(Na₂SO₄). Evaporation of the solvent left a pale yellow residue (110 mg). This was chromatographed on silica gel with etherpentane (1:1), giving first the cubane 6 (37 mg, 39%) and then the cuneane 7 (32 mg, 34%). 6: mp 112–113 °C; IR (KBr) ν 2991, 2982, 2938, 1695, 1415, 1383, 1093, 1041, 750, 569 cm⁻¹; ¹H NMR δ 4.34 (m, 4 H), 3.88 (m, 2 H), 2.79 ppm (s, 6 H); ¹³C NMR δ 162.5, 67.8, 54.8, 42.6, 27.5 ppm; *m/e* 188 (P⁺, 80), 162 (100). Anal. Calcd for C₁₁H₁₂N₂O: C, 70.19; H, 6.42; N, 14.88. Found: C, 70.11; H, 6.47; N, 14.72. 7: mp 78–79 °C; IR (KBr) ν 3043, 3011, 2923, 1699, 1684, 1427, 1377, 1087, 923, 809, 750, 574, 467 cm⁻¹; ¹H NMR δ 3.07 (m, 2 H), 2.77 (s, 6 H), 2.63 ppm (m, 4 H); ¹³c NMR δ 161.5 (s), 67.8 (s), 46.2 (d, J = 154 Hz), 3.16 (d, J = 180 Hz), 28.1 (q) ppm; *m/e* 188 (P⁺, 10), 162 (100). Anal. Calcd for C₁₁H₁₂N₂O: C, 70.19; H, 6.42; N, 14.88. Found: C, 70.08; H, 6.31; N, 14.75.

3,5-Dinitro-3,5-diazahexacyclo[5.4.0.0^{2,6}.0^{2,10}.0^{6,9}.0^{8,11}]undecan-4-one (8). 100% Nitric acid (315 mg, 5.00 mmol)¹⁴ was injected dropwise into a stirred solution of dry CH₂Cl₂ (3 mL) and acetic anhydride (510 mg, 5.00 mmol) at 0 °C under argon. After 30 min at 0 °C, the reaction mixture was allowed to warm to room temperature and then recooled to 0 °C. Powdered cubanourea 2 (65 mg, 0.41 mmol) solid was added all at once; stirring was continued at 0 °C for 2 h. Crushed ice was then added, and the mixture was extracted with CH₂Cl₂ (3 × 10 mL). The extract was washed with water, dried (Na₂SO₄), and evaporated under reduced pressure to give fine crystalline needles of 8 (83 mg, 82%): mp 210 °C dec, IR (KBr) ν 1802, 1573, 1310, 1160, 1140, 1015, 883, 729, 699 cm⁻¹; UV (CH₃CN) λ_{max} 279 nm (ϵ 5500); ¹H NMR δ 4.69 (m, 4 H), 4.19 ppm (m, 2 H); ¹³C NMR δ 141.2, 63.1, 54.9, 43.6 ppm. Anal. Calcd for C₉H₆N₄O₅: C, 43.21; H, 2.41; N, 22.39. Found: C, 43.,07; H, 2.27; N, 22.13.

Single-crystal X-ray diffraction analysis of 3,5-dinitro-3,5-diazahexacyclo[5.4.0.0^{2,6}.0^{2,10}.0^{6,9}.0^{8,11}]undecan-4-one: C₉H₆N₄O₅, FW = 250.2; monoclinic space group $P2_1/c$; a = 9.669(3), b = 5.972 (1), c = 16.584 (6) Å; $\beta = 91.12$ (3)°; vol. = 957.3 (5) Å³; Z = 4; $\rho_{calc} = 1.736$ g/cm³; λ (Mo K α) = 0.71073 Å; $\mu =$ 1.36 cm⁻¹; F(000) = 512, T = 295 K.

A clear colorless $0.10 \times 0.20 \times 0.45$ mm crystal, shaped like a rectangular prism, was used for data collection on an automated Nicolet R3m/V diffractometer with incident beam monochromator. Lattice parameters were determined from 30 centered reflections within $20 \le 2\theta \le 30^\circ$. The data collection range of *hkl* was: $0 \le h \le 10, -6 \le k \le 0, -17 \le l \le 17, (\sin(\theta)/\lambda)_{\text{max}} =$ 0.5384 Å $^{-1}\!\!$. Three standards were monitored every 60 reflections and exhibited a maximum random variation of 2.0% during data collection. A total of 1562 reflections were measured in the $\theta/2\theta$ mode with a variable 2θ scan rate, ranging from 10.0 to 31.2 deg/min. There were 1262 unique reflections, and 1121 were observed with $F_o > 3\sigma(F_o)$. The structure was solved by direct methods with the aid of program SHELXTL.¹⁷ The full-matrix least-squares refinement varied 188 parameters: atom coordinates, anisotropic thermal parameters for all non-H atoms, and isotropic thermal parameters for the hydrogens. Final residuals were R= 0.034 and R_w = 0.041 with final difference Fourier excursions of 0.17 and -0.23 e Å⁻³.

Acknowledgment. This work was supported by the Office of the Naval Research and the U.S. Army Research, Development and Engineering Center (via Geo-Centers, Inc.).

Registry No. 1, 129103-49-7; 2, 129103-50-0; 5, 129103-52-2; 6, 129103-53-3; 7, 129103-54-4; 8, 129103-55-5; cubane-1,2-dicarboxylic acid, 129103-51-1.

Supplementary Material Available: ¹³C NMR spectra of compounds 1 and 5; numbered ORTEP drawings of compounds 2 and 8; tables of atomic position parameters, Cartesian coordinates, bond distances, bond angles, torsion angles, and anisotropic thermal parameters for both X-ray structures (11 pages); tables of observed and calculated structure factors (12 pages). Ordering information is given on any current masthead page.

Photochemistry of Functionalized Diphosphiranes

Maryse Gouygou, Christine Tachon, and Max Koenig*

URA 454, Université Paul Sabatier, 31062 Toulouse Cedex, France

Antoine Dubourg

Faculté de Pharmacie, Avenue Charles Flahaut, 34060 Montpellier, France

Jean-Paul Declercq

Université Catholique de Louvain, 1, Place L. Pasteur, B-1348 Louvain-La-Neuve, Belgium

Joël Jaud and Guita Etemad-Moghadam

Laboratoire de Chimie de Coordination du CNRS, 205, Route de Narbonne, 31077 Toulouse Cedex, France

Received February 21, 1990

The structure of the functionalized *trans*-diphosphiranes 1a-e, obtained by reaction of halogenocarbenes with the *trans*-diphosphene is confirmed by X-ray diffraction. The photolysis of 1a-e lead to the functionalized *cis*and *trans*-1,3-diphosphapropenes 2a-e as major products, via the diphosphiranyl 7 and the diphosphapropenyl 8 radical intermediates. The latter are characterized by ESR spectroscopy using the spin-trap method. The trans configuration of 2a is also confirmed by X-ray diffraction. The mechanism of the ring-opening, involving P-P bond rupture, is discussed.

Whereas gem-dihalocyclopropanes are known to undergo thermally promoted skeletal rearrangements to 1,2-dihaloprop-2-ene derivatives¹ (Figure 1, reaction A), their photochemistry is different. For example, the irradiation of *gem*-dichloroarylcyclopropanes with UV light produces a dichlorocarbene (Figure 1, reaction B),² characteristic of reactions analogous to the photochemical fragmentation

^{(1) (}a) Duffey, D. C.; Minyard, J. P.; Rane, R. H. J. Org. Chem. 1966, 31, 3865-38. (b) Baird, M. S.; Lindsay, D. C.; Reese, C. B. J. Chem. Soc. C 1969, 1173-1178.

⁽²⁾ Jones, M., Jr.; Sachs, W. H.; Kulczycki, A., Jr.; Waller, F. J. J. Am. Chem. Soc. 1966, 88, 3167-3168.

Figure 1. (A) Thermal ring opening of *gem*-dihalocyclopropanes (X = Cl, Br). (B) Photochemical fragmentation of *gem*-dichlorocyclopropanes. (C) Photochemical ring opening and photoreduction of *gem*-dibromocyclopropanes.

