Structure-Activity Investigations of Analogues of the C15-C26 Phorboxazoles Segment

P. Wolbers,^a H. M. R. Hoffmann,^{*,a} F. Sasse^b

^aDepartment of Organic Chemistry, University of Hannover, Schneiderberg 1 B, D-30167 Hannover, Germany

^bGBF, Gesellschaft für Biotechnologische Forschung mbH, Abt. Naturstoffbiologie, Mascheroder Weg 1, D-38124 Braunschweig, Germany

Fax +49 (0)511 762 3011; E-mail: hoffmann@mbox.oci.uni-hannover.de Received 31 August 1999

Abstract: A variety of analogues of phorboxazole C15-C26 segment have been prepared *via* three different reaction sequences. Structure activity investigations of the oxazole substitution pattern point to a pharmacophoric lead structure.

Key words: oxazole synthesis, drug discovery, natural products, SAR-studies

During the last decade a wide variety of 2,4-disubstituted oxazoles and thiazoles have been found in biologically active natural products.¹ The biosynthetic origin of 2,4-di-substituted oxazoles has been investigated on the disorazoles by Höfle, Reichenbach and their coworkers who have shown that serine is the nitrogen source for oxazoles in nature.² Thus oxazoles are masked amino acids. Unlike conventional zwitterionic α -amino acids the covalent oxazoles are capable of crossing the blood brain barrier. Intensive synthetic and pharmacological studies have also been carried out on the epothilones, containing a 2,4-disubstituted thiazole in their side chain.³

Figure 1

The phorboxazoles A and B **1a** and **1b** are two new highly cytotoxic macrolides with two 2,4-disubstituted oxazole rings.⁴ Starting from the corresponding C20-C26 aldehyde we have described two new synthetic routes to the C15-C26 segment of the phorboxazoles.⁵ Since we were interested in the discovery and design of potential pharmacophores, we synthesized a variety of analogues of the C15-C26 segment of the phorboxazoles. As starting material we required enantiopure tetrahydropyranyl ace-taldehydes.

Asymmetric syntheses of the esters (-)-3⁶ and (+)-6⁷ in multigram quantities have been described by us starting from the oxabicyclic ketones *meso*-2 and *rac*-5. Under typical reaction conditions (DIBAH reduction and subsequent PCC oxidation) the corresponding aldehydes (-)-4 and (+)-7^{7b} were obtained in good yield (Scheme 1).

Reaction conditions: *a*) 1. DIBAH, THF, rt, 4 h; 2. PCC, DCM, rt, 15 h, 73% over 2 steps; *b*) DIBAH, toluene, -78 °C, 1 h. 68% (ref. 7b). **Scheme 1**

Using the reaction conditions developed earlier⁵ aldehyde (-)-4 was converted into 5-methoxy oxazole ester (-)-8. The ester group and the heteroaromatic methoxy group were reduced in one step using LiAlH₄ to give oxazolyl methanol (-)-9. In contrast, aldehyde (+)-7 was transformed into the unsaturated nitrile. Rhodium(II) catalyzed cycloaddition with dimethyl diazomalonate gave oxazolyl ester (+)-10, which was reduced to the corresponding oxazole methanol (+)-11 in reasonable yield.

A third pathway towards analogues of the C15-C26 phorboxazole segment is shown in Scheme 3. Starting from aldehydes (-)-4 and (-)-12 we prepared α,β -unsaturated esters in excellent yield and with good stereocontrol (>90%; *E:Z* > 20:1) using the protocol of Masamune and Roush.⁸ Basic hydrolysis afforded the corresponding α,β unsaturated acids (-)-13 and (-)-14 quantitatively.

The oxazole ring was formed biomimetically using serine as nitrogen source:⁹ a peptide coupling of the α , β -unsaturated acids (-)-**13** and (-)-**14** with serine methyl ester using isobutyl chloroformate (IBCF) and N-methyl morpholine (NMM) gave the two corresponding amides, which were

Reaction conditions: *a*) NaH, DCM, rt, 2 h, 83% (*E*:*Z* = 2.7:1); *b*) LiAlH₄, THF, -78 °C, 3 h, 45%; *c*) 1. Ph₃PCHCN, toluene, LiCl, rt, 18 h, 94% (*E*:*Z* > 20:1); 2. (CO₂Me)₂CN₂, Rh₂(OAc)₄, CHCl₃, 15 h, reflux, 65%.

