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Abstract—A facile synthetic method of 3,4-disubstituted 2,5-dihydrofurans and 2,5-dihydropyrroles starting from the Baylis–Hill-
man adducts was developed. The 2,5-dihydrofuran skeleton was constructed via the consecutive radical cyclization, hydrolysis,
halolactonization, and spontaneous decarboxylation strategy starting from the modified Baylis–Hillman adducts.
� 2005 Elsevier Ltd. All rights reserved.
Recently, we reported the synthesis of dihydrofuran and
dihydropyrrole derivatives by the well-known ring-clos-
ing metathesis (RCM) reaction of suitably substituted
Baylis–Hillman adducts.1 Dihydrofurans and dihydro-
pyrroles are found in a variety of natural products and
biologically active substances,2 and have been used as
important synthetic intermediates.3 The most versatile
synthesis of these valuable compounds involved the
ring-closing metathesis (RCM) reaction of the corre-
sponding enynes or dienes.1,4 Besides RCM reaction, a
variety of synthetic approaches have been published
for the synthesis of these valuable compounds.5

Recently, Shanmugam and Rajasingh have reported the
synthesis of tetrahydrofuran backbone by the radical
cyclization of triple bond containing cinnamate deriva-
tives, which were synthesized from the Baylis–Hillman
adducts.6 They used vinyl radical, which was formed
in situ via the hydrostannylation of the triple bond with
n-Bu3SnH.6 We were intrigued by the results and envi-
sioned that we could prepare dihydrofuran skeleton by
following the sequences shown in Scheme 1.

The starting material 2a was synthesized from the reac-
tion of Baylis–Hillman adduct 1a and propargyl alcohol
in the presence of H2SO4 in methylene chloride in 54%
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yield.6,7 Radical cyclization of 2a was carried out
according to the method of Shanmugam and Rajasingh
with n-Bu3SnH in the presence of catalytic amounts of
AIBN.6 After destannylation with aq HCl, we obtained
tetrahydrofuran derivative 3a in 62% yield. Compound
3a was converted into its acid derivative 4a by treatment
with LiOH in aq THF (61%).8 With this compound 4a
in our hand, we examined the synthesis of desired
dihydrofuran derivative 5a. Fortunately, the reaction
of 4a under the influence of typical iodolactonization
conditions (I2, NaHCO3, and THF) afforded the desired
3,4-disubstituted 2,5-dihydrofuran derivative 5a directly
in moderate yield.8 During the iodolactonization, cycli-
zation must occur selectively according to 4-exo-trig
mode to give the corresponding b-lactone intermediate
(I) as expected. The b-lactone intermediate (I) converted
directly into the final product 5a by the loss of CO2

spontaneously at room temperature. Direct synthesis
of 5a from the ester derivative 3a was found to be
inefficient.

Similarly, we obtained 3-bromomethyl-4-benzyl 2,5-
dihydrofuran (5b) in moderate yield (48%) from 4a
under the bromolactonization conditions (NBS, NaHCO3,
and THF).8 Encouraged by the successful results, we
synthesized structurally similar dihydrofurans and dihy-
dropyrroles and the results are summarized in Table 1.

As shown in Table 1, the reaction of 4b under the bromo-
lactonization conditions afforded 5c in 56% yield. When
we used 3-butyn-2-ol instead of propargyl alcohol from
the starting point, we obtained 2-methyl substituted
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Table 1. Synthesis of dihydrofurans and dihydropyrroles

Entry Substratesa lntermediatesb Methodc Products (%)
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6 4d B N

Br

5f (70)
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a Prepared according to the reported methods. Ref. 6 for 2a–c and Ref. 1 for 2d.
b (1) n-Bu3SnH (1.5 equiv), AIBN (cat), neat, 80 �C, 20 min, (2) 1 N HCI, ether, 20 min, (3) aq THF, LiOH (1.5 equiv), rt, 4 h, and (4) H3O

+.
cMethod A: I2 (3 equiv), NaHCO3 (3 equiv), THF, rt, 4 h. Method B: NBS (3 equiv), NaHCO3 (3 equiv), THF, rt, 4 h.
dThe first yield refer to the synthesis of 3 and the second one refer to the yield of 4 from 3.
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derivative 5d (56%), similarly. As a next trial, we exam-
ined the synthesis of N-tosyl-2,5-dihydropyrrole deriva-
tives. Introduction of tosylamide moiety at the primary
position of the Baylis–Hillman adducts and successive
propargylation with propargyl bromide gave the start-
ing material 2d.7 Radical cyclization of 2d, and succes-
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sive destannylation, hydrolysis, and finally halolactoni-
zation afforded the corresponding dihydropyrrole deriv-
atives 5e and f in 65% and 70% yields, respectively.8

