Recognition of synthetic deoxy and deoxyfluoro analogs of the acceptor α -L-Fuc p-(1 \rightarrow 2)- β -D-Gal p-OR by the blood-group A and B gene-specified glycosyltransferases

Todd L. Lowary and Ole Hindsgaul *

Department of Chemistry, University of Alberta Edmonton, Alberta, Canada T6G 2G2 (Received January 5th, 1993; accepted in revised form April 20th, 1993)

ABSTRACT

The disaccharide α -L-Fuc p- $(1 \rightarrow 2)$ - β -D-Gal p-O-(CH₂)₇CH₃ (6), is an acceptor for both glycosyltransferases responsible for the biosynthesis of the A and B blood-group antigens. These enzymes transfer GalNAc and Gal, respectively, with an α -linkage to OH-3 of the Gal residue in 6. All six possible deoxy and deoxyfluoro analogs of 6, with modifications on the target Gal residue, were chemically synthesized and kinetically evaluated as both substrates and inhibitors for the A and B glycosyltransferases. Both enzymes will tolerate replacement of the hydroxyl groups at the 3 and 6 positions of the Gal residue. Substitution of OH-4 of the Gal residue, however, abolishes recognition by these glycosyltransferases. The 6-deoxy and 6-fluoro compounds are substrates for both enzymes while the 3-deoxy and 3-fluoro compounds are competitive inhibitors, with K_i values in the range 14–110 μ M. Kinetic constants have been determined for the 6-deoxy and 6-fluoro derivatives.

INTRODUCTION

It is now widely recognized that carbohydrates fulfill a number of biologically important roles aside from the energy storage and structural functions historically assigned to them. Reports over the last fifteen years have documented that carbohydrates serve as recognition factors for a number of cellular processes, during both normal cell development and tumor progression¹⁻³. The observation that, during carcinogenesis, cell-surface oligosaccharides change in structure has prompted much study on the glycosyltransferases since this class of enzyme is responsible for biological glycosidic bond formation. The activity of these enzymes may therefore be modulated in cancerous cells. Our work in this area has been aimed at developing specific glycosyltransferase inhibitors as tools for studying the effects of modified cell glycosylation⁴⁻⁸. Additionally, these inhibitors could be potentially useful as anti-cancer drugs. In this paper we report our findings in

^{*} Corresponding author.

R = carbohydrate residue attached to a glycoprotein or glycolipid

Fig. 1. Biosynthesis of the A and B glood-groups antigens from an O (H) antigen 1.

probing the active site of the glycosyltransferases which are responsible for the biosynthesis of the A and B blood-group antigens.

The trisaccharides α -D-Gal pNAc- $(1 \rightarrow 3)[\alpha$ -L-Fuc p- $(1 \rightarrow 2)]$ - β -D-Gal p-OR (4) and α -D-Gal p- $(1 \rightarrow 3)[\alpha$ -L-Fuc p- $(1 \rightarrow 2)]$ - β -D-Gal p- $(1 \rightarrow 4)$ -OR (5) (where R is a glycoprotein or glycolipid), respectively the A and B blood-group antigens, are ubiquitous biological oligosaccharide structures found not only on the surfaces of red blood cells but also on cells from other tissues and in the cytoplasm⁹. Fig. 1 shows the biosynthetic pathway for these antigens which involves the transfer of either N-acetylgalactosamine or galactose from their corresponding UDP derivatives (2 and 3) to the galactosyl OH-3 group of the O disaccharide antigen 1. The enzymes responsible for these transfers are an α - $(1 \rightarrow 3)$ -N-acetylgalactosaminyltransferase (A-transferase, EC 2.4.1.40) and an α - $(1 \rightarrow 3)$ -galactosyltransferase (B-transferase, EC 2.4.1.37). The widespread occurrence of these carbohydrate antigens as well as the reports that levels of similar α - $(1 \rightarrow 3)$ -Gal-transferases are elevated in patients with Ehrlich carcinoma¹⁰ and in mouse teratocarcinoma¹¹ led us to initiate this study. The amino acid sequences of the A- and B-transferases are known to differ at only four residues¹² and they have been recently cloned¹²⁻¹⁴.