Scheme 2

subsequently cyclodehydrated to the oxazoline esters with Burgess reagent.¹⁰ The oxidation procedure developed at Bristol-Myers Squibb (Cu(II)/DBU/HMTA in DCM)¹¹ afforded oxazole esters (-)-**15** and (-)-**16**. The three-step reaction sequence (α , β -unsaturated acids $\rightarrow \alpha$, β -unsaturated oxazole ester) proceeded in good overall yield (> 20%).

The oxazole containing compounds were tested against pathogenic yeast *Candida albicans* and phytopathogenic fungus *Ustilago zeae*. No antifungal activity was observed. However, some interesting observations were made with regard to cytotoxic activity (Table 1).¹²

Discussion of structure-activity relationship (SAR). All substances show cytotoxic activity. However, the potency of the molecules is significantly dependent on the substitution pattern of the oxazole ring. In the search for a potential lead optimization, the following points should be borne in mind:

• 2,4,5-trisubstituted oxazole esters are potent down to *submicromolar* concentrations [(+)-10 and (-)-20 with $IC_{50} = 0.1 \ \mu g/ml$ and $IC_{50} = 0.5 \ \mu g/ml$).

• 2,4-disubstituted oxazole methanols (+)-11 and (+)-21 are one hundred times less cytotoxic than 2,4,5-trisubstituted oxazole esters (+)-10 and (-)-20.

Reaction conditions: *a*) 1. (EtO)₂P(O)CH₂CO₂Et, LiCl, DBU, MeCN, rt, 2 h, 91%; 2. LiOH, THF, H₂O, rt, 15 h, 100%; *b*) 1. isobutyl chloroformate, NMM, -25 °C, 15 min, then *L*-serine methylester hydrochloride, rt, 3 h, 75%; 2. Et₃N⁺SO₂N⁻CO₂Me, THF, reflux, 2 h, 71%; 3. CuBr₂, DBU, HMTA, DCM, rt, 30 min, 75%; *c*) 1. (EtO)₂P(O)CH₂CO₂Et, LiCl, DBU, MeCN, rt, 2 h, 86%; 2. LiOH, THF, H₂O, rt, 15 h, 100%; *d*) 1. isobutyl chloroformate, NMM, -25 °C, 15 min, then *L*-serine methylester hydrochloride, rt, 3 h, 72%; 2. Et₃N⁺SO₂N⁻CO₂Me, THF, reflux, 2 h, 71%; 3. CuBr₂, DBU, HMTA, DCM, rt, 75%.

Downloaded by: Collections and Technical Services Department. Copyrighted material

Scheme 3

• 2,4-disubstituted oxazole esters (-)-15 and (-)-16 are less active than 2,4,5-trisubstituted oxazole ester.

• less complex 2,4,5-trisubstituted oxazole esters (17 - 19) are less cytotoxic than the oxazole esters with tetrahydropyran side chain (+)-10 and (-)-20.

While the biological activity of the most potent substances (+)-**10** and (+)-**21** is considerably lower than that of well known cytotoxic molecules such as the epothilones A and B (IC₅₀ = 4 and 1 ng/ml for L929 cells) our compounds are structurally more simple. We think that 5-methoxy oxazole esters containing modified side chains at carbon C2 and C4 are molecules of interest in the area of cancer research.

Acknowledgement

We thank Professors G. Höfle and H. Reichenbach for a helpful discussion, the Deutsche Forschungsgemeinschaft for a PhD fellowship (P.W., Graduiertenkolleg *Chemische und Technische Grundlagen der Naturstofftransformation*) and the Fonds der Chemischen Industrie for support of our work.

