Note

N-Substituted methyl 3,6-di-*O*-benzoyl-2-deoxy-2-hydroxyamino-*a*-D-hexopyranosid-4-uloses: a configurational reassignment

Jean M. J. Tronchet*, Nicoletta Bizzozero,

Institute of Pharmaceutical Chemistry, University of Geneva, Sciences II, CH-1211 Geneva 4 (Switzerland)

Gerald Bernardinelli,

Laboratory of X-Ray Crystallography, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4 (Switzerland)

and Michel Geoffroy,

Department of Physical Chemistry, University of Geneva, Sciences II, CH-1211 Geneva 4, (Switzerland) (Received June 5th, 1989; accepted for publication, August 31st, 1989)

In a preliminary communication¹, we described the conjugate addition of N-methyland N-phenyl-hydroxylamines to methyl 3,6-di-O-benzoyl-2-deoxy-a-D-glycero-hex-2enopyranosid-4-ulose² (1). This series has been extended and 2-5 have been obtained in excellent yields (Table I). The 3-deuterio analog of 2 was also prepared. The reactions were stereospecific. The large observed ${}^{1}J_{23}$ value led to the assignment of a ${}^{4}C_{1}$ chair form to 2 and 3 and to the erroneous ^{1}a -D-xylo configuration. However, discrepancies between this alleged configuration and n.m.r. data of derivatives of 2 required revision of the structure assigned, and an X-ray diffraction study was undertaken which showed 2 to exist in an almost pure ${}^{3,0}B$ form (Fig. 1). This same conformation was found to preponderate in solution and, contrary to observations in related series³, was not affected by changes in solvent $(J_{1,2} \text{ and } J_{2,3} \text{ values of } 3 \text{ were identical for solutions in})$ $CDCl_3$, $(CD_3)_2SO_3$, and benzene- d_6). Owing to the interaction of their non-bonding orbitals (a-effect)⁴ and their ability to establish hydrogen bonds, hydroxylamines constitute a special class of nucleophiles. Nevertheless, in contrast to their O-substituted analogs⁵, they followed the classical⁶ stereochemical path encountered in conjugate additions to alkyl hex-2-enopyranosid-4-uloses, namely, trans addition to the anomeric alkoxy group.

Compounds 2–5 oxidized spontaneously in the air to the corresponding nitroxyl free-radicals, the e.s.r. spectra of which presented the small a_{H-2} hyperfine coupling constants expected^{1,7} from an equatorial nitroxyl vicinal to another large equatorial group.

^{*}Author for correspondence.

Fig.1. Crystal structure of compound 2

EXPERIMENTAL

General methods. — See ref. 8. Optical rotations were obtained for solutions in chloroform. Column chromatography was conducted on silica gel (Merck, 70–230 mesh). N.m.r. data are collected in Tables II and III.

Crystallographic data*. — The data are summarized in Table IV. Selected bond lengths, bond angles, and torsional angles are reported in Table V. Data were collected at room temperature on a Nonius CAD4 diffractometer (Mo- K_a). The structure was solved by a direct method (MULTAN 87)⁹ and refined by full-matrix least squares

^{*}Crystallographic data have been deposited with the Cambridge Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, Great Britain.

TABLE I

Compound	Reaction solvent	Equiv. of R-NHOH	Reaction time (h)	Temp. (°)	Yield (%)
2	10:1 EtOH-H,O	2.3	4	25	81
3	ÉtOH	3	5	70	82
4	6:1 EtOH-H ₂ O	1.1	4	25	80
5	THF	1.1	2	25	86

Preparation of hydroxylamines 2-5

TABLE II

¹H-N.m.r. data of compounds 2–5 (CDCl₃)

Compound	Chemic	al shifts (δ)		Coupling constants (Hz)		
	H-1	H-2	H-3	H-5,6,6	J _{1,2}	J _{2,3}
2	5.40	3.08	6.17	4.64-4.80	4.0	12.0
3	5.30	4.07	6.47	4.67-4.83	4.0	11.7
4	5.55	3.16	6.20	4.55-4.85	4.0	11.5
5	5.41	3.11	6.19	4.60-4.80	4.0	12.0

TABLE III

4

5

C-N.m.r. data of compounds 2-5 (CDCl ₃)								
Compound	C-1	C-2	C-3	C-5	C-4	С-б	OMe	
2 ^{<i>a</i>}	98.00	70.33	73.58 -	73.84	203.20	63.37	54.97	
	J176.3	J135.6	J159.4,	J141.8		J149.2	J145.8	
3	100.36	63.36	72.74 –	— 73.10	202.86	62.60	54.64	

73.61

73.42 -

¹³C-N.m.r. data of compounds 2-5 (CDCl₃)

67.87

68.78

98.06

98.08

 a CDCl₃ + (CD₃)₂SO.

analysis (XTAL2.4)¹⁰. All co-ordinates of the hydrogen atoms were calculated, with the exception of that belonging to the hydroxyl group which was observed.