Figure 2. Synthesis of functionalized diphosphiranes **1a**-**e** by reaction of halocarbenes with the *trans*-diphosphene.

of arylcyclopropanes to arenes and methylene.³ In contrast, the *gem*-dibromocyclopropanes are easily converted to the corresponding monobromocyclopropanes by a photoreduction process (Figure 1, reaction C).⁴

Diphosphiranes, the phosphorus analogues of cyclopropanes, provide unique opportunities for comparative studies. Previous work in our laboratory has focused on the study of the reactivity of these strained molecules.⁵ Their reactions with organoalkali metals,⁶ Lewis acids, and Brønsted acids,⁷ as well as heating,⁸ invariably lead to ring-opening products. Here, we report for the first time the photochemical reactions of functionalized diphosphiranes. This paper describes: (i) the X-ray crystal structure of precursor diphosphirane **1a**, (ii) the mechanisms for ring opening and/or fragmentation of these strained heterocycles under irradiation, (iii) ESR spectroscopic evidence of the reaction intermediates, and (iv) the X-ray crystal structure of functionalized 1,3-diphosphapropenes **2a**.

Results

The stereoselective cyclopropanation⁵ of *trans*-diphosphene with halogenocarbenes gave various symme-

(8) Gouygou, M.; Bellan, J.; Escudie, J.; Couret, C.; Dubourg, A.; Declercq, J. P.; Koenig, M. J. Chem. Soc., Chem. Commun. 1989, 593-595.

Figure 3. ORTEP diagram of the crystal structure of 1a selected bond lengths (pm) and angles (deg): $P(1)-P(1)^*$, 224.5 (2), P(1)-C(1) 186.3 (4), P(1)-C(2) 185.8 (4), C(1)-Cl(1) 176.6 (3); $P(1)^*-P(1)-C(1)$ 52.7 (2), $P(1)-C(1)-P(1)^*$ 74.3 (2), $P(1)^*-P(1)-C(2)$ 107.4 (1), C(1)-P(1)-C(2) 101.8 (1), $Cl(1)-C(1)-Cl(1)^*$ 110.6. Torsional angles (deg): $P(1)^*-P(1)-C(2)-C(7)$ 45.3, P(1)-C(2)-C(7)-C(6) 154.4. Dihedral angle between planes: $(P(1)P(1)^*C-(1)]_{-C(2)}C(2)C(3)C(4)C(5)C(6)C(7)$ 84.8°.

Figure 4. Photochemical products obtained by irradiation of diphosphiranes 1a-e.

Table I.	³¹ P NMR Parameters	s of the	Trans	and	Cis
Fund	ctionalized 1,3-Diphos	phapro	penes	2а-е	

	$\begin{array}{c} X_{1} \\ Ar_{1} \\ P \\ P \\ X_{2} \\ Trans \end{array}$			$\begin{array}{c} X_{1} \\ 1 \\ P \\ P \\ P \\ Ar \\ Cis \end{array}$			
	$\delta_{P(1)}$	$\delta_{P(3)}$	$J_{\rm PP},{\rm Hz}$	$\delta_{P(1)}$	$\delta_{P(3)}$	$J_{\rm PP},{\rm Hz}$	
2a	276	75	106	288	83	45	
2b	272	84	161	302	81	66	
2c	273	84	143	281	76	53	
2 d	293	75	109	1	not detected		
2e	278	80	162	304	71	71	

trical and unsymmetrical functionalized diphosphiranes **1a–e** (Figure 2).

The X-ray structure of diphosphirane 1a is presented in Figure 3. This chiral molecule in a trans configuration has a 2-fold crystallographic axis.

The irradiation at 300 nm of diphosphiranes **1a–e** (ca. 25 °C, 2–4 h) in degassed solutions of hexane or toluene gave largely 1,3-diphosphapropenes, **2**. Dehydrohalogenated 1.3-diphosphapropenes, **3**, phosphaalkenes, **4**, and

^{(3) (}a) Griffin, G. W. Angew. Chem., Int. Ed. Engl. 1971, 10, 537-547.
(b) Hixson, S. S. Organic Photochemistry; Padwa, A., Ed.; Dekker: New York, 1979; Vol. 4, pp 191-260.
(c) Hixson, S. S.; Franke, L. A. J. Org. Chem. 1988, 53, 2706-2711.
(d) Hixson, S. S.; Franke, L. A.; Gere, J. A.; Xing, Y. J. Am. Chem. Soc. 1988, 110, 3601-3610.

⁽⁴⁾ Shimizu, N.; Nishida, S. Chem. Lett. 1977, 839-842.

⁽⁵⁾ Etemad-Moghadam, G.; Bellan, J.; Tachon, C.; Koenig, M. Tetrahedron 1987, 43, 1793-1796.

^{(6) (}a) Gouygou, M.; Tachon, C.; Koenig, M.; Etemad-Moghadam, G. New J. Chem. 1989, 13, 315-317.
(b) Gouygou, M.; Tachon, C.; El Ouatib, R.; Ramarijaona, O.; Etemad-Moghadam, G.; Koenig, M. Tetrahedron Lett. 1989, 30, 177-178.

^{(7) (}a) Tachon, C. Thése de l'Université Paul Sabatier Toulouse, 1989.
(b) Gouygou, M.; Tachon, C.; Etemad-Moghadam, G.; Koenig, M. Tetrahedron Lett. 1989, 30, 7411-7414.

Figure 5. X-ray crystal structure of 2a. Important bond lengths (pm) and angles (deg): P(1)-C(2) 166.1, P(3)-C(2) 181.8, P-(a)-Cl(5) 189.0; P(3)-C(2)-P(1) 120.0, C(6)-P(1)-C(2) 104.7, C(18)-P(3)-C(2) 97.6. Torsional angles (deg): C(6)-P(1)-C(2)-Cl(4) 0.0, Cl(4)-C(2)-P(3)-Cl(5) 43.1, C(6)-P(1)-C(2)-P(3) -154.6, Cl(4)-C(2)-P(3)-C(18) 163.1.

phosphaindan, 5, were also identified as minor products (Figure 4).

The 1,3-diphosphapropenes 2 were obtained in the cis and trans configurations^{9,10} exhibiting different ³¹P NMR parameters (Table I). The ratio of cis/trans isomers is about 10/90 and only the trans isomers could be isolated (owing to the difference of the atomic numbers of X_1 substituents (C, Cl, Br) that changes E to Z, we have used cis and trans instead of the classical Z and E configurational nomenclature).

The trans configuration of the 1,3-diphosphapropene 2a obtained by photochemical reaction of 1a is confirmed by X-ray diffraction study (Figure 5).

The trans-1,3-diphosphapropenes 2a-c undergo simple methanolysis in the presence of triethylamine at room temperature to afford 1,3-diphosphapropenes 6a-c in 50-90% yields. The ³¹P NMR parameters for 6a-c support the configurational integrity of the trans isomer.

1,3-Diphosphapropenes 3a-c, obtained as byproducts, have been isolated and characterized as trans isomers. The phosphaalkenes, 4, have also been isolated and characterized. Compounds 4b and 4c are mixtures of Z and Eisomers. Due to its instability, compound 5 could only be

Figure 6. ESR spectra of spin-trap addition (PBN) to the diphosphirane 1b (a), and the 1,3-diphosphapropene 2b (b), according to the general reaction:

characterized by ³¹P NMR spectroscopy of the reaction mixture (δ ³¹P = -79, J_{PH} = 172 Hz).

The diphosphiranyl, 7, and 1,3-diphosphapropenyl, 8, radical intermediates were detected and characterized by ESR, using spin-trapping methods (Figures 6, 7).

Discussion

Generally, the experimental and theoretical approach of the electrocyclic reactions are well described in the chemistry of cyclopropanes,¹¹ but there are only few electrocyclic reactions in "heteroelementary chemistry" and in particular organophosphorus chemistry.¹² The functionalized diphosphiranes possess a skeletal disymmetry and serve as an appropriate model for a comparative study.

The intracyclic P-P and P-C bond lengths of diphosphirane 1a are longer than those of the unfunctionalized homologue, diphosphamethylenecyclopropane.¹³ This lengthening is probably a consequence of the presence of bulky substituents on phosphorus atoms. Indeed, with the

^{(9) (}a) Appel, R.; Barth, V. Angew. Chem., Int. Ed. Engl. 1979, 18, 469-470. (b) Appel, R.; Barth, V.; Halstenberg, M.; Huttner, G.; von Seyer, J. Angew. Chem., Int. Ed. Engl. 1979, 18, 872-873. (c) Appel, R.; Barth, V.; Knoll, F.; Ruppert, I. Angew. Chem., Int. Ed. Engl. 1979, 18, 873-874. (d) Appel, R.; Barth, V. Angew. Chem., Int. Ed. Engl. 1979, 18, 469-470. (e) Appel, R.; Barth, V.; Kunze, H.; Laubach, B.; Paulen, V.

