
Tetrahedron Letters, Vo1.32, No 31, pp 3755-3758, 1991 

Pmted m Great Britam 
CM-4039/91 $3 00 - 
Pergamon Press plc 

DOUBLE (INTERNAL/EXTERNAL) ALKYNE INSERTION REACTIONS 

OF a-DIAZOKETONES 

Thomas R Hoye* and Christopher .I. Dinsmorel 

Department of Chemistry 

University of Minnesota 

Minneapolis, Minnesota 55455 

Summary: Acetylenic a-diazoketone 5, when treated with Rh2(0Ac)4 and several different alkynes, gives 

alkyne iasertronicyclopropenation products Subsequenr catulync nng opening reactions demonstrate a high1.y 

regioselective net double alkyne insernon process and a new dihydropentalenone synthesis 

The propensity for a-diazoketones 1 to undergo internal insertion of the tethered alkyne unit upon exposure 

to catalyhc dirhcdium tetraacetate (1 + 2 -+ 3) has attracted recent interest. 2 The extent of tnetal involvement 

throughout this cyclolsomenzation has been investigated, as well as the ability of the resultant vinylcarbene 

equivalent 33 to perform further intramolecular transformations such as cyclopropanation, C-H insertion, ylide 

rearrangement, and 1,3-dipole formation. In none of these studies, however, has 3 been trapped by a second 

alkyne utnt, a process which should give the butadlenylcarbene equivalent 4. In this paper we report that a 

second external insertion can occur, providmg a highly regioselective double cychzation straregy. 

R 3 - Rh2(OAc), R 
--+ 

= 
/ Internal External 

x 0 InsertIon “Fa “R IS- 0 Insertion 
33 

1 X=N2 3 
2 X = “Rh” 

This study focused on reactrons of the readily prepared dtazoketone .S4 (Scheme 1). A solution of 5 in 2- 

butyne (0.07 M) was stirred with Rhz(OAc)d (5 mol%) at 25 ‘C under N2 atmosphere and concentrated after 4X 

h Purification by SioZ chromatography yielded cyclopropene 6 (40%) and byproducts 7 (5%; from sequential 

proximal alkyne carbon activation and oxidation) and 8 (1%: from sequenual proximal alkyne carbon activation 

and l&hydrogen migration) The formation of 6 - 8 and the absence of 9 - 11 likely reflect the greater steric 

accessibility of 2-butyne to the 5-membered exocyclic intermediate “carbene” (cf., 3) than to its isomeric 6- 

membered endccyclic intermediate 
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Scheme 1 
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In light of a recent account of Rh(II) carboxylate mediated cyclopropene rearrangements,5 we resubjected 

6 to RhZ(OAc)d (10 mol%) in refluxing benzene (0.07 M) for 42 h. Monitoring this transformation by either 

CC/MS or ‘H NMR analysis showed a very clean isomerization to a single product. Filtration of the solution 

through SiO2 and concentration gave the 3,ddihydro-1(2H)-pentalenone derivative 12 (51% 1. A control 

experiment showed that 6 was unchanged when similarly heated for 40 h m the absence of catalyst. 

In order to probe the rcgiosclectivity of this rearrangement, 5 was converted to various other 

cyclopropenes (Scheme 2). Reaction with 2-pentyne at RT gave 13 (33% after MPLC), which was slowly but 

efficiently converted (required -80 h) at 80 “C to a 6:l SIR-inseparable mixture (65%) of regoisomeric penta- 

lenones 14 and 15. The use of 1-heptyne as solvent resulted in several cycloadducts after a 22 h reaction time 

at RT. The expected cyclopropene 16 (28%) was accompanied by the skeletal isomer 17 (9%), the pentalenonc 

18 CT%), and the previously observed diketone 7 (10%). This more facile formation of 18 suggests that the 
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ease of these cyclopropene rearrangements is sensitive to steric access of the catalyst to the cyclopropene K- 

bond. In a separate experiment 16 was catalytically converted (at 80 “C) exclusively to 18 (88%), denoting a 

possible electronic as well as steric origin to the regioselectivity (vi& i&z). Upon similar treatment 17 gave 19 

(cleanly by CC/MS) via ring opening and subsequent insertion into a methyl C-H bond.5!6 

Although many intermediates may be envisioned along the pathway from cyclopropenes like 20 (Scheme 

3) to cyclopentadienes like 24, a very plausible mechanism is analogous to that suggested by Doyle and 

Miiller.5 The manifold is entered by regioselective electrophilic attack by the bulky Rh(II) catalyst n-arts to the 

cyclopentenone ring and ips~ to the smaller group (Rs) to give 21a. The less stable cyclopropyl cation 21b 

contains enhanced steric destabilizations between the acetate ligands of the catalyst and the larger group (RI_), as 

well as between the cis-oriented RL and cyclopentenone groups. Electrocyclic ring opening of 21a could give 

etther of the butadienylogous a-ketocarbenes E-22 or Z-22, but only the latter can proceed to 24. presumably 

via 23. Most bkely, a rapid equilibrium among all of the possible regio- and stereoisomeric carbene 

intermediates is accompanied by preferential consumption of Z-22. 
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The results demonstrate that alkynes are useful traps for vinylcarbene equivalents generated in the 

intramolecular alkyne insertion reaction of a-diazoketones. Moreover, the resultant cyclopropenes undergo 

further interesting and efficient metal-mediated transformations. Finally, the success of this double alkyne 

insertion process suggests the possibility of related internal/internal and external/internal versions which we are 

currently investigating. 
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