73.61

73.71

203.07

200.88

63.23

63.25

The pyranose ring adopted a quasi perfect boat conformation with minimum values of asymmetry parameters¹¹ $\Delta C_s(O-1) = 0.045(3)$ and $\Delta C_s(C-1-C-2) = 0.039(2)$. The hydroxyl group is involved in a hydrogen bond with one of the carbonyl groups [(O-6...O-5)1-x, 1/2-y, 1/2-z = 2.796(6) Å)].

Methyl 3,6-di-O-benzoyl-2-deoxy-2-(N-hydroxy-N-methylamino)-a-D-arabinohexopyranosid-4-ulose (2). — Prepared as indicated in Table I from 1 (1 g); extraction (dichloromethane) of the reaction mixture yielded 2, m.p. 110.4–112.3°, $[a]_{D}^{22}$ +193° (c 0.9); $v_{\text{max}}^{\text{KBr}}$ 3420 (OH), 1750, and 1720 (C=O) cm⁻¹; $\lambda_{\text{max}}^{\text{EtOH}}$ 202 (ε 9700), 231 (25,400), 274

N-C

44.87

J139.0

60.66

54.79

54.97

54.79

TABLE IV

Economia			0.002
romula	$C_{22}H_{23}NO_8$	$\mu (mm^{-1})$	0.093
Molecular weight	429.4	$(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$	0.58
Crystal system	Orthorhombic	No. of measured reflections	1994
Space group	P2,2,2	No. of observed reflections	1447
Crystal size (mm)	$0.13 \times 0.22 \times 0.30$	Criterion for observed	$[F_o] > 4\sigma(F_o)$
a (Å)	11.7810(10)	No. of parameters	280
b (Å)	13.4710(12)	Refinement (on F)	Full-matrix
<i>c</i> (Å)	13.9249(15)	Weighting scheme	$\omega = 1/\sigma^2(F)$
$V(\text{\AA}^3)$	2209.9(4)	Max. and average Δ/σ	0.081, 0.014
Ζ	4	Max, and min. $\Delta \rho$ (eÅ ⁻³)	0.26, -0.27
$D_{\rm c}~({\rm g.cm^{-3}})$	1.29	S	1.80
<i>F</i> ₀₀₀	904	$R, \omega R (\%)$	5.2, 3.8

Summary of crystal data	, intensity measurement,	, and structure refinement	for 2
-------------------------	--------------------------	----------------------------	-------

TABLE V

Selected bond lengths	Å),	bond	angles	(°),	and	torsional	angles	(°)	for 1	2
-----------------------	-----	------	--------	------	-----	-----------	--------	-----	-------	---

······································			
0-1-C-1	1.436(7)	O-7C-3	1.430(7)
O-1C-5	1.405(7)	O-7C-16	1.355(8)
O-2-C-1	1.401(7)	O-8-C-16	1.196(9)
O-2-C-14	1.420(8)	NC-2	1.452(8)
O-3-C-4	1.213(8)	N-C-15	1.459(8)
O-4-C-6	1.449(8)	C-1-C-2	1.547(8)
O-4-C-7	1.332(7)	C-2C-3	1.544(8)
O-5-C-7	1.207(8)	C-3-C-4	1.508(9)
O-6N	1.453(7)	C-4-C-5	1.535(9)
C-1-O-1-C-5	112.8(4)	C-4-C-5-O-1	110.6(5)
O-1-C-1-C-2	112.7(4)	C-2NO-6	106.7(4)
C-1-C-2-C-3	109.1(4)	C-2-N-C-15	112.7(5)
C-2C-3C-4	107.7(5)	O-6- N-C-15	105.5(5)
C-3C-4C-5	113.1(5)		
C-2C-1O-1C-5	- 55.5(6)	C-2-C-3-O-7-C-16	158.1(5)
O-1C-1C-2C-3	-5.3(7)	C-3O-7-C-16-O-8	1.3(9)
C-1C-2C-3C-4	55.9(6)	O-7-C-16-C-17-C-18	-4.0(9)
C-2C-3C-4C-5	-52.1(6)	C-4C-5C-6O-4	46.1(7)
C-3-C-4-C-5-O-1	-4.2(7)	C-5-C-6-O-4-C-7	169.4(5)
C-4-C-5-O-1-C-1	60.3(6)	C-6-O-4-C-7-C-8	171.2(5)
O-1-C-1-O-2-C-14	62.2(6)	O-4-C-7-C-8-C-9	-11.5(9)
C-1-C-2-N-O-6	53.8(6)		- (-)

