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Ring-opening of Indoles: An Unconventional Route 
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ABSTRACT: An unusual transformation of indoles to pyrazoles via an aromatic ring-opening 

strategy has been developed. The salient feature of this strategy involves the C2-N1 bond 

opening and concomitant cyclization reaction of the C2=C3 bond of the indole moiety with the 

tosylhydrazone which proceeds under transition-metal and ligand free conditions. This ring-

opening functionalization of indoles provides a wide scope of differently substituted pyrazoles. 

 

The indole scaffold represents one of the most important structural subunits present in various 

pharmaceutically active and naturally occurring products. Conventional ways of indole 

functionalization follow nucleophilic and electrophilic reactions in which the indole scaffold 
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 2 

retains its aromaticity.
1-3

 Transition-metal catalyzed C-H functionalization of both the benzene 

and pyrrole rings of indole has also been widely studied and considered as one of the fascinating 

strategies for arene functionalization in modern chemistry.
4-7

 Ring-opening functionalization of 

indole is uncommon and more challenging. The aromaticity of indole restricts such ring-opening 

functionalization strategy. Recently, unconventional opening of C2-N1 bond of indoles was 

described (Scheme 1a).
8-11

 On the other hand, the usage of C2=C3 bond as electrophile for the 

in-situ cyclization reaction followed by ring-opening of indole is unknown. 

In our previous report, we described the regioselective synthesis of 1H-pyrazoles through the 

coupling reaction between the ambiphilic tosylhydrazones and alkenes or alkynes.
12

 Other 

references also describe that the aryl hydrazones are an important structural unit for the 

transformation of alkene or alkyne to pyrazoles.
13-24

 We and other research groups demonstrated 

that tosylhydrazone have tremendous application in synthetic organic chemistry, especially in 

cyclization reactions. However, its reactivity towards indole has not been greatly explored.
12, 25-26

 

Recent studies described that the reaction of tosylhydrazone with indole favors N-alkylation or 

N-vinylation of indole, rather than cyclization reactions with C2=C3 bond (Scheme 1b).
27-29

 We 

hypothesized that C2-N1 bond opening could be one of the driving forces for C2=C3 bond 

activation.  

It is well documented that the carbonyl and sulfonyl groups form stable adducts with Lewis 

acids.
30

 Hence, we judiciously introduced the carbonyl or sulfonyl containing directing groups 

like acyl, benzoyl and tosyl at the N1-position of indoles assuming that the complexation 

between Lewis acids and these directing groups would induce the C2-N1 bond opening (Scheme 

1c).
10, 29, 31-40

 Therefore, the decrease in electron density of the C2=C3 bond would lead to a 

cyclization reaction with tosylhydrazones leading to the formation of pyrazoles. They are known  

Page 2 of 28

ACS Paragon Plus Environment

ACS Combinatorial Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 3 

 

Scheme 1. C2-N1 bond opening and the reactivity of indole towards hydrazone 

 

 

to display a wide spectrum of biological activities including, anti-microbial, anti-fungal, anti-

tubercular, anti-inflammatory, anti-convulsant, anti-cancer, anti-viral, neuroprotective.
41-42

 The 
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 4 

pyrazole is a versatile synthetic intermediate and potent medicinal scaffold.
43-44

 The synthesis of 

pyrazoles still continues to attract considerable attention because of its applications in 

pharmaceutical and agrochemical industries. We reveal herein transition-metal and ligand free 

ring-opening functionalization and regioselective transformation of indole to 1H-pyrazoles. The 

product, 1H-pyrazole was obtained with moderate to excellent yield. The inhibitory activities of 

these synthesized compounds were performed against purified human immunosuppressive 

enzyme indoleamine 2,3-dioxygenase 1 (IDO1).  

