Efficient Conversion of NO₂ into N₂ and O₂ in N₂ or into N₂O₅ in Air by 172-nm Xe₂ Excimer Lamp at Atmospheric Pressure

Masaharu Tsuji,^{*1,2,3} Masashi Kawahara,^{1,2,3} Makoto Senda,^{1,2,3} and Kenji Noda³

¹Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580

²CREST, JST, Kawaguchi 332-0012

³Department of Applied Science for Electronics and Materials, Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580

(Received December 19, 2006; CL-061482; E-mail: tsuji@cm.kyushu-u.ac.jp)

Decomposition of NO₂ (200 ppm) in N₂ or air by 172-nm Xe₂ excimer lamp was studied at 1 atm. The NO₂ conversion in N₂ was 99%, and the formation ratios of N₂, O₂, NO, and N₂O were 47, 98, 0, and 2%, respectively, after 30 min irradiation. The NO₂ in air (5–20% O₂) could be completely converted to N₂O₅ and HNO₃ due to reactions by O₃ and H₂O after only 1.0–1.5 min irradiation. The present results give a new simple photochemical aftertreatment technique of NO₂ in air without using any catalysts.

We have recently initiated development of a photochemical method as a new promising removal method of NOx at atmospheric pressure without using expensive catalysts.¹⁻⁴ An advantage of photochemical method is that more selective decomposition is possible than electric discharge method, where energetic electrons are main energy carrier. We have recently studied decomposition of NO₂ into N₂ by using 193-nm ArF excimer laser in N₂ at atmospheric pressure.² Although more than 80% of NO₂ (200 ppm) could be converted into N₂, O₂, and NO in N₂ at atmospheric pressure, it was difficult to decompose NO₂ in air because after photolysis of NO₂ into NO + O (1a), such backward reaction (1b) occurs significantly.

$$NO_2 + h\nu (193 \text{ nm}) \rightarrow NO + O$$
 (1a)

$$NO + O + M \rightarrow NO_2 + M (M = N_2, O_2)$$
 (1b)

When ArF excimer laser photolysis was applied to practical NOx removal process, there are a lot of severe problems. They are that excimer laser apparatus is expensive, running cost is high, and the apparatus is big and heavy including high power sources. In order to overcome these problems, we used here a low cost and compact ($\phi = 128$ mm, length = 330 mm) Xe₂ lamp as a new VUV right source. The absorption cross section of NO₂ (1.4×10^{-17} cm² molecule⁻¹) at 172 nm is 20 times larger than that (7.1×10^{-19} cm² molecule⁻¹) at 193 nm.⁵ Therefore, more efficient photolysis of NO₂ is expected at 172 nm. We have found for the first time that NO₂ could be efficiently removed not only in N₂ atmosphere but also in air (5–20% O₂) at a low NO₂ concentration of 200 ppm.

 NO_2 photolysis chamber used in this study was similar to that used for ArF laser photolysis¹ except for the VUV light source. Light from an unfocused 172-nm Xe₂ lamp (USHIO, UER20H172:50 mW/cm², 155–200 nm range) was used to decompose NO_2 at a room temperature. All experiments were carried out in a closed batch system. The total pressure was kept at atmospheric pressure, and the NO_2 concentration diluted in N_2 or N_2/O_2 mixtures was 200 ppm (v/v). After 0.1–30 min photoirradiation, products were analyzed by using HORIBA gas analysis system (FG-100) equipped with an FTIR spectrometer and ANELVA gas analysis system (M-200GA-DTS) equipped with a quadrupole mass spectrometer. We determined the residual amount of NO₂, [NO₂]/[NO₂]₀, and the formation ratios of N₂, O₂, and NO_x, defined as [N₂]/ [NO₂]₀, [O₂]/[NO₂]₀, and [NO_x]/[NO₂]₀, respectively, from gas analyses. Here, [NO₂]₀ is an initial concentration of NO₂. N₂ and O₂ cannot be detected by FTIR, because these diatomic molecules are inactive for IR light. If other NO_x and O₃ are produced in the photolysis, all of them can be detected. Thus, the formation ratios of N₂ and O₂ in N₂ were determined from N and O balance before and after photolysis.