<sup>Knoll, F. Phosphorus Chemistry, ACS Symposium Series; American Chemical Society: Washington, DC, 1981, p 171.
(10) (a) Karsch, H. H.; Köhler, F. H.; Resacher, H. V. Tetrahedron Lett. 1984, 25, 3687-3690. (b) Karsch, H. H.; Resacher, H. V.; Müller, G. Angew. Chem., Int. Ed. Engl. 1986, 25, 454-455. (c) Karsch, H. H.; Pacacher, H. V.; Müller, Sudar L. U. Sharkara, S. 1988, 25, 202 202 (d) Ibid 1989 26</sup> Resacher, H. V. Phosphorus Sulfur 1988, 35, 203-206. (d) Ibid. 1988, 36, 69 - 72.

^{(11) (}a) Hoffmann, R.; Woodward, R. B. J. Am. Chem. Soc. 1965, 87, 395-397. (b) Hoffmann, R.; Woodward, R. B. Acc. Chem. Res. 1968, 1, 17 - 22.

 ^{(12) (}a) Niecke, E.; Leuer, M.; Wildbredt, D. A.; Schoeller, W. W. J.
 Chem. Soc., Chem. Commun. 1983, 1171-1172. (b) Schoeller, W. W.;
 Niemann, J. J. Am. Chem. Soc. 1986, 108, 22-26. (c) Hoa Tran Huy, N.; Mathey, F.; Ricard, L. Tetrahedron Lett. 1988, 29, 4289-4290.
 (13) Baudler, M.; Saykowski, F.; Hintze, M.; Tebbe, K. F.; Heinlein,

T.; Vissers, A.; Feher, M. Chem. Ber. 1984, 117, 1542-1550.

Figure 7. Mechanism of the ring-opening reaction of diphosphiranes

thiadiphosphirane¹⁴ which has the same substituents on phosphorus, the P-P bond length is identical with 1a.

Addition of carbene on diphosphene leads to a lengthening of the P-P bond but also induces a slight modification of the $(P_1P_1C_2)$ angle (107° instead of 104°). This fact, confirmed by ab initio calculations¹⁵ about cyclopropanation reaction, is consistent with a perpendicular approach of the carbone to the $C_2P_1P_1C_2^*$ plane.

Since the bond enthalpy values are different ($\Delta H_{\rm P-P}$ = 53 kcal mol⁻¹ and $\Delta H_{P-C} = 63$ kcal mol⁻¹),¹⁶ the homolytic rupture of the C-X bond under irradiation induces a weakening of the cycle and leads to the ring opening by the preferential P-P bond rupture.

The ³¹P NMR spectra of the 1,3-diphosphapropenes 2a-e, 3a-c, 6a-c are characterized by chemical shifts at low fields for dicoordinated phosphorus atoms (230-303.5 ppm) whereas the tricoordinated phosphorus atoms have a chemical shift at $\sim 6-124$ ppm.

These 1,3-diphosphapropenes show in each case an AX spin system with a coupling constant ${}^{2}J_{PCP}$ varying between 106 (2a) and 162 Hz (2e). In the same way, we observe a decrease of the ${}^{2}J_{PCP}$ coupling constants for the 1,3-diphosphapropenes with an electron-withdrawing substituent on the carbon atom (2b-2a: $\Delta J = 60$ Hz).

The configuration around the P=C double bond was determined using the empirical rule developed by Fluck.¹⁷ When the tricoordinated phosphorus atom is syn to the lone pair of the dicoordinated phosphorus atom around the P=C double bond (trans), ${}^{2}J_{PCP}$ is larger than that of the tricoordinated phosphorus atom in the anti position (cis).

The ${}^{2}J_{PCP}$ values in 3 are 50–150 Hz larger than those in 2. The ${}^{2}J_{PCP}$ values for 1,3-diphosphapropenes also increase with temperature. So, for compounds 2 and 6, we observe a variation of ${}^{2}J_{PP}$ by 10 and 32 Hz, respectively.

The trans configuration of 1,3-diphosphapropene 2a has been confirmed by crystal structure analysis. Figure 5 indicates that **2a** has a π symmetry plane containing C(26), C(21), C(18), Cl(5), Cl(4), C(2), P(1), C(6), C(9), and C(14) whereas the tricoordinated phosphorus atom P(3) occupies two statistically equivalent positions with respect to this plane: the distance P(3)- π is 67 pm. The two Ar substituents are nearly orthogonal to this symmetry plane (93.3° and 82.9°, respectively, for the substituents directly bonded to P(2) and P(3)). The bond lengths $d_{P=C}$ equal to 167 pm and d_{P-C} in the range 181.0–190.8 pm are in good agreement with the published structure of 1,3-diphosphapropenes.¹⁸ However, the conformation of **2a** is different from the conformation of the similar 1,3-diphosphapropenes obtained by thermal ring opening of unsymmetrical diphosphiranes:⁸ in particular 2a has a gauche conformation in which the tricoordinated phosphorus P(3)lone pair is approximatively orthogonal to the π plane.

Mechanism. (a) Formation of 1,3-Diphosphapropenes 2 and 3. Contrary to 1-chlorocyclopropyl radical observed only at low temperature,¹⁹ we could not detect nor identify short-lived free radicals in the temperature range -90 to 30 °C, when the compound 1b in toluene is irradiated in situ in the ESR cavity. So, we have employed the spin-trapping technique using α -phenyl tert-butyl nitrone (PBN), which reacts with the free radical, giving rise to a relatively stable ESR-observable "spin adduct".²⁰ In toluene, the photolysis of PBN did not produce significant concentration of nitroxide radicals. When the diphosphirane 1b was irradiated (ca. 25 °C, toluene) in the presence of PBN, we detected the persistent radical consistent with nitrogen and β -hydrogen hyperfine coupling of α -substituted-benzyl tert-butyl nitroxide, 7-PBN (a_N = 13.90 G, $a_{\rm H}$ = 1.75 G, g = 2.0044) (Figures 6a and 7). Furthermore, we observe the presence of a more complex ESR spectrum whose radical intensity increases with time. This spectrum consists principally of a 1:1:1 triplet due to splitting by hydrogen and phosphorus coupling. The structure of the nitrosyl was believed to be the "spin adduct" 8-**PBN** ($a_{\rm N} = 14.6 \text{ G}, a_{\rm H} = 2.27 \text{ G}, a_{\rm P} = 17.6 \text{ G},$ g = 2.0088). 8-PBN is actually produced under irradiation, after addition of 1,3-diphosphapropene 2b to the latter solution (Figures 6b and 7). Contrary to the results of Janzen,²¹ under our conditions, chlorine atoms are not

⁽¹⁴⁾ Yoshifuji, M.; Ando, K.; Shibayama, K.; Inamoto, N.; Hirotsu, K.; Higuchi, T. Angew. Chem., Int. Ed. Engl. 1983, 22, 418-419.

 ⁽¹⁵⁾ Pfister-Guillouzo, G., personal communication.
 (16) Purcell, K. F.; Kotz, J. C. In *Inorganic Chemistry*; W. B. Saunders

⁽¹⁶⁾ Purceil, K. F.; Kotz, J. C. in *Inorganic Chemistry*, W. D. Sanders, Co.: Philadelphia, 1977; p 329.
(17) Fluck, E.; Heckmann, G. In *Phosphorus-31 NMR Spectroscopy* in Stereochemical Analysis; Verkade, J. G., Quin, L. D., Eds.; VCH Publishers: New York, 1987; pp 61–88.

^{(18) (}a) Appel, R.; Fölling, P.; Kriger, L.; Siray, M.; Knoch, F. Angew. Chem., Int. Ed. Engl. 1984, 23, 970–971. (b) Appel, R.; Kochta, J.; Knoch, F. Chem. Ber. 1987, 120, 131–134. (c) Appel, R.; Fölling, P.; Josten, B.; Schuhn, W.; Wenzel, H. V.; Knoch, F. Z. Anorg. Allg. Chem. 1988, 556, 7 - 22

⁽¹⁹⁾ Deycard, S.; Hughes, L.; Lustzyk, J.; Ingold, K. U. J. Am. Chem. Soc. 1987, 109, 4954-4960.