Our initial investigations commenced with the aim of enhancing the electrophilicity of C2=C3 

bond of the indole moiety, so that the C2-N1 bond opening would become more facile leading to 

the annulation reaction with tosylhydrazone. For this purpose, we decided to study the reaction 

under mild acidic conditions using 1-acyl-1H-indole (1{1}) and tosylhydrazone (2{7}) as model 

substrates. To our delight, tosylhydrazone (2{7}) in the presence of BF3.OEt2 (catalytic amount) 

provided the regioisomeric 1H-pyrazole (3{1,7} under ambient temperature (Table 1, entry1). As 

expected, the model reaction in the absence of BF3.OEt2 failed to provide the desired product 

even at higher temperature (Table 1, entry 2). This model reaction was also performed at higher 

temperatures and with different equivalents of BF3.OEt2. Reaction at 50 °C with 0.3 equivalents 

of BF3.OEt2 provided the target product in higher yield (Table 1, entry 4). Other Lewis and 

Bronsted acids such as AlCl3, FeCl3, Zn(OTf)2, I2, AcOH, TsOH, TfOH and TFA were found to 

be ineffective (Table 1). Solvent screening was also carried out, but dichloroethane (DCE) 

remained the best solvent for successful formation of pyrazole from indole (Table 1). This ring-

opening reaction was unsuccessful under the basic reaction conditions. 

These optimized reaction conditions for the unusual indole ring-opening and cyclization 

reaction encouraged us to explore the scope and limitations of the synthesis of pyrazoles from 
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 5 

the corresponding indoles (Figure 1). We hypothesized that the transformation of an indole into a 

pyrazole strongly depends on the C2-N1 bond opening proficiency of the indoles. The electronic 

effects of the substituents could play an important role for the formation of desired pyrazoles. 

Reaction between 1-acyl-1H-indole and electron-neutral phenyl tosylhydrazone provided the 

targeted pyrazole with moderate yield (55%, Table 2, 3{1,1}). 

 

Table 1. Optimization of the reaction conditions for the synthesis of 1H-pyrazole (3{1,7})
a
 

 

 

Entry Acid / Base (equiv.) Solvent Time (h) Temperature 

(°C) 

Yield
b
 (%) 

1
c
 BF3.OEt2 (0.3) DCE 14 RT 55 

2
d
 - DCE 48 RT → 50 - 

3
c
 BF3.OEt2 (0.1) DCE 8 50 40 

4
c
 BF3.OEt2 (0.3) DCE 8 50 92 

5
c
 BF3.OEt2 (0.5) DCE 8 50 72 

6
c
 BF3.OEt2 (0.3) DCE 8 80 88 

7
d
 AlCl3 (0.3) DCE 14 50 - 

8
d
 FeCl3 (0.3) DCE 14 50 trace 

9
d
 Zn(OTf)2 (0.3) DCE 14 50 - 

10
d
 Iodine (0.3) DCE 14 50 - 

11
d
 AcOH (0.3) DCE 14 50 - 

12
d
 TsOH (0.3) DCE 14 50 - 
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 6 

13
d
 TfOH (0.3) DCE 14 50 - 

14
d
 TFA (0.3) DCE 14 50 - 

15
c
 BF3.OEt2 (0.3) CHCl3 14 50 55 

16
c
 BF3.OEt2 (0.3) CH2Cl2 14 50 60 

17
d
 BF3.OEt2 (0.3) DMF 14 80 - 

18
d
 BF3.OEt2 (0.3) DMSO 14 80 - 

19
d
 BF3.OEt2 (0.3) toluene 14 70 - 

20
d
 BF3.OEt2 (0.3) CH3CN 14 70 - 

21
d
 BF3.OEt2 (0.3) CH3OH 14 50 - 

22
c
 Et3N (0.3) DCE 14 50 N.D 

23
c
 Cs2CO3 (0.3) DCE 14 50 N.D 

a
All the reactions were performed using 0.1 mmol (1 equiv) of 1{1} and 0.11 mmol (1.1 equiv) 

of 2{7} under acidic conditions. 
b
Isolated yield of product (1H-pyrazole). 

c
5-60% starting 

material 1{1} and 2{7} was recovered. 
d
100% Starting materials 1{1} and 2{7} were recovered. 

