrifluorsulfuran

Unsere Erfahrungen mit SF_2 und CF_3SF , die über die Zwischenstufen F_3SSF [3] bzw. $CF_3SF_2SCF_3$ [4] in SF_4 und FSSF bzw. CF_3SF_3 und CF_3SSCF_3 disproportionieren, haben uns veranlaßt, die Synthese von CH_3SF zu versuchen, um über dessen Disproportionierung CH_3SF_3 zu erhalten. Die auf drei verschiedenen Wegen versuchte Darstellung von CH_3SF gelang jedoch nicht. Vielmehr erhielten wir bei allen Versuchen unmittelbar CH_3SF_3 . Offensichtlich ist das von uns erwartete Primärprodukt CH_3SF hinsichtlich seiner Disproportionierungsprodukte sehr instabil (auch das dimere Zwischenprodukt konnte nicht wie im Falle von SF_2 und CF_3SF nachgewiesen werden) und zerfällt spontan nach der Gleichung

$$3 \text{ CH}_3\text{SF} \longrightarrow \text{CH}_3\text{SF}_3 + \text{CH}_3\text{SSCH}_3$$
 (1)

Methyltrifluorsulfuran konnte durch folgende Reaktionen dargestellt werden:

CH ₃ SCl + AgF	>	$CH_3SF_3 + CH_3SSCH_3$	(2)
CH ₃ SCl + CF ₃ SF		CH ₃ SF ₃ + CF ₃ SCl + CH ₃ SSCF ₃	(3)
$CH_3SSCH_3 + CF_3SF$	>	$CH_3SF_3 + CH_3SSCF_3$	(4)

Während CH_3SF_3 nach Gleichung (2) beim Durchleiten von CH_3SCl -Dampf durch eine auf 140°C erhitzte Säule aus grobkörnigem AgF entsteht, verlaufen die Reaktionen (3) und (4) bereits bei -50°C in den Gemischen der verflüssigten Ausgangsstoffe. Die Reaktionsprodukte ergeben im ¹⁹F-NMR-Spektrum zwei Multipletts mit den relativen Intensitäten 2 : 1 und den für axiale und äquatoriale Fluoratome charakteristischen chemischen Verschiebungen (Tab. 1 und Abb. 1). Das Protonenresonanzspektrum zeigt das zu erwartende Multiplett, welches durch Kopplung der Methylprotonen mit dem äquatorialen und den axialen Fluoratomen zustandekommt und Kopplungskonstanten aufweist, die auch im ¹⁹F-NMR-Spektrum beobachtet werden. Die NMR-Daten

Abb. 1. ¹⁹F- und ¹H-NMR-Spektrum von CH₃SF₃

stehen - wie auch im Falle von CF_3SF_3 - mit der Struktur einer trigonalen Bipyramide, welche die CH_3 -Gruppe in äquatorialer Position enthält, im Einklang [5]. Außer der großen Ähnlichkeit der ¹⁹F-NMR-Spektren von CF_3SF_3 und CH_3SF_3 zeigen beide Verbindungen die gleiche starke Temperaturabhängigkeit der δ_F -Werte insbesondere der axialen F-Atome (Tab. 1). Dieses ungewöhnliche Verhalten ist außerdem noch bei SF_4 und $CF_3(CF_3S)SF_2$ beobachtet worden [6]. TABELLE 1 MMR-Daten der Verbindungen RSF₃ und RSOF (R = CH_3 , CF_3) T(^OC) CH_3SF_3 CF_3SF_3 CH_3SOF CF_3SOF

		5 5	5 5	J	
 ۱	-100	-58,0	-45,8		
δ(F _a) {	- 50	-59,6	-49,1		
ũ [0	-60,1	-51,2		
δ(F _e) [-100	51,8	47,7	11,5	24,4
bzw. {	- 50	51,5	47,9	10,1	22,5
δ(F) {	0	51,0	47,8	8,9	20,8
τ(CH ₃)	- 50	6,71		7,38	
$J(F_a - F_e)$	- 50	72,0	62,7		5,1
J(Fa-H)	- 50	15,5			
J(F _e -H)	- 50	12,2		17,3	