<sup>Soc. 1387, 109, 4954-4960.
(20) (a) Howard, J. A.; Tait, J. C. Can. J. Chem. 1978, 56, 176-178. (b) Janzen, E. G.; Nutter, D. E., Jr.; Davis, E. R.; Blackburn, B. J.; Poyer, J. L.; Mc Cay, P. B. Can. J. Chem. 1978, 56, 2237-2242. (c) Livant, P.; Dudley, R. L. Can. J. Chem. 1980, 58, 197-199.
(21) (a) Jansen, E. G.; Knauer, B. R.; Williams, L. T.; Harrison, W. B. J. Phys. Chem. 1970, 74, 3025-3027. (b) Jansen, E. G. Acc. Chem. Res.
(21-40, O. Partor, W. A.; Courindon, C. K. L. Car. Chem. Res.</sup>

^{1971, 4, 31-40. (}c) Pryor, W. A.; Govindan, C. K. J. Org. Chem. 1981, 46, 4679-4682.

Figure 8. The formation of the phosphaikene 4 and the phosphaindan 5 occurs only starting from 1.

trapped by PBN ($a_N = 12.10$ G, $a_H = 0.75$ G, $a_{Cl} = 4.88$, 6.05 G). From this result, we can conclude that the mechanism of the ring opening of diphosphirane is the consequence of the homolytic rupture of the C–X bond leading to the diphosphiranyl radical 7. This unstable radical, after the preferential P–P bond rupture, gives the 1,3-diphosphapropenyl radical 8. The unsaturated radical 8 undergoes two competitive reactions: (i) an equilibration arising from reversible attack due to the coming back of the halogen radical on the phosphorus atom, leading to 1,3-diphosphapropene, 2, and (ii) a dehydrohalogenation supported by a classical radical rearrangement of *tert*-butyl group affording to 1,3-diphosphapropene, 3.²²

The anionic ring opening reactions of diphosphiranes lead to the *trans*-1,3-diphosphapropenes only.⁶ The ring opening of the diphosphiranyl radical gives a mixture of cis and trans isomers 2. These two isomers arise neither from the previous cis \rightleftharpoons trans isomerization of the diphosphiranes $1a-e^{23}$ nor from a 2 cis \rightleftharpoons 2 trans equilibrium (under the same conditions, the irradiation of 2 trans did not afforded 2 cis), but presumably they are the consequence of the nonselectivity of the ring-opening process.

(b) Formation of Phosphaalkenes, 4. The presence of phosphaalkenes, 4 and phosphaindan, 5, as byproducts arises from a fragmentation reaction analogous to the photochemical fragmentation of arylcyclopropanes,³ cyclotrigermanes,²⁴ or cyclotrisilanes.²⁵ This fragmentation, which is the consequence of the rupture of P–P and P–C bonds, generates an unstable phosphinidene. The latter, stabilized by oxidative addition, leads to the phosphaindan 5.^{22b,26} This reaction, related to cheletropic reactions,²⁷ is the "reverse" reaction of the synthesis of diphosphirane. Indeed, under the same reaction conditions, we have checked that the irradiation of 1,3-diphosphapropenes, 2, does not lead to phosphaalkenes, 4, and phosphaindan, 5 (Figure 8).

Conclusion

Owing to the leaving groups on the intracyclic carbon atom and to the presence of bulky substituents on the phosphorus atoms, the functionalized diphosphiranes **1a**-e are convenient models for the study of the P-P bond rupture.

Under irradiation, the electrocyclic ring opening is the main reaction whereas the fragmentation is the side reaction (cheletropic reaction). Thus, these diphosphiranes are good precursors for original functionalized 1,3-diphosphapropenes. Furthermore, we have never observed photoreduction reactions. The difference of the photochemical behavior of diphosphiranes 1a-e and gem-dihalocyclopropanes is presumably the consequence of the stability and reactivity of their respective cyclic radicals (diphosphiranyl and cyclopropyl).

To the best of our knowledge, in the field of the threemembered ring chemistry, these reactions are the first example of electrocyclic reactions involving P–P bonds.

Experimental Section

General Details. Usual chemical reagents were purchased from Aldrich or Fluka. All solvents were reagent grade and were purified by standard procedures before use. For TLC separation, Merck precoated preparative TLC plates (silica gel 60, 2 mm) and Merck precoated analytic TLC plates (silica gel 60, 0.2 mm) were used throughout this work. The yields of the products, described in the Experimental Section, were determined after crystallization and/or chromatography. The cis-2 isomers were not isolated, and the relative yields were determined by ³¹P NMR analysis compared to the trans isomers. The NMR spectra (¹H, ³¹P, ¹³C) were recorded on a Bruker AM-300-WB, 250 WM, or AC 80 NMR spectrometer. UV-visible spectra were measured on a Cary 2300 or a Beckman S 260 spectrophotometer. Mass spectra were obtained on a Varian 311A (Field Desorption, FD). ESR spectra were obtained on a Bruker ER 200 spectrometer. Melting points were determinated on a Kofler apparatus and are uncorrected. The purity of all title compounds was judged to be higher than 90% by $^{13}\!\mathrm{C}$ and $^1\!\mathrm{H}$ NMR spectral determinations (See the supplementary material).

Irradiation Procedures. The functionalized diphosphiranes **1a–e** are prepared according to the procedure described.⁵ The measured UV absorption of the diphosphiranes 1 in hexane are λ (ϵ , mol⁻¹ L cm⁻¹): **1a**, 284 nm (10 200); **1b**, 283 nm (8800); **1c**, 270 nm (8923); **1d**, 300 nm (7110). Irradiation of solutions of diphosphiranes in degassed solvents was carried out using as light source a Rayonet photochemical reactor, at 300 nm at room temperature.

Crystal data for 1a: $C_{37}Cl_2P_2H_{58}$; M = 635.729; monoclinic space group C2/c with a = 19.509 (9) Å, $\beta = 102.6$ (2)°, V = 3755 Å³, $D_c = 1.124$ g cm⁻³, Z = 4; Mo K α radiation ($\lambda = 0.71073$), μ (Mo K α) = 2.774 cm⁻¹.

The structure was solved by the direct method and refined using 2295 reflections > $3\sigma(I)$ on the 3281 independent reflections measured at -50 °C on a CAD 4-Enraf Nonius diffractometer. All the calculations were performed on a Vax-730 Digital computer, using SDP (Structure Determination Package of Enraf Nonius). In spite of the small value of the absorption coefficient, an empirical correction of absorption was performed as the Lorentz polarization contribution.

Only the half molecule was refined because of the presence of a crystallographic 2-fold direct axis. The hydrogen atoms were only introduced in the calculation, but not refined, all the other atoms were anisotropically refined. The *R* values are $R_1 = 0.062$, $R_2 = 0.060$ for 186 variables.

Compound 2a. A solution of **1a** (200 mg, 0.32 mmol) in degassed toluene (4 mL) was irradiated at 300 nm for 5 h. The reaction mixture was evaporated to dryness in vacuum. Pentane was added, and the suspension was filtered on Celite. Recrystallization from pentane afforded pure **2a**, as yellow crystals (100 mg, 50%): mp 184 °C; ¹H NMR (80.13 MHz, C₆D₆) δ 1.27 (s, 9 H, *p*-*t*-Bu), 1.28 (s, 9 H, *p*-*t*-Bu), 1.38 (s, 9 H, *o*-*t*-Bu), 1.48 (s, 9 H, *o*-*t*-Bu), 1.70 (s, 18 H, *o*-*t*-Bu), 7.53 (m, 4 H, Ar); ¹³C NMR (62.86 MHz, C₆D₆) δ 171.6 (dd, ¹*J*_{CP1} = 98.5 Hz, ¹*J*_{CP3} = 88.0 Hz, C₂), 161.2 (d, ²*J*_{CP3} = 17.5 Hz, C₁₉), 155.1 (d, ²*J*_{CP3} = 5.0 Hz, C₁₉), 155.0 (s, C₇), 154.0 (s, C₇), 151.3 (s, C₉ and C₂₁), 136.2 (d, ¹*J*_{CP1} = 66.0 Hz, C₆), 133.0 (dd, ¹*J*_{CP3} = 77.0 Hz, ³*J*_{CP1} = 11.0 Hz, C₁₈), 123.7 (d, ³*J*_{CP3} = 7.0 Hz, C₂₂ and C_{22*}), 38.7 (s, C₁₄ and C₂₆), 35.5 (s, C₁₀), 35.4 (s, C_{10*}), 34.8 (d, ⁴*J*_{CP3} = 8.0 Hz, C₂₃₋₂₅ and C_{23*-25*}), 33.4 (d, ⁴*J*_{CP1} = 7.0 Hz, C₁₁₋₁₃), 33.3 (s, C_{11*-13*}), 31.7 (s, C₁₅₋₁₇), 31.6 (s, C₂₇₋₂₉); ³¹P NMR (32.44 MHz, C₆D₆) δ 275.5 (P₁), 74.5 (P₃), ²*J*_{CP2} = 106 Hz; MS (C₃₇H₅₈P₂Cl₂) *m/e* 635 (M⁺, ³⁵Cl).