Table 1 Biological Activity of Oxazoles

References and Notes

- (1) a) Norcross, R. D.; Paterson, I. Chem. Rev. 1995, 95, 2041;
 b) Wipf, P. Chem. Rev. 1995, 95, 2115.
- (2) a) Jansen, R.; Irschik, H.; Reichenbach, H.; Wray, V.; Höfle, G. *Liebigs Ann. Chem.* **1994**, 759; b) Irschik, H.; Jansen, R.; Gerth, K.; Höfle, G.; Reichenbach, H. *J. Antibiotics* **1995**, 48, 31.
- (3) a) Höfle, G.; Bedorf, N.; Steinmetz, H.; Schomburg, D.; Gerth, K.; Reichenbach, H. Angew. Chem. 1996, 108, 1671; Angew. Chem. Int. Ed. 1996, 35, 1567; b) Gerth, K.; Bedorf, N.; Höfle, G.; Irschik, H.; Reichenbach, H. J. Antibiotics

1996, *49*, 560; c) An excellent review on the epothilones is given in: Nicolaou, K. C.; Roschangar, F.; Vourloumis, D. *Angew. Chem.* **1998**, *110*, 2120-2153; *Angew. Chem. Int. Ed.* **1998**, *37*, 2014.

- (4) Searle, P. A.; Molinski, T. F. J. Am. Chem. Soc. 1995, 117, 8126; b) Searle, P. A.; Molinski, T. F.; Brzezinski, L. J.; Leahy, J. W. J. Am. Chem. Soc. 1996, 118, 9422; c) Molinski, T. F. Tetrahedron Lett. 1996, 37, 7879.
- (5) Wolbers, P.; Misske, A. M.; Hoffmann, H. M. R. *Tetrahedron Lett.* **1999**, *40*, 4527; see also Misske, A. M.; Hoffmann, H. M. R. *Tetrahedron* **1999**, *55*, 4315.
- (6) Wolbers, P.; Hoffmann, H. M. R. Tetrahedron 1999, 55, 1905.
- (7) a) Weiss, J. M.; Hoffmann, H. M. R. *Tetrahedron: Asymmetry* 1997, 8, 3913; b) Weiss, J. M. PhD thesis, Universität Hannover, 1997.
- (8) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. *Tetrahedron Lett.* **1984**, 25, 2183.
- (9) Wolbers, P.; Hoffmann, H. M. R. Synthesis 1999, 797. Further synthetic studies: Williams, D. R.; Clark, M. P. Tetrahedron Lett. 1999, 40, 2291; Williams, D. R.; Clark, M. P.; Berliner, M. A. Tetrahedron Lett. 1999, 40, 2287; Paterson, I.; Arnott, E. A. Tetrahedron Lett. 1998, 39, 7185; Pattenden, G.; Plowright, A. T.; Tornos, J. A.; Ye, T. Tetrahedron Lett. 1998, 39, 6099; Ye, T.; Pattenden, G. Tetrahedron Lett. 1998, 39, 319; Ahmed, F.; Forsyth, C. J. Tetrahedron Lett. 1998, 39, 183; Cink, R. D.; Forsyth, C. J. J. Org. Chem. 1997, 62, 5672; Lee, C. S.; Forsyth, C. J. Tetrahedron Lett. 1996, 37, 6449. Total synthesis of phorboxazole A: Forsyth, C. J.; Ahmed, F.; Cink, R. D.; Lee, C. S. J. Am. Chem. Soc. 1998, 120, 5597.
- (10) a) Atkins, G. M.; Burgess, E. M. J. Am. Chem. Soc. 1968, 90, 4744; b) Wipf, P.; Miller, C. P. Tetrahedron Lett. 1992, 33, 907.
- (11) Barrish, J. C.; Singh, J.; Spergel, S. H., Han, W.-C., Kissick, T. P.; Kronenthal, D. R.; Mueller, R. H. J. Org. Chem. 1993, 58, 4494.
- (12) The cytotoxic activity was investigated *in vitro* on mouse fibroblasts L929, *via* the MTT-test: Mosmann, T. J. *Immunolog. Methods* **1983**, *65*, 55.

Article Identifier:

1437-2096,E;1999,0,11,1808,1810,ftx,en;G13699ST.pdf