2. Methylsulfinylfluorid

 $\rm CH_3SF_3$ enthaltende Proben zeigen meistens noch ein Quartett im $\rm ^{19}F\text{-}NMR\text{-}Spektrum}$ (δ_F = 10 ppm, J = 17,3 Hz) sowie ein Dublett mit gleicher Kopplungskonstante im ¹H-NMR-Spektrum. Beide Signale nehmen bei kurzzeitigem Erwärmen der Probe auf O^OC auf Kosten der Signale des CH₃SF₃ rasch zu. Dies läßt sich durch die große Hydrolyseempfindlichkeit des Methyltrifluorsulfurans erklären, das mit Spuren von Feuchtigkeit und mit Glasoberflächen zu CH2SOF reagiert. Alle Versuche, CH2SF2 aus den Reaktionsgemischen durch Codestillation [7] abzutrennen und nach dem Austritt aus der Codestillationsapparatur unmittelbar in ein Massenspektrometer einzulassen, um dessen Massenspektrum aufzunehmen, schlugen fehl. Es konnte jedoch im Codestillationsdiagramm eine neue Verbindung festgestellt werden, die massenspektrometrisch als Methylsulfinylfluorid, CH₃SOF, identifiziert wurde (Tab. 2) und deren Flüchtigkeit sich in die Reihe $CF_3SOF > CF_3SSCF_3 > CH_3SSCF_3 > CH_3SOF > CH_3SSCH_3$ einordnen läßt. Ebenso konnte SiF4 nachgewiesen werden.

70eV-Massenspektrum von CH_SOF

CH3SOF+	95	CHSF ⁺	10	SF ⁺	4	ca2s+	7
SOF	100	CH3SO+	11	so ⁺	43	CHS+	16
CH2SF ⁺	8	cso^+	5	сн _з s+	3	s ⁺	42

Die Zahlenwerte geben die relativen Häufigkeiten der Teilchen bezogen auf SOF $^+$ = 100 an.

Die Hydrolyseempfindlichkeit von CH_3SF_3 ist offensichtlich größer als die von CF_3SF_3 und SF_4 , denn letztere lassen sich unzersetzt durch dieselbe Codestillationsapparatur (U-Rohr aus Reinnickel mit einer Füllung von Ni-Spänen) transportieren. Bei der Umwandlung von CH_3SF_3 in CH_3SOF in der Codestillationsapparatur spielen außer Feuchtigkeitsspuren sicherlich auch geringe Mengen Metalloxid eine Rolle.

3. Methyl(trifluormethyl)disulfan

Die primären Schritte der Halogenaustauschreaktion (3) und der SS-Bindungsspaltung (4) lassen sich verstehen als elektrophile Reaktionen des stark positivierten Sulfenylschwefels von CF_3SF an den freien Elektronenpaaren des Schwefels von CH_3SCI und CH_3SSCH_3 , wie auch von CH_3SCI seinerseits elektrophile Reaktionen an freien Elektronenpaaren von weniger positivierten Schwefelatomen bekannt sind [8].

Ebenso wie CF_3SF vermag auch CF_3SC1 die SS-Bindung von CH_3SSCH_3 zu spalten:

 $CF_3SCI + CH_3SSCH_3 \longrightarrow CH_3SSCF_3 + CH_3SCI$ (5) Die NMR-spektroskopische Untersuchung der Reaktion ergab, daß eine Mischung von CF_3SCI und CH_3SSCH_3 im Molverhältnis 2 : 1 nach wenigen Minuten bei $-50^{\circ}C$ bereits weitgehend nach Gleichung (5) reagiert hatte. Nach kurzem Erwärmen der Probe auf Raumtemperatur war die Reaktion quantitativ abgelaufen. Durch Signalintegration wurde nachgewiesen, daß CH_3SSCF_3 und CH_3SCI im Verhältnis 1 : 1 entstanden waren. Interessant ist, daß sowohl das ¹⁹F- als auch das ¹H-NMR-Signal von CH_3SSCF_3 durch "long range"-Spinkopplung in ein Quartett (${}^5J(H-F) = 0, 6$ Hz) aufgespalten ist (vgl. Tab. 3). Eine F-H-Kopplung über 5 Bindungen in Disulfanen ist bisher noch nicht nachgewiesen worden.