When NO₂ was decomposed by a 172-nm excimer lamp for 20 min, the main absorption band of NO₂ at 1600 cm⁻¹ reduced its intensity, as shown in Figure S1 (Supporting Information).⁸ Figure 1 shows the dependence of NO₂ conversion and the formation ratios of N₂, O₂, NO, and N₂O on the irradiation time of lamp. After 30 min photoirradiation, the residual amount of NO₂ decreases to 1%, while the formation ratios of N₂ and O₂ increase to 47 and 98%, respectively. The formation ratio of NO initially increases to 9% until 2 min then gradually decreases to 0% in the 9–30 min range. The formation ratio of N₂O can be kept as low as 3% in the all time range. On the basis of these results, NO₂ can be efficiently decomposed to N₂ and O₂ keeping NO and N₂O emissions at low levels under 172 nm irradia-

Figure 1. Dependence of residual amount of NO_2 and the formation ratios of products on the irradiation time of 172-nm excimer lamp at a NO_2 concentration of 200 ppm in N_2 at a total pressure of 1 atm.

Figure 2. Dependence of residual amount of NO_2 and the formation ratios of products on the irradiation time of 172-nm excimer lamp at a NO_2 concentration of 200 ppm in air (5% O_2) at a total pressure of 1 atm.

tion, although it takes a long time to remove NO₂.

Since a small amount of O_2 (5–20%) is involved in N_2/O_2 mixtures in the practical combustion processes, removal technique of NO₂ must be developed in air. FTIR spectra observed before and after 172-nm photolysis of NO₂ were shown in Figure S2a–S2c.⁸ Before photolysis, strong NO₂ peak is observed. After 0.5 min photoirradiation, only a small decrease (about 10%) in NO₂ peak intensity was observed. After 1.5 min photoirradiation, the spectrum changed significantly: NO₂ peak disappeared and N₂O₅, HNO₃, and O₃ peaks are observed.

Figure 2 shows the dependence of NO₂ conversion and the formation ratios of N₂O₅ and HNO₃ and concentration of O₃ on the irradiation time of lamp. The residual amount of NO₂ slowly decreases to 85% in the 0–0.8-min range, suddenly drops to 3% in the 0.8–1.0-min range, and becomes zero at 1.5 min. At about 0.8 min, the formation of N₂O₅, HNO₃, and O₃ starts, and their formation ratios increase in the 0.8–1.0-min range. At 1.5 min, the formation ratios of N₂O₅ and HNO₃ are 38 and 32%, respectively. The concentration of O₃ rapidly increases from 0.8 to 1.5 min and becomes 714 ppm at 1.5 min. These results indicate that NO₂ can be more efficiently converted to N₂O₅ and HNO₃ in air in the presence of O₂.

The reaction mechanisms of NO₂ in N₂ and air are briefly discussed from known photochemical and chemical reactions.^{4–6} Rate constants shown below in parenthesis are given in cm³ molecule⁻¹ s⁻¹ units. NO₂ is efficiently decomposed to N₂ and O₂ under 172-nm light in N₂. Detailed photolysis process of NO₂ at 172 nm has not been known to be best of our knowledge. In a similar 172-nm photolysis of NO, fast decomposition of NO to N₂ and O₂ in N₂ and conversion to NO₂ in air were observed.⁷ Therefore, not only direct decomposition of NO₂ into N₂ and O₂ (1) but also multiple step decomposition via NO (2) probably takes part in the photolysis of NO₂ at 172 nm.

$$NO_2 + h\nu (172 \text{ nm}) \rightarrow N + O_2 \tag{1}$$

 $NO_2 + h\nu (172 \text{ nm}) \rightarrow NO + O({}^3P, {}^1D, {}^1S)$ (2a)

$$NO + h\nu (172 \text{ nm}) \rightarrow N + O$$
 (2b)

N and O atoms produced in (2b) will be finally converted to N_2 and O_2 via subsequent reactions in N_2 and air.¹⁻⁶ It seems that the latter process is more significant, because direct formation

of $N + O_2$ from NO_2 will be unfavorable channel.