Crystal Data for 2a. A crystal of approximate size $0.2 \times 0.2 \times 0.2 \times 0.2 \text{ mm}$ was mounted on a Syntex P2₁ diffractometer. X-ray diffraction measurements were performed at room temperature with graphite monochromated Mo K α radiation (0.71069 Å).

^{(22) (}a) Baceiredo, A.; Bertrand, G.; Mazerolles, P.; Majoral, J. P. J. Chem. Soc., Chem. Commun. 1981, 1197-1198. (b) Cowley, A. H.; Kilduff, J. E.; Norman, N. C.; Pakulski, M. J. Chem. Soc., Dalton Trans. 1986, 1801-1808.

⁽²³⁾ Bellan, J.; Etemad-Moghadam, G.; Payard, M.; Koenig, M. Tetrahedron Lett. 1986, 27, 1145-1146.

⁽²⁴⁾ Tsumuraya, T.; Sato, S.; Ando, W. Organometallics 1988, 7, 2015-2019.

⁽²⁵⁾ Murakami, S.; Collins, S.; Masamune, S. Tetrahedron Lett. 1984, 25, 2131–2134.

⁽²⁶⁾ Yoshifuji, M.; Sato, T.; Inamoto, N. Chem. Lett. 1988, 1735–1738.
(27) Woodward, R. B.; Hoffmann, R. Angew. Chem., Int. Ed. Engl. 1969, 8, 781–860.

Lattice parameters refined using 15 reflections in the range 4 < $2\theta < 16^{\circ}$: a = 11.745 (5) Å, b = 16.255 (9) Å, c = 10.032 (6) Å, $\beta = 97.87$ (4)°, v = 1897 (2) Å³. Monoclinic system, C_m space group $C_{37}H_{58}P_2Cl_2$, M = 635.7 g, Z = 2, $D_{calc} = 1.11$ g cm⁻³; μ (Mo K α) = 0.28 mm⁻¹.

Intensities were measured by the $\omega - 2\theta$ scan method. No absorption correction was applied to the data. Standard reflection (0,4,0) checked every 50 reflections indicated a total loss in intensity of 8% and a linear decay correction was applied. A total of 3734 reflections was collected of which 2032 were unique (R_{inf} = 0.038) and 1096 with $I \ge 2.5\sigma(I)$ were used for structure determination. F(000) = 678; $2\theta_{max} = 52^\circ$; $0 \le h \le 14$; $-19 \le k \le$ 19 and $-11 \le l \le 7$.

Considering the initial ambiguity of the space group C and Z value, the structure was solved by direct methods using SHELX-86 in the P_1 group. For that purpose, the lattice parameters were modified as a' = b' = 10.027 Å, c' = 10.032 Å, $\alpha' = \beta' = 94.6^{\circ}$ and $\gamma' = 108.3^{\circ}$. Indexes were transformed by the matrix:

 $\frac{1}{2} - \frac{1}{2} 0$ $\frac{1}{2} - \frac{1}{2} 0$ 0 - 0 1

Atomic parameters were refined in this group P_1 with the SHELX-76 program to a value of R = 0.13. A mirror plane clearly appeared in the molecule showing that C_m is the correct space group with the following atoms in the mirror plane: P(1), C(2), Cl(4), Cl(5), C(6), C(9), C(14), C(18), C(21), and C(26).

The refinement was completed in the monoclinic space group, and a local disorder was detected concerning the atoms P(3), C(15), C(16), C(17), C(27), C(28), and C(29). For them, the mirror is only a pseudoplane of symmetry.

All hydrogen atoms were located in theoretical position (1.08 Å from carbon). Refinements were performed using least-squares methods with F scattering factors as given in the International Tables for X-ray Crystallography. Observed structure factors were weighted by the scheme: $w = 1/[\sigma^2(F) + 0.00023F^2]$. Final values obtained: R = 0.063; $R_w = 0.053$; $(\Delta/\sigma)_{max} < 1$, S (goodness of fit) = 1.61, and $-0.3 < \Delta\rho < +0.3$ e Å⁻³.

Compound 2b. A solution of 1b (135 mg, 0.2 mmol) in degassed hexane (3 mL) was irradiated at 300 nm for 4 h at room temperature. The pale yellow solution became more intense.

The compound **2b** was obtained as yellow crystals by recrystallization in hexane at -20 °C (75 mg, 55%): mp 208 °C; ¹H NMR (80.13 MHz, C₆D₆) δ 1.19 (s, 9 H, *p*-t-Bu), 1.26 (s, 9 H, *p*-t-Bu), 1.35 (s, 18 H, *o*-t-Bu), 1.76 (s, 18 H, *o*-t-Bu), 6.80 (m, 5 H, phenyl), 7.4 (d, ⁴J_{HP} = 2.9 Hz, 2 H, Ar), 7.6 (d, ⁴J_{HP} = 2.9 Hz, 2 H, Ar); ¹³C NMR (75.43 MHz, C₆D₆) δ 190.3 (dd, ¹J_{CP1} = 82.0 Hz, ¹J_{CP3} = 76.0 Hz, C₂), 158.5, 156.0, 154.5, 153.9 (4 s, C₇, C₇, C₁₉, and C_{19*}), 150.0 (s, C₉ and C₂₁), 140.5 (d, ³J_{CP3} = 13.0 Hz, C₃₀), 137.1 (d, ¹J_{CP1} = 75.0 Hz, C₆), 133.5 (dd, ¹J_{CP3} = 79.0 Hz, ³J_{CP1} = 14.0 Hz, C₁₈), 127.0 (s, C₃₁ and C_{31*}), 126.2 (s, C₃₂ and C_{32*}), 123.4, 123.0, 122.9, 122.7 (4 s, C₈, C_{8*}, C₂₀, and C_{20*}), 122.5 (s, C₃₃), 39.7 (d, ³J_{CP3} = 5.0 Hz, C₁₀ and C_{10*}), 38.4 (d, ³J_{CP3} = 7.0 Hz, C₂₂ and C_{22*}), 34.5 (s, C₂₃₋₂₅ and C_{23*-25*}), 34.4 (s, C₁₁₋₁₃), 34.1 (s, C_{11*-13*}), 33.8 (s, C₁₄), 33.1 (s, C₂₆), 31.5 (s, C₁₅₋₁₇), 31.4 (s, C₂₇₋₂₉); ³¹P NMR (32.44 MHz, C₆D₆) δ 275.2 (P₁), 84.2 (P₃), ²J_{PP} = 163 Hz; MS (C₄₃H₆₃P₂Cl) *m*/*e* 678 (M⁺ + 1, ³⁵Cl).