(1600), and 282 nm (1300). Mass spectrum: m/z 350 (1), 311 (0.2), 277 (0.2), 260 (2), 246 (0.1), 229 (0.1), 218 (1), 204 (0.4), 175 (3), 156 (0.6), 122(4), 105 (100), 97 (0.6), 85 (27), 51 (11). E.s.r. of the corresponding nitroxyl (diglyme, 20°): g 2.0061; $a_{\rm N}$ 14.4 G, $a_{\rm Me}$ 12.8 G, $a_{\rm H-2}$ 1.6 G, $a_{\rm H-3}$ 0.9 G, and $a_{\rm H-1}$ 0.6 G.E.s.r. of the nitroxyl corresponding to (3-²H)-2 (diglyme, 30°): $a_{\rm N}$ 14.4 G, $a_{\rm Me}$ 12.7 G, $a_{\rm H-2}$ 1.75 G, and $a_{\rm H-1}$ 0.7 G.

Anal. Calc for C₂₂H₂₃NO₈ (429.43): C, 61.53; H, 5.40; N, 3.26. Found: C, 61.33; H, 5.45; N, 3.42.

Methyl 3,6-*di*-O-*benzoyl*-2-*deoxy*-2-(N-*hydroxy*-N-*phenylamino*)-*a*-D-arabino*hexopyranosid*-4-*ulose* (3). — Prepared as indicated in Table I from 1 (1.14 g); filtration of the mixture and recrystallization (EtOH) of the resulting solid yielded 3, m.p. 175.2–176.4° (dec.), $[a]_{\rm D}^{25}$ + 147° (*c* 1); $v_{\rm max}^{\rm KB}$ 3480 (OH), 1740 and 1720 (C=O) cm⁻¹; $\lambda_{\rm max}^{\rm EtOH}$ 205 (*e* 22 900), 230 (30 700), 273 (4700), and 281 nm (4200). Mass spectrum; *m*/*z* 351 (1), 280 (0.7), 232 (0.7), 200 (9), 199 (1), 175 (2), 162 (1), 149 (2), 134 (2), 122 (20), 105 (100), 93 (7), 85 (16), 77 (23), 65 (7). E.s.r. of the corresponding nitroxyl (diglyme, 90°): *g* 2.0056, $a_{\rm N}$ 10.8 G, $a_{\rm Ph}$ 2.6, 2.6, 1.6, 1.6, and 0.85 G, $a_{\rm H-2}$ 1.6 G, $a_{\rm H-1}$ 0.85 G and $a_{\rm H-3}$ 0.85 G.

Anal. Calc. for C₂₇H₂₅NO₈ (491.50): C, 65.98; H, 5.13; N, 2.85. Found: C, 65.97; H, 5.26; N, 3.05.

Methyl 3,6-*di*-O-*benzoyl*-2-*deoxy*-2-(N-*benzyl*-N-*hydroxyamino*)-*a*-D-arabino*hexopyranosid*-4-*ulose* (4). — Prepared as indicated in Table I from 1 (0.19 g); extraction (dichloromethane) of the reaction mixture and recrystallization (isopropyl ether–hexane) yielded 4, m.p. 102.7–104.1°, $[a]_{D}^{23} + 139.5^{\circ}$ (*c* 0.4); v_{max}^{CC14} 3460 (OH), 1750 and 1720 (C = O) cm⁻¹. Mass spectrum: m/z 375 (0.3), 350 (0.8), 281 (1), 218 (0.9), 207 (3), 175 (2), 149 (9), 122 (13), 105 (100), 91 (31), 77 (42), and 51 (18). E.s.r. of the corresponding nitroxyl (diglyme, 40°): *g* 2.0062, a_{N} 14.3 G, a_{CH_2} 10.7 and 8.2 G, a_{H-2} 1.6 G, a_{H-1} 0.8 G, and a_{H-3} 0.8 G.

Anal. Calc. for C₂₈H₂₇NO₈ (505.53): C, 66.53; H, 5.38; N, 2.77. Found: C, 66.54; H, 5.38; N, 2.74.

