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ABSTRACT: N-Unprotected ketimines are useful substrates and
intermediates for synthesizing valuable nitrogen-containing
compounds, but their potential applicability is limited by the
available synthetic methods. To address this issue, we report a
scandium(III) triflate catalyzed direct synthesis of N-unprotected
ketimines. Using commercially available reagents and Lewis acid
catalysts, ketones were directly transformed into the correspond-
ing N-unprotected ketimines in high yields with broad functional
group tolerance, even in multigram scales. The reactions were
readily applicable for one-pot synthesis of important compounds such as a glycine Schiff base without isolation of N-
unprotected ketimine intermediates. Preliminary mechanistic studies to clarify the reaction mechanism are also described.

N-Unprotected ketimines are useful substrates and intermedi-
ates for synthesizing a variety of valuable nitrogen-containing
compounds.1 For example, benzophenone imine is the starting
material for synthesizing a glycine Schiff base, a well-known
substrate for enantioselective synthesis of unnatural amino
acids using phase-transfer catalysts (PTC) (Scheme 1, eq 1),2

and is an ammonia equivalent in catalytic C−N bond-forming
reactions such as the Buchwald−Hartwig amination (eq 2).3 In
addition, the recent development of catalytic methods allows
for the use of N-unprotected ketimines in various catalytic
processes such as C−H bond functionalization (eq 3)4 and
nucleophilic addition (eq 4).5 Therefore, the development of
efficient methods for N-unprotected ketimine synthesis can

greatly contribute to the progress of catalytic synthesis of
nitrogen-containing compounds.
Known synthetic methods of N-unprotected ketimines

(Scheme 2) have several drawbacks. For example, the addition

of organometallic reagents to nitriles, one of the most
frequently used methods for synthesizing N-unprotected
ketimines, requires the use of basic and moisture-sensitive
organometallic reagents (eq 5).6 A similar issue is encountered
when using lithium bis(trimethylsilyl)amide as a nitrogen
source (eq 6).7 The aza-Wittig reaction is an effective synthetic
method of N-unprotected ketimines, but preparing iminophos-
phorane and separating the large amounts of triphenylphos-
phine oxide as waste are problematic (eq 7).8 The use of
ammonia would be ideal for synthesizing N-unprotected
ketimines, but the reaction is generally endergonic for ketones
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Scheme 1. Utility of N-Unprotected Ketimines

Scheme 2. Known Synthetic Methods of N-Unprotected
Ketimines
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and requires high pressure/temperature conditions or the use
of stoichiometric amounts of reagents such as TiCl4 (eq 8).

9 In
the above cases, application to a one-pot reaction is not facile
because the excess amounts of reagents and stoichiometric
amounts of byproducts prohibit subsequent reactions.
Although recent advances allow for catalytic synthesis of N-
unprotected ketimines, the limited availability of the starting
materials restricts their application to large-scale preparation of
N-unprotected ketimines (eqs 9 and 10).10

To address these issues, we recently reported TBAF-
catalyzed synthesis of benzophenone imine (Scheme 3, eq

11).11 Although the reaction proceeded under ambient
conditions to give benzophenone imine in high yields, the
reaction conditions could not be extended to other N-
unprotected ketimines, significantly limiting their generality.
Thus, we worked to develop a better catalytic method for
synthesizing a much broader range of N-unprotected
ketimines. To this end, we were interested in TMSOTf-
catalyzed synthesis of ketals from carbonyl compounds, so-
called Noyori’s method,12 for which the formation of stable
hexamethyldisiloxane drives the reaction forward (eq 12). We
hypothesized that a similar reaction would be promoted to
afford N-unprotected ketimines in the presence of the
appropriate Lewis acid catalysts using bis(trimethylsilyl)amine
as a nitrogen source (eq 13),13 although bis(trimethylsilyl)-
amine is considered to have very low nucleophilicity.
To test the above hypothesis, we examined Lewis acid