Der Nachweis des obigen Reaktionsablaufes (5) stützt die Annahme der Entstehung von CH_3SF_3 über CH_3SF nach Gleichung (1) Auch der Befund, daß die Reaktion (2) CH_3SSCH_3 , (3) CF_3SCI und CH_3SSCF_3 und (4) CH_3SSCF_3 liefert, steht mit dieser Hypothese im Einklang. Alle diese Verbindungen wurden NNR- und massenspektroskopisch sowie durch Codestillation nachgewiesen. Das Massenspektrum von CH_3SSCF_3 zeigt qualitative übereinstimmung mit anderen Messungen [9] [10].

TABELLE 3

NMR-Daten von CH₃SSCF₃, CH₃SSCH₃, CH₃SCl und CF₃SCl bei 33^oC

	CH3SSCF3	CH3SSCH3	CH3SC1	CF3SC1
δ(F)	47,4			49,9
τ(Η)	7,46	7,65	7,17	
J(H-F)	0,6			

Chemische Verschiebungen in ppm bezogen auf CFCl₃ bzw. T45 intern, J in Hz.

EXPERIMENTELLES

Ausgangssubstanzen

 $\begin{array}{c} {\rm CH_3SCl \ wurde \ durch \ Umsetzung \ von \ CH_3SSCH_3 \ mit \ Chlor \ [11],} \\ {\rm CF_3SF \ durch \ Reaktion \ von \ CF_3SCl \ mit \ HgF_2 \ [4] \ und \ AgF \ aus } \\ {\rm Ag_2CO_3 \ und \ Fluorwasserstoffsäure \ [12] \ dargestellt. \ CH_3SSCH_3 \ stand \ als \ handelsübliche \ Chemikalie \ der \ Firma \ Schuchard, \\ {\rm München, \ B.R.D., \ CF_3SCl \ in \ einer \ Druckflasche \ aus \ rostfreiem \ Stahl \ mit \ 50 \ ml \ Inhalt \ zur \ Verfügung. } \end{array}$

Durchführung der Reaktionen

Die Reaktionen wurden in einer üblichen Hochvakuumapparatur aus Geräteglas durchgeführt. Für die Umsetzung von CH₃SCI-Dampf mit AgF wurde ein besonders für Gas/Festkörper-Reaktionen geeignetes Reaktionsgefäß verwendet, das bereits von SEEL et al. beschrieben worden ist [13]. Dieses enthielt etwa 100 g grobkörniges AgF, das durch 24-stündiges Ausheizen auf

250[°]C im Vakuum entwässert worden war. Eine Seite des Reaktionsgefäßes war über ein etwa 50 ml fassendes Kondensationsgefäß mit angeschmolzenem NMR-Röhrchen an die Hochvakuumapparatur angeschlossen, die andere Seite war mit einem Vorratsgefäß mit Schiffschem Hahn (Kel-F Fett) verbunden, das CH3SCl enthielt. Nach dem Evakuieren der Verbindungsleitungen und Öffnen der Vakuumhähne konnte der CH₂SC1-Dampf aus dem auf -20⁰C (Methanol/Trockeneis-Bad) gekühlten Vorratsgefäß in das auf 140°C (Silikonöl-Bad) erhitzte Reaktionsgefäß gelangen und das Reaktionsprodukt im Kondensationsgefäß mittels flüssigen Stickstoffs ausgefroren werden. Nach dem Umsatz von etwa 10 mMol CH_SCl wurde durch Schließen des Vorratsgefäßes die Reaktion unterbrochen, das Kondensationsgefäß mittels eines Kältebades auf -78°C erwärmt, so daß das geschmolzene Reaktionsprodukt in das NMR-Röhrchen floß und das Röhrchen nach dem nochmaligen Ausfrieren der Substanz abgeschmolzen.