In order to check the possibility for the synthesis of
6-membered dihydropyran derivatives, we made the
required starting material 2e by the reaction of 1a and
3-butyn-1-ol. Unfortunately, however, radical cyclization
of 2e was ineffective. Under the same reaction conditions
we obtained the cyclized compound 9 in only 17% yield.
Instead we obtained the simple reduction product 10 in
70% yield. The results were the same as those of recent
works by Shanmugam and Rajasingh.6c They did not ob-
tain the cyclized compound 9 at all. Thus, we modified
the reaction conditions in order to increase the cycliza-
tion product 9. To the refluxing solution of 2e in benzene,
we added a solution of n-Bu3SnH and AIBN (benzene) in
a dropwise manner and we could obtain the cyclized
product 9 in 45% yield together with the reduction prod-
uct 10 in 40% yield (Scheme 2). By using this compound
9, we examined the synthesis of 11 according to the same
strategy. Fortunately, we could obtain the corresponding
dihydropyran 11 in 59% yield from 9.8

Dihydrofurans and dihydropyrroles could be converted
into the corresponding furan and pyrrole derivatives as
shown in Scheme 3. As an example, consecutive reduc-
tion of 5f into 6 with n-Bu3SnH and the following oxida-
tion of 6 with DDQ (2,3-dichloro-5,6-dicyano-1,4-
benzoquinone) produced the pyrrole derivative 7.8

