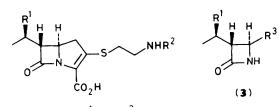
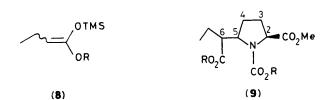
J. CHEM. SOC., CHEM. COMMUN., 1989

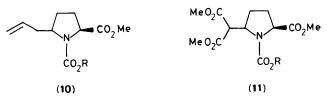
Enantioselective Synthesis of the Carbapenem Ring System from (S)-Proline


Shoichi Asada,^a Minoru Kato,^a Koji Asai,^a Takashi Ineyama,^a Seiichi Nishi,^a Kunisuke Izawa,^{*}^a and Tatsuya Shono^b

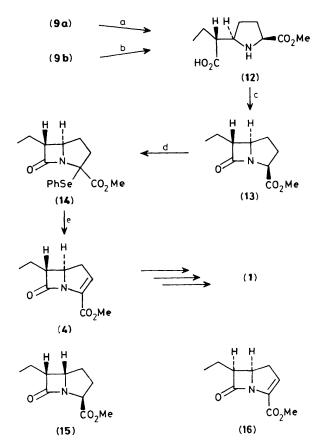
^a Central Research Laboratories, Ajinomoto Co. Inc., Suzukicho, Kawasaki, 210 Japan

^b Faculty of Engineering, Kyoto University, Yoshida, Sakyo, Kyoto, 606 Japan


Enantioselective synthesis of (+)-PS-5 via stereoselective alkylation of proline derivatives is described.


Carbapenems, a new class of β -lactam antibiotics, have been of considerable interest to many synthetic chemists during the past decade owing to their potency against a wide variety of pathogenic micro-organisms and low productivity in the process of fermentation.¹ Hundreds of studies have been reported in the quest for new synthetic approaches to carbapenems,² but in most reports, attention was focused on the stereospecific synthesis of 4-azetidinone derivatives (3) which were eventually transformed into a carbapenem ring system.³

(1): PS-5 $R^1 = H; R^2 = Ac$ (2): Thienamycine $R^1 = OH; R^2 = H$



Scheme 1. For (5)—(11) a; $R = CH_2Ph$, b; $R = Bu^t$.

We have planned a new synthetic route to carbapenems using (S)-proline as a chiral and inexpensive starting material. Here we describe an enantioselective synthesis of the carbapenem ring system (4), which is the precursor to (+)-PS-5.4

For this route to carbapenems, the first aim was to introduce a 1-carboxypropyl group to the 5-position of the proline ring with (5*R*)-configuration, because it is of great importance that β -lactams have the (5*R*)-configuration for them to be antimicrobial agents. We have thus examined the Lewis acidpromoted alkylation of the C-5-position of proline derivatives (6), using the C-2-methoxycarbonyl group as a convenient handle for stereoselection. Compound (6) was easily obtained from the proline derivative (5) by anodic oxidation.⁵

The results are summarized in Table 1. Though we have already found that cobalt catalysed amidocarbonylation of 5methoxy proline derivatives gives *trans*-pyrrolidine dicarboxylic acid derivatives,⁶ addition of nucleophiles to (**6**) with the aid of a Lewis acid proceeded with *cis*-selectivities.⁷ Addition

Scheme 2. Reagents: a, H_2 (4 atm.)—5% Pd/C, MeOH, room temp., 2 h (quant.); b, 4 M–HCl/dioxane, overnight (quant.); c, dicyclohexylcarbodiimide, MeCN, room temp., overnight (66%); d, lithium hexamethyldisilazide (2.5 equiv.), PhSeCl (3.0 equiv.), tetrahydrofuran (THF) (68%); e, *m*-chloroperbenzoic acid (2 equiv.), CH₂Cl₂, $-30 \,^{\circ}\text{C} \rightarrow$ room temp. (61%).

Table	1.	Addition	of	nucleophiles	to	(6).ª	
-------	----	----------	----	--------------	----	-------	--

Substrate	Nucleophile	Product	Yield (%)	5 <i>R/5S</i> ^b
(6a)	(8a)	(9a)	50	75/25
(6a)	Allyltrimethylsilane	(10a)	40	77/23
(6a)	Dimethyl malonate	(11a)	49	55/45
(6b)	(8b)	(9b)	55	77/23

^a Solvent: CH₂Cl₂, Lewis acid: TiCl₄, under Ar. ^b Determined by ¹H n.m.r. spectroscopy.

of ketene silyl acetal to (6) gave pyrrolidine derivatives (9) having a β -carboxy group with the 5*R*-configuration (50%,† diastereoisomeric excess 50%). A similar selectivity was obtained in the addition reaction of allyltrimethylsilane, although the reaction with dimethylmalonate was non-stereoselective.