Für die Reaktionen von CF₃SF mit CH₃SCl und CH₃SSCH₃ wurden jeweils beide Komponenten im Molverhältnis 1 : 1 in der Hochvakuumapparatur aus Vorratsgefäßen in ein NMR-Röhrchen kondensiert und dieses abgeschmolzen. Nach langsamem Erwärmen bis zur Verflüssigung der Ausgangsstoffe wurden diese durch Schütteln vermischt.

Geräte und Meßtechnik

Kernresonanzspektrometer: Perkin-Elmer-Gerät, Modell R10, 60 bzw. 56,45 MHz, ausgestattet mit einer Meßeinrichtung für variable Temperaturen, Probenröhrchen aus Geräteglas, Außen-Ø 4,5 mm. Zur genauen Vermessung der chemischen Verschiebungen wurden CFCl₃ und (CH₃)₄Si mit in die Probenröhrchen einkondensiert. Bei den NMR-spektroskopischen Untersuchungen wurden die Proben zunächst nur bis -50° C aufgewärmt. Es stellte sich heraus, daß die Reaktionen (3) und (4) bei dieser Temperatur bereits vollends abgelaufen waren.

<u>Codestillationsapparatur</u>: Eigenbau, Material Reinnickel. Nach den NMR-spektroskopischen Untersuchungen wurden die Probenröhrchen in einer Vakuumapparatur mit einer geeigneten Vorrichtung geöffnet und der Dampf der auf -50°C gekühlten Probe der angeschlossenen Codestillationsapparatur zugeführt (pro Versuch etwa 0,3 mMol).

<u>Massenspektrometer</u> Atlas CH4/UF. Ein Einlaßsystem des Gerätes war mit der Codestillationsapparatur verbunden. Die einzelnen, von Stickstoff unter Normaldruck transportierten Fraktionen konnten nach Austritt aus der Codestillationsapparatur unmittelbar in das Massenspektrometer gelangen und die Spektren mit Hilfe eines Lichtpunktschreibers innerhalb von etwa 4 Sekunden registriert werden.

DANK

Herrn Prof. Dr. F. Seel danken wir für die freundliche Förderung dieser Arbeit und für anregende Diskussionen.

LITERATUR

- 1 W.A. Sheppard, J. Amer. Chem. Soc., 84 (1962) 3058.
- 2 D.B. Denney, D.Z. Denney und Y.F. Hsu, J. Amer. Chem. Soc., 95 (1973) 4064.
- 3 F. Seel, R. Budenz und W. Gombler, Chem. Ber., <u>103</u> (1970) 1701.
- 4 F. Seel und W. Gombler, Angew. Chem., 81 (1969) 789.
- 5 E.L. Muetterties, W. Mahler, K.J. Packer und R. Schmutzler, Inorg. Chem., <u>3</u> (1964) 1298.
- 6 W. Gombler und F. Seel, J. Fluorine Chem., 4 (1974) 333.
- 7 Zu diesem Verfahren vgl.: H.G. Cady und D.P. Siegwarth, Anal. Chem., <u>31</u> (1959) 619.
- 8 C.R. Russ und I.B. Douglass, in A. Senning (Editor), Sulfur in Organic and Inorganic Chemistry, Vol. 1, Dekker, New York, 1971, S. 248.
- 9 R.W. Cullen, D.C. Frost und M.T. Pun, Inorg. Chem., <u>9</u> (1970) 1976.
- 10 N.R. Zack und J.M. Shreeve, J. Fluorine Chem., 5 (1975) 153
- 11 I.B. Douglass, J. Org. Chem., 4 (1959) 2004.
- 12 G. Brauer, Handbuch der präparativen anorganischen Chemie, Enke Verlag, Stuttgart 1960, S. 224.
- 13 F. Seel, K. Rudolph und R. Budenz, Z. anorg. allg. Chem., <u>341</u> (1965) 196.