In air, similar photolysis of NO₂ must occur until 0.8 min. The slower photolysis rate in the short range of 0–0.8 min can be attributed to absorption of 172-nm light by O₂ (4.6×10^{-19} cm² molecule⁻¹)⁵ and fast backward reaction of NO + O₃:

$$NO + O_3 \rightarrow NO_2 + O_2 (1.8 \times 10^{-14})$$
 (3)

Actually, the formation of O_3 by the following processes was observed from N_2/O_2 mixtures without addition of NO_2 after 172-nm irradiation (see Figure S3).⁸

$$O_2 + h\nu (172 \,\mathrm{nm}) \to O + O \tag{4a}$$

$$O + O_2 + N_2 \rightarrow O_3 + N_2 (5.6 \times 10^{-34} [N_2])$$
 (4b)

The absence of O_3 in the 0–0.8 min range can be attributed to its fast removal via process (3).

After 0.8 min photoirradiation, the concentration of O_3 exceeds the concentration of NO. Then, the following oxidation reactions of NO₂ leading to N₂O₅ (5) take place:

$$NO_2 + O_3 \rightarrow NO_3 + O_2 (3.5 \times 10^{-17})$$
 (5a)

$$NO_2 + NO_3 + N_2 \rightarrow N_2O_5 + N_2 (3.6 \times 10^{-30} [N_2])$$
 (5b)

In the photolysis chamber, there is a small amount of residual H_2O (\approx 90 ppm), as observed OH peaks from residual H_2O in FTIR spectra. N_2O_5 has a high reactivity with H_2O leading to HNO₃:

$$N_2O_5 + H_2O \rightarrow 2HNO_3 \ (2.5 \times 10^{-22})$$
 (6)

Thus, HNO_3 peaks arise from the result of reaction (6). Reaction (6) is an important reaction, because N_2O_5 can be easily removed as HNO_3 by the addition of H_2O .

The effects of O_2 concentration in N_2/O_2 mixtures were examined in the 5–20% range. With increasing the O_2 concentration from 5% to 10 and 20%, the formation of N_2O_5 starts at shorter time of 1 min.

In summary, NO₂ removal by 172-nm excimer lamp has been studied. It was found that NO₂ in air can efficiently be converted to N₂O₅ using O₃ generated from 172-nm photolysis of O₂. Since N₂O₅ can be easily converted to HNO₃ by the addition of H₂O, the present results are useful as a new simple and low cost photochemical aftertreatment technique of NO₂ in air without using any catalysts.

This work was partly supported by JST-CREST and Joint Project of Chemical Synthesis Core Research Institutions.

References and Notes

- 1 M. Tsuji, J. Kumagae, T. Tsuji, T. Hamagami, *J. Hazard. Mater.* 2004, 108, 189.
- 2 M. Tsuji, K. Noda, H. Sako, T. Hamagami, T. Tsuji, *Chem. Lett.* 2005, 34, 496.
- 3 M. Tsuji, H. Sako, K. Noda, M. Senda, T. Hamagami, T. Tsuji, *Chem. Lett.* 2005, 34, 812.
- 4 M. Tsuji, H. Sako, M. Senda, K. Noda, T. Hamagami, M. Kawahara, T. Tsuji, *Focus on Hazardous Materials Research*, Nova Science Publishers, New York, **2007**, Chap. 4, in press.
- 5 a) H. Okabe, *Photochemisty of Small Molecules*, John Wiley & Sons, New York, **1978**. b) K. Yoshino, W. H. Parkinson, K. Ito, T. Matsui, *J. Mol. Spectrosc.* **2005**, 229, 238.
- 6 IUPAC Gas Kinetic Data Evaluation, Summary Table of Kinetic Data, June 2006, http://www.iupac-kinetic.ch.cam.ac.uk.
- 7 M. Tsuji, M. Senda, M. Kawahara, to be published.
- 8 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/index.html.