Compound 2c. The same procedure as described for **2a** was used. Starting from **1c** (200 mg, 0.326 mmol), **2c** was obtained as yellow crystals by recrystallization from pentane (100 mg, 50%): mp 179–180 °C; ¹H NMR (300.13 MHz, C₆D₆) δ 1.28 (s, 9 H, *p*-*t*-Bu), 1.30 (s, 9 H, *p*-*t*-Bu), 1.35 (s, 9 H, *o*-*t*-Bu), 1.45 (s, 9 H, *o*-*t*-Bu), 1.7 (dd, ³J_{HP1} = 13.3 Hz, ³J_{HP3} = 7.5 Hz, Me), 1.73 (s, 18 H, *o*-*t*-Bu), 7.48 (m, 2 H, Ar), 7.56 (d, 2 H, ⁴J_{HP} = 2.5 Hz, Ar); ¹³C NMR (62.86 MHz, C₆D₆) δ 186.8 (dd, ¹J_{CP1} = 77.0 Hz, ¹J_{CP3} = 71.5 Hz, C₂), 161.3, 155.2 (2 br s, C₁₉ and C₁₉), 154.2, 154.0 (2 s, C₇ and C₇), 150.5 (s, C₉ and C₂₁), 138.9 (d, ¹J_{CP1} = 73.5 Hz, C₆), 135.2 (dd, ¹J_{CP3} = 79.0 Hz, ³J_{CP1} = 12.5 Hz, C₁₈), 123.3 (d, ³J_{CP3} = 5.0 Hz, C₂₂ and C_{22*}), 38.8 (s, C₁₄ and C₂₆), 35.5 (s, C₁₀), 35.4 (s, C_{10*}), 34.9 (d, ⁴J_{CP3} = 8.0 Hz, C₂₃₋₂₅ and C_{23*-25*}), 33.1 (s, C₁₁₋₁₃), 33.0 (s, C_{11*-13*}), 31.8 (s, C₁₅₋₁₇), 31.7 (s, C₂₇₋₂₉), 24.6 (dd, ²J_{CP1} = 27.5 Hz, ²J_{CP3} = 14 Hz, C₃₀); ³¹P NMR (121.49 MHz, C₆D₆) δ 272.5 (P₁), 84.0 (P₃), ²J_{PP} = 142 Hz, ³J_{P1H} = 13.3 Hz, ³J_{P3H} = 7.6 Hz; MS (C₃₈H₆₁P₂Cl) *m/e* 614 (M⁺, ³⁵Cl).

Compound 2d. A solution of **1d** (150 mg, 0.2 mmol) in degassed hexane (3 mL) was irradiated at 300 nm for 3 h. The reaction mixture was filtered on Celite, the solvent was removed, and **2d** was obtained as yellow oil (120 mg, 80%): ¹H NMR (80.13 MHz, C_6D_6) δ 1.27 (s, 9 H, *p*-*t*-Bu), 1.28 (s, 9 H, *p*-*t*-Bu), 1.37 (s, 9 H, *o*-*t*-Bu), 1.49 (s, 9 H, *o*-*t*-Bu), 1.72 (s, 18 H, *o*-*t*-Bu), 7.51 (m, 4 H, Ar); ¹³C NMR (75.43 MHz, C_6D_6) δ 162.1 (dd, ¹ J_{CP} = 104.0 Hz, ¹ J_{CP} = 99.0 Hz, C_2), 154.6 (s, C_7), 154.0 (s, C_7), 153.9 (s, C_{19}), 153.2 (s, C_{19}), 151.1 (s, C_9 and C_{21}), 139.9 (dd, ¹ J_{CP} = 68.0 Hz, ³ J_{CP} = 3.5 Hz, C_6), 132.9 (dd, ¹ J_{CP} = 85.5 Hz, ³ J_{CP} = 11.5 Hz, C_{10}), 123.2 (br s, C_{20} and C_{22^*}), 38.3 (s, C_{14} and C_{26}), 35.2 (broad s, C_{10} and C_{10^*}), 34.6 (d, ⁴ J_{CP} = 8.2 Hz, C_{23-25} and $C_{23^*-25^*}$), 33.3 (d, ⁴ J_{CP} = 7.6 Hz, $C_{17}-C_{13}$), 33.0 (d, ⁴ J_{CP} = 3.0 Hz, $C_{11^*}-C_{13^*}$), 31.4 (s, C_{15-17}), ³ J_{PP} = 109 Hz; MS ($C_{37}H_{58}P_2Br_2$) m/e 723 (M⁺, ⁷⁹Br).

Compounds 3a-c, obtained as byproducts from the recrystallization filtrate, were separated and purified on precoated plates (silica gel 60F 254).

Compound 3a: yellow crystals (40 mg, 21%); $R_f = 0.55$ (dichloromethane/hexane, 10/90, as eluent); mp 174–176 °C; ¹H NMR (300.13 MHz, C₆D₆) δ 1.19 (s, 3 H, Me), 1.26 (s, 18 H, *p*-t-Bu), 1.50 (s, 3 H, Me), 1.56 (s, 9 H, *o*-t-Bu), 1.57 (s, 9 H, *o*-t-Bu), 1.69 (s, 9 H, *o*-t-Bu), 2.27 (dd, H_A, ²J_{HAHB} = 14.4 Hz, ²J_{HAP3} = 28.2 Hz), 2.44 (dd, H_B, ²J_{HBHA} = 14.4 Hz, ²J_{HBP3} = 2.9 Hz), 7.20 (d, 2 H, ⁴J_{HP} = 1.7 Hz, Ar), 7.54 (m, 2 H, Ar); ¹³C NMR (75.43 MHz, C₆D₆) δ 176.7 (dd, ¹J_{CP} = 76.9 Hz, ³J_{CP} = 74.6 Hz, C₂), 159.6 (br s, C₁₉), 154.6 (s, C₇), 153.6 (br s, C₇), 153.5 (s, C₁₉), 153.0, 150.7 (s, C₉ and C₂₁), 136.5 (dd, ¹J_{CP} = 19.6 Hz, C₁₈), 122.8 (d, ³J_{CP} = 4.2 Hz, C₂₀), 122.5 (s, C₈ and C₈), 118.8 (s, C₂₀), 45.7 (d, J_{CP} = 5.5 Hz, C₂₂), 42.2 (t, J_{CP} = 11.7 Hz, C₂₃), 38.3 (d, J_{CP} = 8.2 Hz, C₂₂), 37.8 (s, C₁₄ and C₂₆), 35.0 (s, C₁₀), 34.4 (d, J_{CP} = 4.2 Hz, C₁₀), 33.7 (d, J_{CP} = 7.0 Hz, C₁₁₋₁₃), 33.3 (d, J_{CP} = 6.6 Hz, C_{11*-13*}), 33.0 (d, J_{CP} = 8.6 Hz, C₂₃₋₂₅), 31.5 (s, C₁₅₋₁₇), 31.4 (s, C₂₇₋₂₉), 22.7 (s, C_{24*}), 14.3 (s, C_{25*}); ³¹P NMR (121.49 MHz, C₆D₆) δ 284 (P₁), 19.75 (P₃), ²J_{PP} = 267.0 Hz, ²J_{HAP3} = 28.0 Hz, ²J_{HBP3} = 3.3 Hz; MS (C₃₇H₅₇P₂Cl) *m/e* 599 (M⁺, ³⁵Cl).

Compound 3b: yellow oil (13 mg, 10%); $R_f = 0.9$ (dichloromethane as eluent); ¹H NMR (300.13 MHz, C_6D_6) δ 1.27 (s, 9 H, *p*-*t*-Bu), 1.31, 1.34 (s, 2 Me), 1.36 (s, 9 H, *p*-*t*-Bu), 1.38 (s, 9 H, *o*-*t*-Bu), 1.47 (s, 9 H, *o*-*t*-Bu), 1.89 (s, 9 H, *o*-*t*-Bu), 6.80 (m, 5 H, phenyl), 7.19 (d, 2 H, ⁴J_{HP} = 1.75 Hz, Ar), 7.53 (m, 2 H, Ar); ¹³C NMR (75.43 MHz, C_6D_6) δ 187.4 (m, C_2), 158.6 (br s, C_{19+}), 155.3 (s, C_7), 154.6 (s, C_{7*}), 153.7 (d, $J_{CP} = 15.0$ Hz, C_{19}), 153.1, 149.9 (s, C_9 and C_{21}), 124.4 (d, $J_{CP1} = 15.0$ Hz, C_{30}), 137.5 (br s, C_6), 134.0 (br s, C_{18}), 126.3, 124.1 (s, C_{31} and C_{32}), 122.9 (d, ³ $J_{CP} = 6.0$ Hz, C_{20}), 122.3 (s, C_8 and C_{8*}), 121.5 (s, C_{33}), 119.3 (s, C_{20*}), 45.9 (d, ³ $J_{CP} = 6.8$ Hz, C_{22*}), 39.9 (t, $J_{CP} = 11.0$ Hz, C_{23*}), 38.6 (br s, C_{22}), 35.1 (s, C_{14} and C_{26}), 35.0 (d, ³ $J_{CP} = 3.7$ Hz, C_{10}), 34.3 (d, ³ $J_{CP} = 6.0$ Hz, C_{19*}), 34.0 (d, ⁴ $J_{CP} = 8$ Hz, C_{11-13} and $C_{11*-13*}$), 33.5 (d, ⁴ $J_{CP} = 9.0$ Hz, C_{23-25}), 31.9 (s, C_{15-17}), 31.3 (s, C_{27-29}), 23.0 (s, C_{24*}), 14.6 (s, C_{25*}); ³¹P NMR (121.49 MHz, C_6D_6) δ 267.6 (P₁), 17.4 (P₃), ² $J_{PP} = 207$ Hz; MS ($C_{43}H_{62}P_2$) m/e 640 (M⁺).