Fig. 2. Hypothetical two-step double-displacement transfer mechanism for the A- and B-transferases: X = OH or NHAc.

While both are morphologically similar to other known glycosyltransferases¹⁵ (a cytoplasmic tail, transmembrane region, and catalytic domain located in the Golgi lumen) they differ from most glycosyltransferases in that they transfer the sugar residue with overall retention of configuration at the anomeric center. The α -sugar nucleotide yields an α -glycosidic linkage.

As a working model (Fig. 2) we hypothesized that the salient features of the transfer involve a two-step double-displacement mechanism. This type of mechanism has been suggested for a number of other enzymes including the glycosidases^{16,17}. The first step would be the displacement of UDP from the sugar nucleotide by a nucleophile located in the active site thus forming a covalent glycosyl-enzyme intermediate. Transfer of the sugar residue to the growing oligosaccharide would then be completed by expulsion of the enzyme from the glycosyl-enzyme intermediate by the OH-3 of the acceptor Gal-residue. The hypothesized presence of an essential nucleophile on the enzyme provides a target for possible enzyme deactivation via covalent reaction with an acyl, alkyl, or other group.

The minimum structure recognized by both enzymes is the H disaccharide, α -L-Fuc p-(1 \rightarrow 2)- β -D-Gal p-OR⁹. In the present work we chose R to be octyl (6) because the presence of this hydrophobic aglycon simplified the enzymatic assays by allowing the use of reverse phase (C₁₈) cartridges to separate and quantitate the product¹⁸. In order to determine the substrate specificity of these enzymes we synthesized a number of disaccharide analogs of 6 for use as active-site probes. The results of these studies should provide insight into the functional groups present in the active site thus facilitating rational inhibitor design. Below we discuss the preparation and enzymatic evaluation of disaccharides in which the 3, 4, and 6 hydroxyl groups of the galactosyl moiety have been replaced, independently, with hydrogen (7–9) and fluorine (10–12). Substitutions of hydroxyl groups by either H or F are sterically conservative and can thus provide insights into whether the hydroxyl group removed was involved in critical hydrogen bond interactions with the protein combining site^{6,19–21}.

RESULTS AND DISCUSSION

Chemical synthesis.—The chemical synthesis of compounds 6–12 followed established synthetic strategy. The general synthetic scheme involved first the synthesis of a suitably protected galactose residue with OH-2 free, fucosylation under the halide ion conditions developed by Lemieux and co-workers²², and then deprotection.

Preparation of the unmodified acceptor 6 began with the regioselective benzylation of octyl β -D-galactopyranoside (13)²³ with dibutyltin oxide and benzyl bromide to afford 14 in a 60% yield. Benzylidenation of 14 by reaction with zinc chloride and benzaldehyde gave 15 (86%) which was fucosylated using 2,3,4-tri-Obenzyl- α -L-fucopyranosyl bromide (16) to give the protected disaccharide 17 (67%). Hydrogenation of 17 gave 6 (90%).

The 3-deoxy analog was prepared by regioselective allylation of 13, under conditions similar to those for the synthesis of 14, to give 18 (60%). The remaining hydroxyl groups were protected as benzyl ethers and then the allyl group was removed to provide 20 (70% over two steps). Formation of the xanthate 21 (86%), radical deoxygenation and hydrogenation gave octyl 3-deoxy- β -D-xylo-hexopyranoside 23 (62% over the two steps). Benzylidenation of 23 with zinc chloride and benzaldehyde gave 24 (83%) which was converted to 7 by fucosylation and subsequent deprotection (76% from 24).

The synthesis of the 4-deoxy derivative began with allylation of 15 to give 26 (90%). Regioselective benzylidene ring opening with sodium cyanoborohydride afforded the 4-hydroxy derivative 27 (81%) which was then converted to the xanthate 28 (80%). Radical reduction proceeded in good yield (85%) to give 29. Deallylation then provided 30 (86%) which was ready for fucosylation. After fucosylation it was not possible to obtain the protected disaccharide in pure form so the partially purified product was debenzylated to produce 8 (39% from 30) which was purified and characterized.