 

Alternation in the electronic environments on both indole and hydrazone moieties affected the 

reaction yield under the optimized reaction conditions. The aryl-tosylhydrazones bearing 

electron-rich substituents such as –Me and –OMe produced the corresponding pyrazoles in lower 

yields (3{1,2}, 3{1,3}). While, the presence of an electron-deficient aryl-tosylhydrazone allowed 

the formation of corresponding pyrazoles (3{1,4-8}, 3{2,7}, 3{3,7}) in higher yields. It is 

important to mention that the synthesis of pyrazoles containing the nitro-, cyano- and halogen 

groups are highly significant as these functional groups could be deployed in transition-metal 

catalyzed cross-coupling reactions. The use of tosylhydrazones with such reactive groups was 

well tolerated in the presence of BF3.OEt2 thus providing the opportunity for further 
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 7 

1H-indoles 1: 

 

1{1} 1{2} 1{3} 
1{4} 

 

1{5} 

 

Tosylhydrazones 2: 

2{1} 2{2} 2{3} 2{4} 2{5} 

2{6} 
2{7} 2{8} 

2{9} 

2{10} 

2{11} 2{12} 

 

2{13} 

 

2{14} 
2{15} 

 

Figure 1. Substrates used in the synthesis of pyrazole derivatives 

functionalization of these pyrazoles. Interestingly, tosylhydrazone with alkene as substituent 

shows high selectivity for the synthesis of regioselective pyrazole 3{1,9} with only a moderate 

yield. Reactions with substituted indoles also displayed quite interesting results. The presence of 

electron-withdrawing group (–NO2) in the benzene ring of the indole produced the corresponding 

pyrazole in higher yield. However, the desired pyrazole was obtained in lower yields when an 
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 8 

electron-donating group (-OMe) was present in the benzene ring of the indole. The reaction of 

methyl substituted (at C2 or C3 position) indoles was unsuccessful. A combination of both 

 

Table 2. Substrate scope for the synthesis of 1H-pyrazoles
a
. 

 

 

3{1,1}; 55% 3{1,2}; 52% 3{1,3}; 48% 3{1,4}; 90% 

3{1,5}; 85% 

 

3{1,6}; 88%  
3{1,7}; 92% 

3{1,8}; 86% 

3{1,9}; 60% 

 

3{2,2}; 42% 
 

3{2,7}; 65% 

 

3{3,2}; 65% 

3{3,7}; 94% 3{3,13}; 45% 
3{4,1}; 52% 

3{4,3}; 42% 
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 9 

3{4,5}; 78% 
3{4,10}; 82% 

3{4,11}; 85% 3{4,7};86% 

3{5,1}; 48% 
3{5,2}; 42% 

3{5,12}; 74% 3{5,10}; 74% 

3{5,6}; 78% 
3{5,11}; 80% 3{5,7}; 83% 

 

a
All the reactions were performed using 0.2 mmol of 1{1-5} (1 equiv) and 0.22 mmol of 2{1-12} 

(1.1 equiv) in the presence of 0.06 mmol of BF3.OEt2 (0.3 equiv) in 2 mL of DCE at 50 °C. 

 

electron deficient indole and tosylhydrazone provided the targeted pyrazoles with maximum 

yield (3{3,7}). The reaction with tosylhydrazones bearing pyridine ring produced the target 

pyrazole with only moderate yield. Unfortunately, the reaction of C2/C3-methyl substituted N-

acyl indole failed to provide the targeted pyrazole.  

This uncommon reactivity of 1-acyl-indole with aryl-tosylhydrazone prompted us to extend 

our heterocycles compound library using various N1-substituted indoles. The N1-benzoyl and 

N1-tosyl indoles successfully participated in this ring-opening and concomitant cyclization 

reaction. The reaction between N1-benzoyl and N1-tosyl indoles with both electron-rich and 

electron-deficient aryl-tosylhydrazone showed similar reactivity trends (Table 2) as that with the 

acyl group, but the yields of the desired pyrazoles were reduced to some extent. The XRD 

analysis of the compound 3{4,5} confirmed the structure of the desired pyrazole (Figure S1 and 
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 10 

Table S1). Unfortunately, N1-methyl and N1-benzyl containing indole or unsubstituted (N1-H) 

indole failed to provide the corresponding pyrazole under these optimized reaction conditions 

(most of the starting materials were recovered). The reaction between 1-acyl-1H-indole and the 

acetophenone tosylhydrazone under the similar experimental conditions failed to provide the 

target product.  

