A Palladium-Catalyzed Synthesis of 4-Aryl-2-oxo-2,5-dihydrofurans[4-Aryl-2(5*H*)-furanones] Pier Giuseppe CIATTINI, Giorgio ORTAR* Centro di Studio per la Chimica del Farmaco del C.N.R., Istituto di Chimica Farmaceutica dell' Università, I-00185 Roma, Italy Palladium-catalyzed arylation of methyl (*E*)-4-(2-tetrahydropyranyloxy)-2-butenoate with aryl iodides and intramolecular cyclocondensation of the resultant 3-aryl derivatives affords 4-aryl-2-oxo-2,5-dihydrofurans in moderate to good yields. The widespread occurrence of the 2(5H)-furanone structural unit in a variety of natural and bioactive products as well as its versatility as a synthetic intermediate has lent considerable importance to the synthesis of this class of heterocycles¹. The palladium-catalyzed vinylation of organic halides (Heck-type reaction) is a well known method for forming C—C bonds². We have recently reported on a palladium-catalyzed coupling reaction of steroidal 17-enol triflates with methyl (*E*)-4-(2-tetrahydropyranyloxy)-2-butenoate (1) as the key step of a new approach to cardenolides³. We have now found that compound 1 reacts with various arylhalides (2) under solid-liquid phase-transfer conditions⁴ in the presence of palladium acetate to give the coupling products 3 which are smoothly cyclized to the title compounds 4. Compounds 3 were not isolated and were used in the second step as the crude products. The (Z)-configuration of intermediates 3 was assumed on mechanistic grounds^{2,4}; it is consistent with the clean acid-catalyzed cyclization of 3 to 4. Intermediates similar to 3 have previously been obtained in a five-steps synthesis of 4-arylfuranones from aryl methyl ketones⁵. The process described here provides a useful alternative synthesis of 4-aryl-2(5H)-furanones (4) from easily available starting materials; it is simple to perform, proceeds under mild conditions, and affords products 4 in moderate to good yields. ## 2-Oxo-4-phenyl-2,5-dihydrofuran[4a, 4-Phenyl-2(5H)-furanone]; Typical Procedure: A mixture of methyl (E)-4-(2-tetrahydropyranyloxy)-2-butenoate³ (1; 300 mg, 1.5 mmol), iodobenzene (204 mg, 1 mmol), palladium Table. 4-Aryl-2-oxo-2,5-dihydrofurans (4) prepared | 4 | Ar | | m.p. [°C]
(solvent) | Molecular Formulab
or Lit. m.p. [°C] | M.S. $(M^+)^c$
m/e (rel.int.) | I.R. (KBr) ^d
v[cm ⁻¹] | 1 H-N.M.R. (CDCl ₃ /TMS _{int}) e δ [ppm] | |---|---|----|---|---|----------------------------------|---|--| | a | C ₆ H ₅ — | 71 | 92-93.5° (acetone/hexane) | 91–92.5°6 | 160 (65) | 1795, 1747,
1620 | 5.20 (d, 2 H, $J = 2$ Hz, 5,5-H ₂);
6.37 (t, 1 H, $J = 2$ Hz, 3-H);
7.4-7.8 (m, 5 H ₂₀₀₀) | | b | 3-H ₃ CC ₆ H ₄ | 70 | 87-88° (acetone/hexane) | C ₁₁ H ₁₀ O ₂
(174.2) | 174 (71) | 1793, 1738,
1621 | 2.40 (s, 3 H, CH ₃); 5.22 (d, 2 H, $J = 2$ Hz, 5,5-H ₂); 6.38 (t, 1 H, $J = 2$ Hz, 3-H); 7.2-7.5 (m, | | c | 4-H ₃ C—C ₆ H ₄ — | 59 | 114–116° (acetone/hexane) | $C_{11}H_{10}O_2$ (174.2) | 174 (81) | 1790, 1729,
1620 | $4H_{arom}$)
2.40 (s, 3 H, CH ₃); 5.20 (d, 2 H,