Compound 3c: white crystals (50 mg, 26%); mp 192–194 °C; $R_f = 0.20$ (dichloromethane/hexane, 10/90, as eluent); ¹H NMR (300.13 MHz, C₆D₆) δ 1.20 (s, 3 H, Me), 1.29 (s, 9 H, *p*-t-Bu), 1.30 (s, 9 H, *p*-t-Bu), 1.32 (dd, ³J_{HP1} = 14.7 Hz, ³J_{HP3} = 9.8 Hz, Me), 1.38 (s, 3 H, Me), 1.55 (s, 18 H, *o*-t-Bu), 1.65 (s, 9 H, *o*-t-Bu), 2.18 (dd, ²J_{HBH4} = 14.3 Hz, ²J_{HBP3} = 2.5 Hz, H_B), 2.34 (dd, ²J_{HAHB} = 14.3 Hz, ²J_{HAP3} = 26.3 Hz, H_A), 7.19 (d, 2 H, ⁴J_{HP} = 1.75 Hz, Ar), 7.53 (m, 2 H, Ar); ¹³C NMR (75.43 MHz, C₆D₆) δ 189.6 (dd, ¹J_{CP} = 57.1 Hz, ³J_{CP} = 48.6 Hz, C₂), 159.2 (br s, C_{19*}), 154.5 (s, C₇), 153.6 (s, C_{7*}), 153.2 (d, J_{CP} = 15.0 Hz, C₁₉), 152.3, 149.8 (s, C₉ and C₂₁), 139.5 (dd, ¹J_{CP} = 71.8 Hz, ³J_{CP} = 30.0 Hz, C₆), 133.0 (dd, ¹J_{CP} = 24.3 Hz, ³J_{CP} = 22.6 Hz, C₁₈), 122.7 (d, ³J_{CP} = 4.7 Hz, C₂₂), 42.2 (t, J_{CP} = 11.6 Hz, C_{23*}), 38.3 (d, ³J_{CP} = 4.7 Hz, C₂₂), 37.9 (s, C₁₄), 37.8 (s, C₂₆), 34.9 (d, ³J_{CP} = 3.7 Hz, C₁₀), 34.5 (d, ³J_{CP} = 3.8 Hz, C_{10*}), 33.5 (d, ⁴J_{CP} = 9.0 Hz, C₂₃₋₂₅), 31.55 (s, C₁₅₋₁₇), 31.46 (s, C₂₇₋₂₉), 22.8 (d, ³J_{CP} = 15.7 Hz, C₃₀), 22.7 (s, C_{24*}), 14.3 (s, C_{25*}); ³¹P NMR (121.49 MHz, C₆D₆) δ 279.4 (P₁), 7.7 (P₃), ²J_{PP} = 306 Hz, ³J_{P1H} = 15 Hz, ³J_{P3H} = 26 Hz; MS (C₃₈H₆₀P₂) *m/e* 578 (M⁺). The same procedure as described for **3a**-c was used to purify

The same procedure as described for $3\mathbf{a}-\mathbf{c}$ was used to purify the phosphaalkenes $4\mathbf{a}-\mathbf{c}$.

Compound 4a: yellow crystals (5 mg, 4%); $R_f = 0.90$ (dichloromethane/hexane, 10/90, as eluent); ¹H NMR (80.13 MHz, C_6D_6) δ 1.27 (s, 9 H, *p*-t-Bu), 1.49 (s, 9 H, *o*-t-Bu), 1.50 (s, 9 H, *o*-t-Bu), 7.54 (d, 2 H, ⁴J_{HP} = 1.6 Hz, Ar); ³¹P NMR (32.44 MHz, C_6D_6) δ 232.3; MS ($C_{19}H_{29}PCl_2$) m/e 358 (M⁺, ³⁵Cl) (see ref 28).

Compound 4b: yellow crystals (4 mg, 5%); $R_f = 0.5$ (dichloromethane as eluent); ¹H NMR (80.13 MHz, C_6D_6) δ 0.90 (s, 9 H, *p*-*t*-Bu), 1.23 (s, 18 H, *o*-*t*-Bu), 6.80 (m, 5 H, phenyl), 7.20 (m, 2 H, Ar); ¹³C NMR (75.43 MHz, C_6D_6) δ Z isomer 170.1 (d, ¹J_{CP} = 58.7 Hz, C₂), 154.4 (s, C₇ and C₇•), 150.36 (s, C₉), 141.9 (d, ²J_{CP} = 18.8 Hz, C₃₀), 135.7 (d, ¹J_{CP} = 58.0 Hz, C₆), 126.6 (s, C₃₁ and C₃₁•), 125.7 (s, C₃₂ and C₃₂•), 122.5 (s, C₈ and C₈•), 119.7 (s, C₃₃), 38.2 (s, C₁₀ and C₁₀•), 35.1 (s, C₁₄), 32.8 (d, ⁴J_{CP} = 6.8 Hz, C₁₁₋₁₃ and C₁₁•-13•), 31.5 (s, C₁₅₋₁₇); E isomer 167.6 (s, C₂), 155.08 (s, C₇ and C₇•), 151.22 (s, C₉), 130.4 (d, ¹J_{CP} = 54 Hz, C₆); ³¹P NMR (32.44 MHz, C₆D₆) δ 228.1 (Z isomer), 238.8 (E isomer); MS (C₂₅H₃₄PCl) m/e 401 (M⁺, ³⁵Cl).

Compound 4c: white oil (6 mg, 5%); $R_f = 0.75$ (dichloromethane/hexane, 10/90, as eluent); the NMR parameters were slightly different that the same product described by Appel and Coll:²⁷ ¹H NMR (80.13 MHz, C₆D₆) δ 1.34 (s, 27 H, *o*-*t*-Bu), 1.49 (s, 27 H, *o*-*t*-Bu and *p*-*t*-Bu), 1.80 (d, 3 H, ${}^{3}J_{PH} = 11.9$ Hz, Me of *E* isomer), 2.40 (d, 3 H, ${}^{3}J_{PH} = 23.3$ Hz, Me of *Z* isomer), 7.25 (d, 2 H, ${}^{4}J_{PH} = 1.1$ Hz, Ar), 7.40 (d, 2 H, ${}^{4}J_{PH} = 1.5$ Hz, Ar); ¹³C NMR (75.43 MHz, CDCl₃) δ 175.00 (d, ${}^{1}J_{CP} = 46.8$ Hz, C₂), 169.00 (d, ${}^{1}J_{CP} = 58.1$ Hz, C₂), 153.65 (d, ${}^{2}J_{CP} = 46.0$ Hz, 2 C₇), 150.70 (d, ${}^{2}J_{CP} = 26.4$ Hz, 2 C₇), 150.00 (s, 2 C₉), 135.45 (d, ${}^{1}J_{CP} = 51.3$ Hz, C₆), 135.20 (d, ${}^{1}J_{CP} = 55.8$ Hz, C₆), 121.87 (s, 2 C₈), 119.50 (s, 2 C_{8*}), 37.90 (d, ${}^{3}J_{CP} = 4.0$ Hz, 2 C₁₀), 35.00 (d, ${}^{3}J_{CP} = 3.5$ Hz, 2 C₁₁₋₁₃ and 2 C_{11*-13*}), 31.61 (s, C₁₄₋₁₇), 31.36 (s, C_{15*-17*}), 29.60 (d, {}^{2}J_{CP} = 19.5 Hz, C₆₀), δ 224.8 (q, ${}^{3}J_{PH} = 12.0$ Hz, *E* isomer, 50%), 225.3 (q, ${}^{3}J_{PH} = 23.0$ Hz, *Z* isomer, 50%); MS (C₂₀H₃₂PCl) *m/e* 338 (M⁺, 35 Cl).

Compound 6a. To a stirred solution of **2a** (70 mg, 0.11 mmol) in toluene (2 mL) were added methanol (3 mL) and triethylamine (0.5 mL). The mixture was heated at 40 °C for 72 h. The reaction led to a mixture of compounds **6a** (50%) and **3a** (50%).