Based on the reported literatures and our results, we propose the following atypical 

mechanistic pathways for the synthesis of 1H-pyrazoles from indoles (Scheme 2). The 

complexation of Lewis acid (BF3.OEt2) with the oxygen of N-acyl / N-benzoyl / N-tosyl indoles 

sequestrated the nitrogen lone-pair and allowing the activation of C2=C3 bond.
10, 45

 The  

 

 Scheme 2. Plausible coupling reaction of activated indoles with tosylhydrazones. 
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 11 

formation of activated N-acyl indole (I) in the presence of BF3.OEt2 was supported by the 
13

C 

NMR and 2D-NMR (HSQC) experiments (Figure S2 and S3).  The unsuccessful ring-opening 

reaction of alkyl or aryl substituted indoles also support this hypothesis. The nucleophilic attack 

of the NH of Lewis acid-tosylhydrazone complex at the C2 of activated indole would lead to the 

formation of intermediate IIA followed by the cleavage of C2-N1 bond (Path A).46 Isolation of 

pyrazole 3{14} from compound 2{14} supported both the nucleophilic attack at the C2-centre 

and C2-N1 bond cleavage (Scheme 3). However, we failed to isolate any intermediates, 

indicating stronger reactivity of the reactants/intermediates under the optimized experimental 

reaction conditions. The intramolecular cyclization of intermediate IIA would lead to the 

formation of intermediate IIIA which could produce the desired pyrazoles through 

aromatization.  

The other probable pathway (Path B) describe the 3+2 cycloaddition reaction between the 

tosylhydrazone, (complexed with BF3.OEt2) and activated indole (intermediate I). Then the 

aromatization through cleavage of indole ring of intermediate IIIB would lead to the desired 

pyrazole. However, the intramolecular cyclization of compound 2{14} failed to produce the 

desired pyrazole 3{14}′ indicating the preference for Path A over Path B mechanistic pathway 

The cyclization reaction strongly depends on the electrophilic nature of imine bond of 

hydrazone. The withdrawal of electron density from the C=N bond of the hydrazones should be 

facile for the electron deficient aryl group. Hence, the cyclization reactions for hydrazones with 

electron withdrawing groups are more effective in comparison with the electron rich hydrazones. 

We also performed the intramolecular cyclization of compound 2{15}, which is the reduced 

product of compound 2{14}. However, the compound 2{15} also produced the pyrazole 3{14}, 

which could be due to the oxidized aromatization. 
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 12 

 

 

Scheme 3. Plausible mode of reaction of compound 2{14} for the synthesis of 1H-pyrazole 

 

 

The mechanistic studies suggested that the ring opening reaction is directed by the complex 

formation ability of the N-acyl (or tosyl or benzoyl) indole with the Lewis acid. The formation of 

complex of the Lewis acid (BF3.OEt2) with the –C=O (or sulphonyl) group of the protected 

indole results in the cleavage of C2-N1 bond of the indole ring. The absence of such carbonyl or 

sulphonyl group in N1-methyl, N1-benzyl or unsubstituted (N1-H) indole failed to undergo 

through the ring opening and concomitant cyclization reaction with tosylhydrazone. 

Interestingly, these observations also demonstrate the importance of carbonyl or sulphonyl group 

at N1 position of the indole. We hypothesize that the formation of intermediate IIIA requires the 
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 13 

presence of H-atom at the imine carbon for the final aromatization reaction. For this reason, the 

hydrazone of acetophenone failed to produce the target product. 

