DOUBLE (INTERNAL/EXTERNAL) ALKYNE INSERTION REACTIONS OF α -DIAZOKETONES

Thomas R Hoye* and Christopher J. Dinsmore¹

Department of Chemistry University of Minnesota Minneapolis, Minnesota 55455

Summary: Acetylenic α -diazoketone 5, when treated with Rh2(OAc)4 and several different alkynes, gives alkyne insertion/cyclopropenation products Subsequent catalytic ring opening reactions demonstrate a highly regioselective net double alkyne insertion process and a new dihydropentalenone synthesis

The propensity for α -diazoketones 1 to undergo internal insertion of the tethered alkyne unit upon exposure to catalytic dirhodium tetraacetate $(1 \rightarrow 2 \rightarrow 3)$ has attracted recent interest.² The extent of metal involvement throughout this cycloisomerization has been investigated, as well as the ability of the resultant vinylcarbene equivalent 3³ to perform further intramolecular transformations such as cyclopropanation, C-H insertion, ylide rearrangement, and 1,3-dipole formation. In none of these studies, however, has 3 been trapped by a second alkyne unit, a process which should give the butadienylcarbene equivalent 4. In this paper we report that a second *external* insertion can occur, providing a highly regioselective double cyclization straregy.

This study focused on reactions of the readily prepared diazoketone 5^4 (Scheme 1). A solution of 5 in 2butyne (0.07 M) was stirred with Rh₂(OAc)₄ (5 mol%) at 25 °C under N₂ atmosphere and concentrated after 48 h Purification by SiO₂ chromatography yielded cyclopropene 6 (40%) and byproducts 7 (5%; from sequential proximal alkyne carbon activation and oxidation) and 8 (1%; from sequential proximal alkyne carbon activation and 1,2-hydrogen migration) The formation of 6 - 8 and the absence of 9 - 11 likely reflect the greater steric accessibility of 2-butyne to the 5-membered exocyclic intermediate "carbene" (cf., 3) than to its isomeric 6membered endocyclic intermediate

In light of a recent account of Rh(II) carboxylate mediated cyclopropene rearrangements,⁵ we resubjected 6 to Rh₂(OAc)₄ (10 mol%) in refluxing benzene (0.07 M) for 42 h. Monitoring this transformation by either GC/MS or ¹H NMR analysis showed a very clean isomerization to a single product. Filtration of the solution through SiO₂ and concentration gave the 3,6-dihydro-1(2*H*)-pentalenone derivative **12** (51%). A control experiment showed that **6** was unchanged when similarly heated for 40 h in the absence of catalyst.

In order to probe the regioselectivity of this rearrangement, **5** was converted to various other cyclopropenes (Scheme 2). Reaction with 2-pentyne at RT gave **13** (33% after MPLC), which was slowly but efficiently converted (required ~80 h) at 80 °C to a 6:1 SiO₂-inseparable mixture (65%) of regioisomeric pentalenones **14** and **15**. The use of 1-heptyne as solvent resulted in several cycloadducts after a 22 h reaction time at RT. The expected cyclopropene **16** (28%) was accompanied by the skeletal isomer **17** (9%), the pentalenone **18** (7%), and the previously observed diketone **7** (10%). This more facile formation of **18** suggests that the

ease of these cyclopropene rearrangements is sensitive to steric access of the catalyst to the cyclopropene π bond. In a separate experiment **16** was catalytically converted (at 80 °C) exclusively to **18** (88%), denoting a possible electronic as well as steric origin to the regioselectivity (*vide infra*). Upon similar treatment **17** gave **19** (cleanly by GC/MS) via ring opening and subsequent insertion into a methyl C-H bond.^{5,6}

Although many intermediates may be envisioned along the pathway from cyclopropenes like 20 (Scheme 3) to cyclopentadienes like 24, a very plausible mechanism is analogous to that suggested by Doyle and Müller.⁵ The manifold is entered by regioselective electrophilic attack by the bulky Rh(II) catalyst *trans* to the cyclopentenone ring and *ipso* to the smaller group (R_S) to give 21a. The less stable cyclopropyl cation 21b contains enhanced steric destabilizations between the acetate ligands of the catalyst and the larger group (R_L), as well as between the *cis*-oriented R_L and cyclopentenone groups. Electrocyclic ring opening of 21a could give either of the butadienylogous α -ketocarbenes *E*-22 or *Z*-22, but only the latter can proceed to 24, presumably via 23. Most likely, a rapid equilibrium among all of the possible regio- and stereoisomeric carbene intermediates is accompanied by preferential consumption of *Z*-22.

Scheme 3

The results demonstrate that alkynes are useful traps for vinylcarbene equivalents generated in the intramolecular alkyne insertion reaction of α -diazoketones. Moreover, the resultant cyclopropenes undergo further interesting and efficient metal-mediated transformations. Finally, the success of this double alkyne insertion process suggests the possibility of related internal/internal and external/internal versions which we are currently investigating.

Acknowledgment. This investigation was supported by grant GM-38854 awarded by the DHHS. We thank Rohm & Haas and Glaxo for Fellowship support.