6a was separated and purified on silica plate (dichloromethane/hexane, 20/80, as eluent): $R_f = 0.8$; white crystals (30 mg, 50%); ¹H NMR (80.13 MHz, C₆D₆) δ 1.28 (s, 9 H, *p*-*t*-Bu), 1.34 (s, 9 H, *p*-*t*-Bu), 1.46 (s, 9 H, *o*-*t*-Bu), 1.49 (s, 9 H, *o*-*t*-Bu), 1.74 (s, 18 H, *o*-*t*-Bu), 3.72 (d, 3 H, ³_{JHP3} = 14.3 Hz, MeO), 7.52 (m, 2 H, Ar), 7.6 (m, 2 H, Ar); ¹³C NMR (62.86 MHz, C₆D₆) δ 175.7 (dd, ¹_{JCP} = 92.0 Hz, ³_{JCP} = 65.5 Hz, C₂), 159.0 (br s, C₇), 158.0 (br s, C₇), 155.4 (s, C₁₉), 153.8 (s, C₁₉), 153.1 (s, C₉), 150.8 (s, C₂₁), 136.7 (dd, ¹_{JCP} = 68.0 Hz, C₆), 135.7 (dd, ¹_{JCP} = 45.8 Hz, ³_{JCP} = 10.0 Hz, C₁₈), 123.7 (br s, C₈ and C₈), 122.8 (s, C₂₀), 122.5 (s, C₂₀), 59.7 (d, *J*_{CP} = 31.1 Hz, C₃₄), 39.2 (br s, C₁₄ and C₂₆), 38.8 (d, *J*_{CP} = 7.5 Hz, C₁₀ and C₁₀), 35.5 (br s, C₂₂ and C_{22*}), 34.0 (br s, C₁₁₋₁₃ and C_{11*-13*}), 33.6 (d, *J*_{CP} = 6.4 Hz, C_{23*-25}), 33.1 (d, *J*_{CP} = 6.6 Hz, C_{23*-25*}), 31.8 (s, C₁₅ and C₁₇); ³¹P NMR (32.44 MHz, C₆D₆) δ 259.8

(28) Appel, R.; Casser, C.; Immenkeppel, M. Tetrahedron Lett. 1985, 26, 3551-3554.

(P₁), 115.1 (P₃), ${}^{2}J_{PP}$ = 85.0 Hz; MS (C₃₈H₆₁P₂OCl) m/e 631 (M⁺, ³⁵Cl).

Compound 6b. To a stirred solution of **2b** (70 mg, 0.1 mmol) in dry toluene (4 mL) were added triethylamine (120 μ L, 7 equiv) and methanol (3 mL). After 20 h at room temperature, the solvent was removed. **6b** was purified on silica plates (dichloromethane/hexane, 30/70): $R_{f} = 0.70$; yellow crystals (54 mg, 80%); ¹H NMR (80.13 MHz, C₆D₆) δ 1.24 (s, 9 H, *p*-*t*-Bu), 1.30 (br s, 18 H, *o*-*t*-Bu), 1.42 (s, 9 H, *p*-*t*-Bu), 1.55 (br s, 18 H, *o*-*t*-Bu), 3.50 (d, 3 H, $^{3}J_{HP3} = 14.0$ Hz, MeO), 6.80 (br s, 5 H, phenyl), 7.50 (m, 4 H, Ar); ¹³C NMR (75.43 MHz, C₆D₆) δ 194.0 (dd, $^{1}J_{CP3} = 50.0$ Hz, $^{1}J_{CP2} = 76.5$ Hz, C₂), 158.3 (d, $J_{CP} = 32.0$ Hz, C₇), 156.6 (br s, C₇₊), 156.0 (s, C₁₉), 154.4 (s, C_{19*}), 151.9 (s, C₉), 149.5 (s, C₂₁), 142.1 (t-like, $^{2}J_{CP} = 14.0$ Hz, C₃₀), 138.0 (d, $^{1}J_{CP} = 74.0$ Hz, C₁₈), 136.7 (dd, $^{1}J_{CP} = 52.0$ Hz, $^{3}J_{CP} = 14.0$ Hz, C₆), 126.9 (s, C₃₁ and C_{31*}), 125.4 (s, C₃₂ and C_{32*}), 124.4 (s, C₃₃), 122.7 (s, C₈ and C_{8*}), 122.4 (s, C₂₀ and C_{20*}), 59.0 (d, $J_{CP} = 30.2$ Hz, C₃₄), 39.1 (s, C₁₀ and C_{10*}), 38.5 (s, C₂₂), 38.2 (s, C_{22*}), 33.1 (s, C₁₁), 33.04 (s, C₂₈), 31.6 (s, C₁₅₋₁₇), 31.59 (s, C₂₇₋₂₉); ³¹P NMR (32.44 MHz, C₆D₆) δ 259.3 (P₁), 124.0 (P₃), $^{2}J_{PP} = 141.5$ Hz; MS (C₄₄H₆₆P₂O) *m/e* 672 (M⁺).

Compound 6c. To a stirred solution of 2c (100 mg, 0.136 mmol) in toluene (2 mL) were added methanol (3 mL) and triethylamine (0.5 mL). The mixture was stirred at room temperature for 72 h. The solvent was removed, and 6c was purified on silica plates (dichloromethane/hexane, 5/95, as eluent): $R_f = 0.55$; yellow crystals (90 mg, 90%); mp 205 °C; ¹H NMR (300.13 MHz, CDCl₃) δ 1.14 (dd, 3 H, ³J_{HP1} = 14.0 Hz, ³J_{HP3} = 8.4 Hz, Me), 1.25 (s, 9 H, *p*-*t*-Bu), 1.27 (s, 9 H, *p*-*t*-Bu), 1.30 (s, 9 H, *o*-*t*-Bu), 1.34 (s, 9 H, *o*-*t*-Bu), 1.41 (s, 9 H, *o*-*t*-Bu), 1.66 (s, 9 H, *o*-*t*-Bu), 3.86 (d, 3 H, ³J_{HP3} = 14.4 Hz, MeO), 7.30 (m, 4 H, Ar); ¹³C NMR (62.86 MHz, CDCl₃) δ 189.0 (dd, ¹J_{CP1} = 73.0 Hz, ¹J_{CP3} = 45.0 Hz, C₂), 157.6 (br s, C₇), 156.7 (br s, C₇), 154.3 (s, C₁₉), 153.4 (s, C_{19*}), 151.2 (s, C₉), 149.3 (s, C₂₁), 139.0 (dd, ¹J_{CP1} = 74.0 Hz, ³J_{CP3} = 3.0 Hz, C₆), 137.2 (dd, ¹J_{CP3} = 54.0 Hz, ³J_{CP1} = 13.0 Hz, C₁₈), 122.4 (s, C₂₀), 121.6 (s, C₈ and C_{8*}), 121.2 (d, ³J_{CP3} = 12.0 Hz, C_{20*}), 58.8 (d, ²J_{CP3} = 32 Hz, C₃₄), 38.84 (s, C₁₄), 38.83 (s, C₂₆), 38.2 (s, C₁₀), 38.1 (s, C_{10*}), 34.9 (s, C₂₂), 34.8 (s, C_{22*}), 33.1 (s, C₂₃₋₂₅), 32.7 (d, J_{CP1} = 7.5 Hz, C_{11*13}), 31.2 (s, C_{15*17}), 31.2 (s, C₂₇₋₂₉), 22.1 (dd, ²J_{CP1} = 15.0 Hz, ²J_{CP3} = 22.0 Hz, C₃₀); ³¹P NMR (121.49 MHz, C₆D₆) δ 258.3 (P₁), 123.1 (P₃), ²J_{PP} = 136 Hz, ³J_{P1H} = 13.7 Hz; MS (C₃₉H₆₄P₂O) *m/e* 610 (M⁺).

Acknowledgment. We would like to thank Dr. I. Tkatchenko (Laboratoire de Chimie de Coordination) for welcoming us in his laboratory, the CNRS (GRECO Basses Coordinences) for its financial support, G. Commenges, F. Lacassin, P. Servin for the NMR spectra, Mrs. S. Richelme for mass spectra, and A. Mari for the ESR spectroscopic measurements.

Supplementary Material Available: ¹H and/or ¹³C NMR spectra for compounds **2a-d**, **3a-c**, **4a-c**, and **6a-c**, and X-ray data for compounds **1a** and **2a** (34 pages). Ordering information is given on any current masthead page.