catalysts (Table 1). Screening of several Lewis acids14 revealed

that some Lewis acid triflates effectively catalyzed the desired
reaction in good yields (entries 3, 4, 6, and 7), while TMSOTf,
the catalyst for Noyori’s method, did not efficiently promote
the reaction (entry 2). The reaction did not proceed without a
catalyst (entry 1) and TfOH was a less efficient catalyst (entry
8), suggesting that the Lewis acidic metal is essential for
promoting the reaction. The Lewis acidity of the scandium
metal was important, and less Lewis acidic scandium catalysts
did not catalyze the reaction effectively (entries 9 and 10). The
catalytic efficiency was further tested at 2 h, and scandium
triflate15 was found to be optimal for producing benzophenone
imine (3a) in excellent yield (entry 11). Additional control
experiments revealed the importance of scandium triflate
rather than Brønsted acids as the catalyst, TMS2NH as the
nitrogen source, and 90 °C as the temperature for promoting
the reaction effectively.14

With the optimized reaction conditions in hand, we
investigated the substrate scope (Scheme 4). The reaction
conditions were applicable for a variety of carbonyl
compounds, and benzophenone derivatives having electron-
donating and -withdrawing groups, which were unsuitable
substrates in our TBAF-catalyzed process,11 afforded the
desired N-unprotected ketimines 3b−g in good yields. The
reaction conditions were also applicable for functionalized
ketones, and chloro, bromo, nitro, silyloxy, hydroxy, pyridyl,
thienyl, amide, and azido moieties were tolerated. Notably, the
present catalytic method allowed us to synthesize N-
unprotected ketimines 3o and 3p, which are derived from
biologically active carbonyl compounds possessing carboxylic
acid and ester moieties, respectively, for which conventional
synthetic methods are not readily applicable. Cyclic ketones
were also good substrates, and the corresponding N-
unprotected ketimines 3q−t were obtained in excellent yields.
Finally, alkyl-substituted ketones gave the corresponding N-
unsubstituted ketimines 3u−w.16 Of note, the N-unprotected
ketimines 3a, 3b, 3e, 3f, 3g, 3i, 3n, 3q, 3r, and 3t are the
substrates/reagents used in the literature.2−5

To showcase the practicality of our catalytic method, we
performed a large-scale synthesis of N-unprotected ketimines
(Scheme 5). We successfully synthesized the frequently used
substrates benzophenone imine (3a) and trifluoromethyl
ketimine 3x in gram scale with reduced catalyst loading (eqs
14 and 15). Moreover, benzophenone imine (3a) was
successfully synthesized even in decagram scale using an
ordinary academic laboratory setup with reasonable reagent
and catalyst costs (eq 16),14 and the product was directly
isolated by distillation from the reaction vessel with minimal
waste formation, as reflected by the small E-factor (1.3),17

which is comparable to the level of the bulk chemical synthesis
in industry (from 1 to 5) and much smaller than the
conventional synthetic method of 3a using Grignard reagents
(9.1) or our TBAF-catalyzed method (20.9).14

One benefit of our method over other synthetic protocols is
that the coproduct of the reaction is hexamethyldisiloxane,
which is unreactive for most reaction conditions. To take
advantage of this feature, we investigated one-pot synthesis of
several important compounds via N-unprotected ketimines
(Scheme 6). The one-pot processes from ketones were indeed
feasible, and glycine Schiff base 4 was isolated in multigram
scale after recrystallization (eq 17). Pronucleophile 518 was
synthesized in two step with good yields, for which the isolated
N-unprotected ketimine 3q was used according to the previous
protocol (eq 18). Further, the Strecker adduct 6, an