References and Notes

- Rohm & Haas Graduate Fellow, 1989-1990. Graduate Fellow of the ACS Division of Organic Chemistry, sponsored by Glaxo Research Laboratories, 1990-1991.
- a) Padwa, A.; Krumpe, K. E.; Zhi, L. *Tetrahedron Lett.* 1989, 30, 2633. b) Padwa, A.; Chiacchio, U.;
 Garreau, Y.; Kassir, J. M.; Krumpe, K. E.; Schofftstall, A. M. J. Org. Chem. 1990, 55, 414. c) Hoye,
 T. R.; Dinsmore, C. J.; Johnson, D. S.; Korkowski, P. F. J. Org. Chem. 1990, 55, 4518. d) Padwa,
 A.; Krumpe, K. E.; Garreau, Y.; Chiacchio, U. J Org. Chem. 1990, 56, 2523.
- Migration of Rh₂(OAc)₄ to the distal alkyne carbon is believed not to occur, hence the use of the zwitterionic structure 3: Hoye, T. R.; Dinsmore, C. J. J. Am. Chem. Soc. in press.
- The spectroscopic properties of all compounds reported herein are in full agreement with the assigned structures.⁷ Yields have not been optimized.
- 5) Müller, P.; Pautex, N.; Doyle, M. P.; Bagheri, V. Helv. Chim Acta 1990, 73, 1233.
- 6) Ceccherelli, P.; Curini, M.; Marcotullio, M C.; Rosati, O.; Wenkert, E; J Org. Chem. 1990, 55, 311.
- Spectroscopic data for compounds; 6: ¹H NMR (CDCl₃, 200 MHz): δ 5.84 (t, J = 1.5 Hz, CHCO), 2.03 7) $(d, J = 1.5 \text{ Hz}, CH_2CMe_2)$, 1.99 (s, $CH_3C=CCH_3)$, 1 29 (s, $CH_3CC=CH)$, and 1 05 [s, $C(CH_3)_2$]. IR (CDCl₃): v(C=O) 1690 cm⁻¹. HRMS (CI, NH₃): Anal. calcd for C₁₃H₁₈O+H^{\oplus} 191.1436. Found 191.1437. 12: ¹H NMR (CDCl₃, 200 MHz): δ 2.97 (m, CH₃C<u>H</u>), 2.51 (bd, J = 14 Hz, C<u>H</u>₂H_bCMe₂), 2.48 (bd, J = 14 Hz, $CH_{aH_b}CMe_2$), 1.96 [bs, $CH_3CHC(CH_3)$], 1.86 (bs, $CH_3CHC=CCH_3$), 1.25 (d, J = 7.7 Hz, CH₃CH), and 1.17 [s, C(CH₃)₂]. IR (CDCl₃): v(C=O) 1660 cm⁻¹ HRMS (CI, NH₃): Anal. calcd for C13H18O+H[⊕] 191.1436. Found 191.1428. 14: ¹H NMR (CDCl₃, 300 MHz): δ 3.12 (m, CH₃C<u>H</u>), 2.5 (m, C<u>H₂</u>CMe₂), 2.46 (dq, J = 14.6 and 7.6 Hz, CH₃C<u>H_aH_b)</u>, 2.30 (dq, J = 14.6 and 7.6 Hz, $CH_3CH_3H_b$, 1.87 (bs, C=CCH₃), 1.20 (d, J = 7.9 Hz, CH₃CH), 1.17 [s, C(CH₃)₂], and 1.08 (t, J = 7.6 Hz, CH₃CH₂). GC/MS (EI): m/z 204 (43). 15: ¹H NMR (CDCl₃, 300 MHz): δ 3.05 (m, CH₂CH), 2.5 (m, CH₂CMe₂), 1.94 [bs, CH₂CHC(CH₃)], 1.87 [bs, CH₂CHC=C(CH₃)], 0.70 (t, J = 7.4 Hz, CH₃CH₂), other signals obscured by resonances from 14 GC/MS (EI): m/z 204 (48). 16 (selected data): ¹H NMR (CDCl₃, 200 MHz): δ 6.68 [bs, (CH₂)₄C=C<u>H</u>], 5.89 (dd, J = 1.4 and 1.4 Hz, CHCO), and 1.37 (s, CH₃CC=CHCO). IR (CDCl₃): v(C=O) 1680 cm⁻¹. HRMS (CI, NH₃): Anal. calcd for C₁₆H₂₄O+H[⊕] 233.1905. Found 233.1900. 17 (selected data): ¹H NMR (CDCl₃, 200 MHz): δ 6.73 [bs, (CH₂)₄C=C<u>H</u>], 5.87 (bs, C<u>H</u>CO), and 1.54 (d, J = 1.2 Hz, C<u>H₃</u>C=CH). IR (CDCl₃) ν (C=O) 1650 cm⁻¹. HRMS (CI, NH₃): Anal. calcd for $C_{16}H_{24}O+H^{\oplus}$ 233.1905. Found 233.1887. 19: ¹H NMR (CDCl₃, 200 MHz): δ 5.66 (bs, CHCO), 2.65-2.69 (m, C=CCH₂CH₂C=C), 2.52-2.57 (m, C=CCH₂CH₂C=C), 2.42 (bs, CH₂CMe₂), 2.29 [bt, J = 7 Hz, CH₂(CH₂)₃CH₃], 1.49 [m, $CH_2(CH_2)_2CH_3$, 1.23-1.35 (m, $CH_2CH_2CH_3$), 1.07 [s, $C(CH_3)_2$], and 0.89 (t, J = 6.7 Hz, CH_2CH_3). IR (CDCl₃): v(C=O) 1640 (br) cm⁻¹. GC/MS (EI)⁻ m/z 232 (50).

(Received in USA 18 February 1991)