J = 2 Hz, 5.5-H ₂); 6.33 (t, 1 H,
J = 2 Hz, 3-H); 7.30, 7.47 | | d | 4-H ₃ CO-C ₆ H ₄ - | 65 | 119–120.5° (benzene) | 119.5–120°7 | 190 (100) | 1792, 1735,
1621 | (ABq, 4H, J_{AB} = 9 Hz, arom)
3.87 (s, 3 H, OCH ₃); 5.17 (d,
2H, J = 2 Hz, 5,5-H ₂); 6.23 (t,
1H, J = 2 Hz, 3-H); 7.00, 7.50 | | e | 3-H ₃ COOC-C ₆ H ₄ - | 60 | 150-151° (methanol) | $C_{12}H_{10}O_4$ (218.2) | 218 (85) | 1790, 1744,
1725, 1624 | (ABq, 4H, $J_{AB} = 9$ Hz, arom)
4.00 (s, 3H, COOCH ₃); 5.33
(d, 2H, $J = 2$ Hz, 5,5-H ₂);
6.37 (t, 1H, $J = 2$ Hz, 3-H); | | f | 3-HOCH ₂ —C ₆ H ₄ — | 59 | 101-102°
(acetone/CCl ₄) | $C_{11}H_{10}O_3$ (190.2) | 190 (100) | 3428, 1816,
1727, 1614 | 7.6–8.4 (m, 4H _{arom})
2.3 (m, 1H, OH); 4.78 (br. s, 2H, \underline{CH}_2 —OH); 5.23 (d, 2H, $\underline{J} = 2$ Hz, 5,5-H ₂); 6.40 (t, 1H, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2 | | g | 4-Br—C ₆ H ₄ — | 48 | 161–163°
(CHCl ₃) | 164°8 | 238 (100) | 1794, 1738,
1619 | J = 2 Hz, 3-H); 7.4–7.7 (m. 4H _{arom})
5.20 (d, 2H, $J = 2 \text{ Hz}$, 5,5-H ₂); 6.40 (t, 1H, $J = 2 \text{ Hz}$, 3-H); 7.40, 7.65 (ABq, 4H, J_{AB} = 9 Hz, arom) | ^a Yield of isolated product based on aryl halide 2. Recorded on a Hewlett-Packard 5930 A spectrometer. Recorded on a Perkin-Elmer 983 spectrophotometer. Recorded on a Varian EM-390 spectrometer. acetate (11 mg, 0.05 mmol), tetrabutylammonium chloride (296 mg, 1 mmol), sodium hydrogen carbonate (210 mg, 2.5 mmol), and hexamethylphosphoric triamide (3 ml) is stirred at 60 °C for 24 h. The mixture is then diluted with water (20 ml) and extracted with ether (2 \times 20 ml). The organic phase is washed with water (2 \times 20 ml), dried with sodium sulphate, and evaporated. A mixture of the residue (357 mg) and Dowex 50W \times 8 resin (200–400 mesh, H $^\oplus$ form, 357 mg) in methanol (5 ml) is stirred at 45 °C for 2 h. The resin is then filtered off and washed with methanol. The filtrate is evaporated and the residue (228 mg) is chromatographed on a silica gel column (7 g) with benzene/ethyl acetate (97/3) as eluent; yield of 4a: 113 mg (71 % based on iodobenzene); m.p. 92–93.5 °C (Ref. 6, m.p. 91–92.5 °C). Received: May 15, 1985 ^b The microanalyses were in good agreement with the calculated values: C \pm 0.26, H \pm 0.08. ^{*} Address for correspondence. ¹ Brownbridge, P., Egert, E., Hunt, P.G., Kennard, O., Warren, S. J. Chem. Soc. Perkin Trans. 1 1981, 2751; and references cited therein. Rao, Y.S. Chem. Rev. 1976, 625. ² Heck, R.F. Org. React. 1982, 27, 345. ³ Harnisch, W., Morera, E., Ortar, G. J. Org. Chem. 1985, 50, 1990. ⁴ Jeffery, T. J. Chem. Soc. Chem. Commun. 1984, 1287. Schmitt, J., Suquet, M., Comoy, P., Boitard, J., Callet, G., Clim, T., Le Meur, J. Bull. Soc. Chim. Fr. 1966, 953. ⁶ Krauser, S.F., Watterson, A.C. J. Org. Chem. 1978, 43, 3400. Perold, G.W., Hundt, H.K.L. J. Chem. Soc. [C] 1966, 1924. Folcope G. Wingen H.P. Arch. Physics (Weigheim) 1984, 317 ⁸ Falsone, G., Wingen, H.P. Arch. Pharm. (Weinheim) 1984, 317, 802.