Methyl 3,6-*di*-O-*benzoyl*-2-*deoxy*-2-(N-*hydroxy*-N-3,7-*dimethyloct*-6-*enylamino*)-*a*-D-arabino-*hexopyranosid*-4-*ulose* (**5**). — Obtained, as described in Table I, from 1 (0.4 g) and *N*-(3,7-dimethyloct-6-enyl)hydroxylamine (6.2 g), obtained (56%) by reduction¹² of citronellal oxime¹³ with sodium cyanoborohydride. Chromatographic separation (ethyl acetate–hexane, 1:3) of the reaction mixture gave **5**, isolated as a syrup, $[a]_{D}^{21}$ + 132° (*c* 1.1); v_{max}^{film} 3450 (OH), 1750 and 1720 (C=O) cm⁻¹. Mass spectrum: *m/z* 350 (0.6), 260 (1), 218 (1), 171 (2), 154 (5), 138 (2), 122 (8), 105 (100), 95 (9), 86 (23), 83 (9), 81 (14), 77 (26), 69 (31), 67 (11), 55 (17), 51 (11), 46 (57).

Anal. Calc. for C₃₁H₃₉NO₈ (553.66): C, 67.25; H, 7.10; N, 2.53. Found: C, 67.36; H, 7.30; N, 2.43.

ACKNOWLEDGMENTS

We thank Dr. F. Barbalat-Rey for help with interpretation of the n.m.r. spectra, and Professor A. Buchs and Dr. F. Gulaçar for the mass spectra. The investigation was supported by the Swiss National Science Foundation, Grants 2.671-0.85 and 2000-5.304.

REFERENCES

1 J. M. J. Tronchet, N. Bizzozero, F. Barbalat-Rey, and M. Geoffroy, J. Carbohydr. Chem., 6 (1987) 155-160.

- 2 F. W. Lichtenthaler, S. Ogawa, and P. Heidel, Chem. Ber., 110 (1977) 3324-3332.
- 3 B. Fraser-Reid, A. McLean, E. W. Usherwood, and M. Yunker, Can. J. Chem., 48 (1970) 2877--2884; J. M. J. Tronchet and N. Bizzozero, unpublished results.
- 4 P. W. Jencks, J. Am. Chem. Soc., 80 (1958) 4581-4584; G. Klopman, K. Tsuda, J. B. Louis, and R. E. Davis, Tetrahedron, 26 (1970) 4549-4554.
- 5 J. M. J. Tronchet and N. Bizzozero, unpublished results.
- 6 H. Paulsen and W. Koebernick, Chem. Ber., 110 (1977) 2127–2145; H. Paulsen, W. Koebernick, and H. Koebernick, Tetrahedron Lett., (1976) 2297–2300; T. Sakakibara, T. Kawahara, and R. Sudoh, Carbohydr. Res., 58 (1977) 39–46; J. Leboul, J. Cleophax, S. D. Gero, A. Rolland, and A. Forchioni, Tetrahedron, 33 (1977) 965–968; E. Jegon, J. Cleophax, J. Leboul, and S. D. Gero, Carbohydr. Res., 45 (1975) 323–326; M. B. Yunker, D. E. Plaumann, and B. Fraser-Reid, Can. J. Chem., 55 (1977) 4002–4009; B. Fraser-Reid, N. L. Holder, D. R. Hicks, and D. L. Walker, *ibid.*, 55 (1977) 3978–3985; B. Fraser-Reid, R. C. Anderson, D. R. Hicks, and D. L. Walker, *ibid.*, 55 (1977) 3986–3995.
- 7 J. M. J. Tronchet, N. Bizzozero, and M. Geoffroy, Carbohydr. Res., 191 (1989) 138-143.
- 8 J. M. J. Tronchet, E. Winter-Mihaly, J. Rupp, F. Barbalat-Rey, and M. Geoffroy, *Carbohydr. Res.*, 136 (1985) 375-390.
- 9 P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J.-P. Declercq, and M. M. Woolfson, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data., Universities of York (England) and Louvain-la-Neuve (Belgium), 1987.
- 10 S. R. Hall and J. M. Stewart, XTAL2.4 User's Manual, Universities of Western Australia and Maryland, 1988.
- 11 M. Nardelli, Acta Crystallogr., Sect. C, 39 (1983) 1141-1142.
- 12 J. M. J. Tronchet, G. Zosimo-Landolfo, N. Bizzozero, D. Cabrini, F. Habashi, E. Jean, and M. Geoffroy, J. Carbohydr. Chem., 7(1) (1988) 169–186.
- 13 F. W. Semmler, Ber., 26 (1893) 2255-2258.