Treatment of 5b with DDQ generated furan 8 similarly
in 80% yield.8
In conclusion, we disclosed the successful results for the
synthesis of 3,4-disubstituted 2,5-dihydrofurans and 2,5-
dihydropyrroles starting from the Baylis–Hillman ad-
ducts. We are currently studying the synthesis of bicyclic
furo[2,3-b]furan derivatives by manipulating the exo-
methylene double bond of the intermediates.
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Compound 5c: 56%; viscous oil; IR (neat) 2958, 2850, 1489,
1092 cm�1; 1H NMR (CDCl3) d 3.47 (s, 2H), 4.09 (s, 2H),
4.45–4.49 (m, 2H), 4.77–4.81 (m, 2H), 7.11 (d, J = 8.4 Hz,
2H), 7.27 (d, J = 8.4 Hz, 2H); 13C NMR (CDCl3) d 22.99,
30.90, 77.20, 78.03, 128.88, 129.52, 129.76, 132.58, 135.78,
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3H), 3.39 (d, J = 15.3 Hz, 1H), 3.47 (d, J = 15.3 Hz, 1H),
3.82 (d, J = 9.9 Hz, 1H), 4.09 (d, J = 9.9 Hz, 1H), 4.19–4.37
(m, 2H), 5.02–5.14 (m, 1H), 7.16–7.33 (m, 5H); 13C NMR
(CDCl3) d �4.54, 20.48, 32.07, 76.54, 83.24, 126.62, 128.47,
128.71, 133.57, 135.97, 137.28.
Compound 5e: 65%; viscous oil; IR (neat) 2920, 2854, 1342,
1161 cm�1; 1H NMR (CDCl3) d 2.43 (s, 3H), 3.31 (s, 2H),
3.79 (s, 2H), 3.89 (s, 2H), 4.30 (s, 2H), 7.00–7.03 (m, 2H),
7.23–7.29 (m, 5H), 7.63 (d, J = 8.1 Hz, 2H); 13C NMR
(CDCl3) d �4.29, 21.52, 32.77, 56.77, 57.71, 126.77, 127.39,
128.42, 128.74, 129.22, 129.78, 133.83, 134.50, 136.57,
143.50.
Compound 5f: 70%; viscous oil; IR (neat) 2920, 1597, 1342,
1160 cm�1; 1H NMR (CDCl3) d 2.42 (s, 3H), 3.36 (s, 2H),
3.93 (s, 2H), 3.99 (s, 2H), 4.27 (s, 2H), 6.98–7.02 (m, 2H),
7.21–7.28 (m, 5H), 7.62 (d, J = 8.1 Hz, 2H); 13C NMR
(CDCl3) d 21.47, 23.86, 32.54, 56.33, 57.33, 126.76, 127.32,
128.18, 128.30, 128.70, 129.74, 133.74, 136.08, 136.58,
143.48.
Compound 4a: viscous oil; IR (neat) 3032, 1701 cm�1; 1H
NMR (CDCl3) d 2.92 (d, J = 13.8 Hz, 1H), 3.37 (d,
J = 13.8 Hz, 1H), 3.90 (d, J = 9.3 Hz, 1H), 4.22 (d, J =
9.3 Hz, 1H), 4.40 (d, J = 2.4 Hz, 1H), 4.42 (d, J = 2.4 Hz,
1H), 5.19 (t, J = 1.8 Hz, 1H), 5.40 (t, J = 2.1 Hz, 1H), 7.18–
7.27 (m, 5H), 10.67 (br s, 1H); 13C NMR (CDCl3) d 42.25,
57.90, 71.82, 73.89, 107.58, 127.18, 128.63, 129.93, 137.02,
149.73, 178.51.
Compound 4b: white solid, mp 72–75 �C; IR (neat) 2993,
1701 cm�1; 1H NMR (CDCl3) d 2.90 (d, J = 13.8 Hz, 1H),
3.31 (d, J = 13.8 Hz, 1H), 3.88 (d, J = 9.6 Hz, 1H), 4.22 (d,
J = 9.6 Hz, 1H), 4.40 (d, J = 2.4 Hz, 1H), 4.42 (d, J =
2.4 Hz, 1H), 5.20 (t, J = 2.0 Hz, 1H), 5.37 (t, J = 2.2 Hz,
1H), 7.14 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H),
11.33 (br s, 1H); 13C NMR (CDCl3) d 41.24, 57.56, 71.56,
73.59, 107.55, 128.54, 131.09, 132.94, 135.19, 149.20,
178.10.
Compound 4c: viscous oil; IR (neat) 2978, 1697 cm�1; 1H
NMR (CDCl3) d 1.35 (d, J = 6.3 Hz, 3H), 2.91 (d,
J = 13.8 Hz, 1H), 3.28 (d, J = 13.8 Hz, 1H), 4.01 (d,
J = 9.6 Hz, 1H), 4.08 (d, J = 9.6 Hz, 1H), 4.42–4.50 (m,
1H), 5.08 (d, J = 2.4 Hz, 1H), 5.36 (d, J = 2.1 Hz, 1H),
7.20–7.30 (m, 5H), 9.86 (br s, 1H); 13C NMR (CDCl3) d
19.95, 42.77, 58.22, 71.02, 77.85, 107.35, 126.94, 128.33,
130.03, 136.88, 154.45, 178.35.
Compound 4d: white solid, mp 51–53 �C; IR (neat) 3032,
1705, 1161 cm�1; 1H NMR (CDCl3) d 2.42 (s, 3H), 2.92 (d,
J = 13.8 Hz, 1H), 3.28 (d, J = 13.8 Hz, 1H), 3.37 (d, J =
9.9 Hz, 1H), 3.44 (d, J = 9.9 Hz, 1H), 3.70 (d, J = 13.8 Hz,
1H), 4.02 (d, J = 13.8 Hz, 1H), 5.18 (s, 1H), 5.41 (s, 1H),
7.14–7.32 (m, 7H), 7.67 (d, J = 7.8 Hz, 2H), 10.15 (br s,
1H); 13C NMR(CDCl3) d 21.74, 42.67, 52.21, 53.03, 57.42,
110.52, 127.42, 128.15, 128.76, 129.90, 129.99, 132.13,
136.24, 144.15, 145.62, 177.67.
Compound 7: 70%; viscous oil; 1H NMR (CDCl3) d 1.85 (d,
J = 0.9 Hz, 3H), 2.41 (s, 3H), 3.66 (s, 2H), 6.80 (s, 1H), 6.90
(d, J = 0.9 Hz, 1 H), 7.10 (d, J = 8.4 Hz, 2H), 7.18–7.31 (m,
5H), 7.70 (d, J = 8.4 Hz, 2H).
Compound 8: 80%; viscous oil; 1H NMR (CDCl3) d 3.85 (s,
2H), 4.18 (s, 2H), 7.14 (s, 1H), 7.19–7.33 (m, 5H), 7.45 (s,
1H); 13C NMR (CDCl3) d 22.82, 29.53, 121.97, 123.87,
126.41, 128.53, 128.59, 139.11, 141.46, 142.11.
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Compound 9: 45%; viscous oil; IR (neat) 1107, 1261, 1732,
2951 cm�1; 1H NMR (CDCl3) d 2.30–2.35 (m, 1H), 2.45–
2.52 (m, 1H), 3.04 (d, J = 13.4 Hz, 1H), 3.22 (d, J =
13.4 Hz, 1H), 3.48 (d, J = 11.3 Hz, 1H), 3.66 (s, 3H), 3.67–
3.84 (m, 2H), 3.97 (d, J = 11.3 Hz, 1H), 5.01 (s, 1H), 5.04 (s,
1H), 7.09–7.29 (m, 5H); 13C NMR (CDCl3) d 34.27, 38.88,
51.77, 54.64, 69.54, 72.08, 110.21, 126.79, 128.21, 130.08,
136.34, 145.69, 172.78.
Compound 10: 40%; viscous oil; 1H NMR (CDCl3) d 2.36–
2.44 (m, 2H), 3.61 (t, J = 6.6 Hz, 2H), 3.84 (s, 3H), 4.29 (s,
2H), 5.03–5.16 (m, 2H), 5.80–5.94 (m, 1H), 7.36–7.56 (m,
5H), 7.93 (s, 1H); 13C NMR (CDCl3) d 34.10, 52.15, 64.79,
70.06, 116.33, 128.48, 128.70, 129.34, 129.91, 134.74,
135.32, 144.67, 168.13.
Compound 11: 59%; viscous oil; IR (neat) 1099, 1261, 1454,
2924 cm�1; 1H NMR (CDCl3) d 2.35 (t, J = 5.7 Hz, 2H),
3.44 (s, 2H), 3.82 (t, J = 5.7 Hz, 2H), 3.96 (s, 2H), 4.10 (s,
2H), 7.16–7.32 (m, 5H); 13C NMR (CDCl3) d 27.26, 32.69,
34.63, 64.60, 68.02, 126.49, 126.88, 128.31, 128.66, 135.06,
138.08.
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