To demonstrate further the synthetic utility of these pyrazoles, we performed iodination 

reactions. The newly generated amide or sulphonamide group can act as powerful directing 

groups for the functionalization of the C5-position of pyrazoles (Table 3). To our delight, the 

selective C-H iodination of the pyrazole over the two other aromatic rings was performed with 

excellent yield (4{1,2}, 4{4,11},  4{4,7} and 4{5,11}; 40 – 98%). The carbon- iodine bond has 

tremendous synthetic applications in modern chemistry.
47-48

 The presence of sulphonamide and 

benzamide with the aryl ring of pyrazoles shows better result in comparison with the acetamide 

group for this iodination reaction, which indicates the importance of these directing groups. The 

directing group of compound 3{4,11} was deprotected under basic condition using ethanolic 

solution at high temperature (Scheme 4). The free amine group of compound 4{4,11} can be 

utilized for further functionalization.
49

 

 

Table 3. Synthetic applications of this novel class of pyrazoles. 

 

 

4{1,2}; 40% 

 

4{4,11}; 75% 

 

4{4,7}; 77% 

 

4{5,11}; 98% 

a
All the reactions were performed using 1 equiv of 3{1,2} or 3{5,11} or 3{4,11} or 3{4,7}, 1 

equiv. of iodine, 2 equiv. of KI and 2 equiv. of K2CO3 in the presence of 0.3 equiv. of BF3.OEt2 
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in 1 mL of DMSO at 100 °C.
 

 

Synthesis of substituted pyrazoles using such quick and easy to perform mild reaction 

conditions is a part of our on-going heterocyclic drug discovery program for cancer 

immunotherapy. Immunotherapeutic approach is being considered as one of the most promising 

approaches in the battle against cancer.
50-51

 In this regard, we explored the IDO1 inhibitory 

activity of these compounds (HPLC purified). The IC50 values were measured against purified 

human IDO1 enzyme using standard spectrophotometric method (Table 4 and S2). Compounds, 

3{2,2} (IC50 = 40.33 μM) and 3{5,1} (IC50 = 25.0 μM) showed moderate IDO1 inhibitory 

activity, which could be due to the presence of substituted aryl containing pyrazole and 

sulfonamide moieties.
52-53

 Nonetheless, the inhibitory activity study suggests that this pyrazole 

scaffold can be used as the lead compound and its modifications may lead to the development of 

potent IDO1 inhibitors with favorable biochemical and biophysical properties.  

 

Scheme 4. Removal of the directing group 

 

 

In summary, we described an unusual ring-opening and cyclization reaction of a stable 

aromatic heterocyclic compound. This transition-metal and ligand free synthesis of pyrazoles 

from the corresponding indoles through the C2-N1 bond cleavage is unknown. Complexation of 

the Lewis acid with indoles and tosylhydrazones could be the driving force for this reaction. This 

method could be a useful alternative to the existing methods for regioselective synthesis of 
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pyrazoles. The inhibitory activities of these synthesized pyrazoles were tested against immune 

suppressive enzyme, IDO1. The preliminary results suggest that the pyrazole moiety can be used 

as synthetically amenable lead for future development of IDO1 inhibitors.  

 

Table 4. Inhibitory activity of the 1H-pyrazoles against purified human IDO1 enzyme. 

Compound IDO1  

IC50 (μM)
a
 

Compound IDO1 

IC50 (μM)
a
 

3{1,4} 84.50 ± 3.6 3{5,1}   25.0 ± 3.5 

3{2,2} 40.33 ± 0.3 3{5,2} 115.5 ± 5.8 

3{4,3} 74.17 ± 2.3 3{5,6}   96.8 ± 5.8 

a
IC50 values are the mean of three independent assays.  
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Ring-opening: Lewis acid catalyzed ring-opening of the indoles afforded regeoselective pyrazole in the 
presence of tosylhydrazones. In-situ cyclization after the cleavage of C2-N1 bond of the indoles proceeds in 

the absence of any transition-metal and ligand.  
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C2-N1 bond opening and the reactivity of indole towards hydrazone.  
 

158x167mm (300 x 300 DPI)  

 

 

Page 26 of 28

ACS Paragon Plus Environment

ACS Combinatorial Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Plausible coupling reaction of activated indoles with tosylhydrazones.  
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Plausible mode of reaction of compound 2{14} for the synthesis of 1H-pyrazole.  
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