Benzylidene ring opening of 32 with N-bromosuccinimide and subsequent reduction of the 6-bromo derivative 33, gave the methyl 6-deoxygalactoside 34 in 69% overall yield. Acetylation (96%) followed by treatment of 35 with dichloromethyl methyl ether as described by Glaudemans and Kovac²⁴ gave chloride 36 (78%) which was glycosylated with octanol, using silver triflate activation, to provide 37 (88%). This fully protected derivative was converted into alcohol 38 (90%) by selective deacetylation with methanolic hydrogen chloride. Fucosylation and then deprotection afforded the 6-deoxy derivative 9 (65% 3 steps).

Reaction of peracetate 40 with hydrogen bromide in acetic acid gave bromide 41 (80%) which was reacted with octanol and silver triflate to give glycoside 42 (62%). Zemplén deacetylation produced 43 which was then converted to benzylidene acetal 44 (90% over two steps). The synthesis of the 3-fluoro derivative 10 was completed by fucosylation of 44 (89%) followed by hydrogenation (82%).

The synthesis of the 4-fluoro derivative began with octyl β -D-glucopyranoside which was converted to the fully protected derivative 47 in two steps in 76% yield. Benzylidene ring opening as described for the conversion of 26 to 27, gave the 4-hydroxy derivative 48 (88%). Alcohol 48 was fluorinated, via its 4-triflate, by

reaction with tetrabutylammonium fluoride (80%). The fluoro galactoside 49 was converted to 50 by hydrogenation (85%) and then protected as the dibenzoate 52 using dibutyltin oxide and benzoyl chloride (37%). A significant amount (50%) of the monobenzoate 51 was also present, but this could be easily converted to 52 by treatment with benzoyl chloride and pyridine (76%). To complete the synthesis, alcohol 52 was fucosylated and deprotected to afford 11 (74\%, over two steps).

Bromide 56 was prepared by treatment of 6-deoxy-6-fluoro-1,2:3,4 di-O-isopropylidene- α -D-galactopyranose, 54, first with 90% trifluoroacetic acid, then acetic

anhydride and pyridine, and finally hydrogen bromide in acetic acid (three steps, 67%). Glycosylation (73%) and then Zemplén deacetylation (90%) gave 58. The 3,4-diol was protected as a benzylidene acetal by treatment with dimethoxytoluene and p-toluenesulfonic acid to give 59 as a mixture of easily separable diastereomers (85%). Fucosylation of 59 (90%) and deprotection gave the 6-fluoro analog 12 (90%).

Enzymatic testing.—The activity of the synthetic disaccharide derivatives described here were determined by a radioactive assay technique which quantitated the rate of transfer of either ³H-labeled Gal or GalNAc, from the corresponding

commercial sugar nucleotides, to hydrophobic octyl acceptors as previously described¹⁸. Preliminary screening (Table I) of compounds 7–12 as potential acceptors for the GalNAc and Gal transferases in human serum showed that only the disaccharides with an intact 3,4-diol were recognized as substrates. In all cases the relative rates were less than those obtained for the native H disaccharide, 6. While the 3 modified derivatives are unable to react because of the lack of the galactosyl 3-hydroxyl group, the lack of activity of the 4 modified derivatives demonstrated that this hydroxyl group is crucial for recognition by these enzymes. Calculation of kinetic constants (Table II) for the 6-deoxy and 6-fluoro compounds showed that the V_{max} does not change significantly with the B-transferase, and only slightly so

for the A-transferase. However, the K_m of these compounds with both enzymes are significantly higher than for the corresponding natural sequence 6.

Results of the evaluation of disaccharides modified at the 3 and 4 positions as potential inhibitors are presented in Table III. The 4-fluoro and 4-deoxy derivatives were, as before, inactive demonstrating that the galactosyl 4-hydroxyl group is crucial for binding to the enzyme. Table IV shows the calculated constants for competitive inhibitors 7 and 10, the 3-deoxy and 3-fluoro analogs, which were in the range of 14-110 μ M. A comparison of these values with the K_m of 6 provides a useful qualitative insight into what groups the enzymes require. A quantitative comparison is not meaningful for enzymes such as these which likely proceed though a two-step mechanism since K_m values need not represent true dissocia-