Scheme 3. Previous Reports and the Design of This Work

Table 1. Optimization of the Reaction Conditionsa

entry catalyst yield (%)b entry catalyst yield (%)b

1 none n.r. 7 Bi(OTf)3 >99
2 TMSOTf 20 8 TfOH 11
3 Sc(OTf)3 >99 9 Sc(NO3)3 37
4 Y(OTf)3 85 10 Sc(OAc)3 n.r.
5 La(OTf)3 n.r. 11c Sc(OTf)3 >99
6 Yb(OTf)3 88 12c Bi(OTf)3 96

aConditions: 1a (0.20 mmol), 2 (1.1 equiv), and catalyst (5.0 mol %)
in PhCl (1.0 M) at 90 °C for 12 h. bDetermined by 1H NMR analysis
of the crude mixture. cFor 2 h. n.r. = no reaction.
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intermediate for the synthesis of a biologically active
compound,19 was obtained without isolating the N-unpro-
tected ketimine 3r, improving the synthetic efficiency (eq 19).
Moreover, the one-pot process was successfully extended to
one-pot phase-transfer catalysis with the Maruoka catalyst20 to
give (S)-7 in high yield and enantioselectivity over three steps
(eq 20). To the best of our knowledge, this is the first example
of one-pot synthesis of 7 from benzophenone (1a). The one-
pot sequence can be extended to Pd-catalyzed reaction,3 giving
the Buchwald−Hartwig amination product 8 in good overall
yield (eq 21).
Finally, we performed preliminary mechanistic studies to

elucidate the reaction mechanism (Scheme 7). First, similar to
our previous TBAF-catalyzed process, hexamethyldisiloxane
(9) was observed after the reaction, suggesting that bis-
(trimethylsilyl)amine (2) works as an oxygen scavenger (eq
22). Second, the addition of desiccants such as molecular

sieves retarded the reaction (eq 23), implying that the presence
of a trace amount of water in the reaction mixture is important
for promoting the reaction. Third, H2O or trimethylsilanol
(10) reacted with 2 to give 10 and/or 9, respectively, and the

Scheme 4. Substrate Scopea

aConditions: 1 (0.20 mmol), 2 (1.1 equiv), Sc(OTf)3 (5.0 mol %) in
PhCl at 90 °C unless otherwise noted, and isolated yield was reported.
E/Z ratio was also reported where applicable. b1.5 equiv of 2 were
used. c2.0 equiv of 2 were used. dIsolated after treatment with 1 M
HCl in Et2O.

eAt 1.0 mmol scale.

Scheme 5. Large-Scale Synthesis of N-Unprotected
Ketimines

Scheme 6. Application to One-Pot Reactions
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reaction was accelerated in the presence of Sc(OTf)3 (eqs 24
and 25). Lastly, an induction period was observed at 50 °C,
whereas the addition of a catalytic amount of 10 reduced the
induction period (eq 26). These results are consistent with the
mechanism by which 2 reacts with H2O or 10 to produce less
sterically crowded amine species such as NH3 that act as
effective nucleophiles for addition to carbonyl compounds.21

On the basis of the above experimental information, we
propose the following possible reaction mechanism (Scheme
8). The reaction is initiated by the reaction of bis-
(trimethylsilyl)amine (2) with a trace amount of water in
the reaction mixture to generate ammonia along with TMS2O
(9). The addition of ammonia to the carbonyl compounds 1 is
accelerated in the presence of Sc(OTf)3 through complex I to
give addition intermediate II. To note, ammonia gave a much
lower activation energy for the addition step than 2 alone
according to DFT calculations,14 consistent with our proposed
mechanism. Intermediate II, in turn, eliminates water to give
complex III, and product 3 is released through the
coordination of 1 to give complex I. Finally, water reacts
with 2 to give ammonia, which again reacts with I to close the
catalytic cycle.22

In conclusion, we developed a Lewis acid catalyzed direct
synthesis of N-unprotected ketimines. Using a combination of
commercially available bis(trimethylsilyl)amine and catalytic
amounts of scandium triflate, ketones were directly trans-
formed into N-unprotected ketimines in high yields with a
broad substrate scope and functional group tolerance, even in
multigram scale. The reactions were readily applicable to the
one-pot synthesis of important compounds such as a glycine
Schiff base without isolation of N-unprotected ketimine
intermediates. Preliminary mechanistic studies revealed that
generation of the less-crowded nitrogen nucleophile efficiently
promoted the reaction. We anticipate that the present method
will facilitate future development of catalytic reactions via N-
unprotected ketimines. Further studies to expand the reaction
are ongoing in our laboratory.
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