Compound (9) was found to be a 1:1 mixture of stereoisomers with the opposite configuration at C-6. It was easy to separate all isomers by using reverse-phase preparative h.p.l.c. [H₂O-MeOH 30:70, YMC-octadecylsilane (ODS)]. These results enabled us to use a natural amino acid (S)-Pro as a starting material for the synthesis of carbapenems.

[†] All the yields are values after purification with medium pressure liquid chromatography (Lobar column Si60, E. Merck).

The (5R,6S)-isomer of (9) was deprotected and cyclized to the β -lactam (13). The stereochemistry of (13) was determined from the coupling constant (3.0 Hz) between H-5 and H-6, and from the higher chemical shift for H-3, δ 3.88, compared to that, δ 4.39, of the 3,5-*cis*-carbapenem (15), derived from the (2S,5S)-isomer of (9). Compound (13) was converted to the carbapenem (4)‡ *via* the selenide (14). The optical purity of (4) was determined to be >98% by h.p.l.c. on a chiral stationary phase.§ We were also able to synthesize the 5,6-*cis*-carbapenem (16)‡ (which can be converted to 6-*epi*-PS-5) starting from the (5R,6R)-isomer of (9). Compound (4) is able to be transformed into (+)-PS-5 (1) by the methods reported by Southgate *et al.*⁴ So, we have succeeded in the

(16): ¹H n.m.r. δ 1.01 (3H, t, 9-H), 1.61 (1H, m, 8-H), 1.83 (1H, m, 8-H), 2.76 (2H, m, 1-H), 3.53 (1H, ddd, J_{5-6} 6.0 Hz, 6-H), 3.84 (3H, s, OCH₃), 4.53 (1H, ddd, 5-H), 6.52 (1H, dd, 2-H); i.r. 1765 cm⁻¹ (N-C=O), 1720 cm⁻¹ (O-C=O).

§ The chromatogram showed two peaks with $R_t = 42.2$ and 47.4 min in 98.8:1.2 ratio assignable to the (5*R*)- and (5*S*)-isomers, respectively.

formal total synthesis of (+)-PS-5 starting from the readily available natural amino acid, (S)-proline.

We thank the management of Ajinomoto Co. Inc., particularly Mr. Kazuyuki Tahara, for invaluable encouragement and support.

Received, 25th July 1988; Com. 8/02996B

References

- 'Chemistry and Biology of β-Lactam Antibiotics,' eds. R. B. Morin and M. Gorman, vols. 1, 2, 3, Academic Press, New York.
- 2 T. Kametani, K. Fukumoto, and M. Ihara, *Heterocycles*, 1982, 17, 463; T. Nagahara and T. Kametani, *ibid.*, 1987, 25, 729.
- 3 For the first report of this method, see D. B. R. Johnston, S. M. Schmitt, F. A. Bouffoard, and B. G. Christensen, J. Am. Chem. Soc., 1978, 100, 313.
- 4 Sanraku Co. Inc., Jpn. Pat. 1985/208981; J. H. Bateson, R. I. Hickling, P. M. Roberts, T. C. Smale, and R. Southgate, J. Chem. Soc., Chem. Commun., 1980, 1084.
- 5 T. Shono, Y. Matsumura, and T. Tsubata, Org. Synth., 1984, 63, 206.
- 6 K. Izawa, S. Asada, and S. Nishi, 52nd Annual Meeting Chemical Society of Japan, Kyoto, 1986, 3W40.
- 7 Similar cis-selectivity was reported in the titanium tetrachloride promoted reaction of vinyl acetate with 5-methoxyproline derivative: T. Shono, Y. Matsumura, K. Tsubata, and K. Uchida, J. Org. Chem., 1986, 51, 2590.

^{‡ (4): &}lt;sup>1</sup>H n.m.r. (300 MHz, CDCl₃) δ 1.05 (3H, t, 9-H), 1.88 (2H, m, 8-H), 2.76 (1H, ddd, 1-H), 2.93 (1H, ddd, 1-H), 3.13 (1H, ddd, J_{5-6} 3.0 Hz, 6-H), 3.84 (3H, s, OCH₃), 4.00 (1H, ddd, 5-H), 6.46 (1H, dd, 2-H); i.r. 1770 cm⁻¹ (N-C=O), 1718 cm⁻¹ (O-C=O); *m/z* 195.0926 (calc. for C₁₀H₁₃NO₃, 195.0892).