TABLE I

Substrate	A-Transferase		B-Transferase	
	DPM	Activity (%)	DPM	Activity (%)
Native disaccharide (6)	3236	100	3467	100
3-Deoxy (7)	43	0	69	0
4-Deoxy (8)	47	0.1	85	0.2
6-Deoxy (9)	1161	35	835	22
3-Fluoro (10)	45	0.3	81	0.1
4-Fluoro (11)	39	0	66	0
6-Fluoro (12)	1404	43	1084	30
No acceptor	43		78	

Relative acceptor activity of disaccharides 6-12 towards the blood group A (GalNAc)- and B (Gal)-transferases in human serum ^a

^a Compounds 6-12 were present at a concentration of 2.5 μ M for the A-transferase and 10 μ M for the B-transferase. Experiments were performed in at least duplicate with variation in replicates of less than 10%.

TABLE II

Calculated kinetic constants a for acceptors 6, 9, and 12 with the blood group A (GalNAc)- and B (Gal)-transferases in human serum

A-Transferas	e	B -Transferase	
$\overline{K_{\rm m}}$ (μ M)	$V_{\rm max}$ (pmol/min)	$\overline{K_m(\mu M)}$	V _{max} (pmol/min)
1.50 ± 0.2	0.61 ± 0.02	21.9 ± 3.4	0.32 ± 0.02
7.29 ± 1.2	0.98 ± 0.07	68.8 ± 7.5	0.29 ± 0.02
4.96 ± 0.8	0.45 ± 0.04	55.6 ± 9.5	0.31 ± 0.02
	$ \frac{\text{A-Transferas}}{K_{\rm m} (\mu M)} $ 1.50±0.2 7.29±1.2 4.96±0.8	$\frac{\text{A-Transferase}}{K_{m} (\mu M)} \frac{V_{max} (pmol/min)}{1.50 \pm 0.2} \\ 1.50 \pm 0.2 \\ 7.29 \pm 1.2 \\ 4.96 \pm 0.8 \\ 0.45 \pm 0.04 \\ 0.45$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

^a At saturating UDP-GalNAc and UDP-Gal concentrations.

TABLE III

Relative inhibitor ability of disaccharides 7, 8, 10, and 11 towards the blood group A (GalNAc)- and B (Gal)-transferases in human serum

Substrate	Inhibition (%)		
	A-Transferase ^a	B-Transferase ^b	
3-Deoxy (7)	30%	85%	
4-Deoxy (8)	2%	0%	
3-Fluoro (10)	22%	24%	
4-Fluoro (11)	0%	0%	

^a Concentration of potential inhibitor was 25 μ M with acceptor 6 at 2.5 μ M. ^b Concentration of potential inhibitor was 100 μ M with acceptor 6 at 10 μ M.

TABLE IV

Calculated inhibition constants $(K_i)^a$ of disaccharides 7 and 10 with the blood group A- and B-glycosyltransferases in human serum

Inhibitor	A-Transferase	B-Transferase	Mode of inhibition ^b
3-Deoxy (7)	68 ± 9	14± 1.5	competitive
3-Fluoro (10)	48 ± 9	110±16	competitive

^a K_i in μ M. ^b Both 7 and 10 are competitive inhibitors of both glycosyltransferases.

tion constants. Both 7 and 10 are poor inhibitors for the A-transferase with K_i values an order of magnitude higher than the K_m . Also the 3-fluoro compound (10) is a weak inhibitor of the B-transferase. The 3-deoxy compound (7) however, appears to be better recognized by the B-transferase, with a K_i below that of the K_m .

It appears, therefore, that both the A- and the B-transferases will tolerate modifications at the galactosyl 3- and 6-hydroxyl groups without loss of recognition. However, the 4-hydroxyl group is crucial for binding suggesting that it is, according to the terminology of Lemieux²⁵, a key polar group in the recognition by these enzymes. As well, these results suggest the possibility of a bidentate hydrogen bond between the galactosyl 3,4-diol and an enzymatic carboxylate or amide, as described for other galactose-recognizing proteins^{26,27}, is not present, or is at least not of critical importance, for recognition by these enzymes. Further studies of these active sites with disaccharides similarly systematically modified by *O*-methylation and amino functionalities is in progress.

EXPERIMENTAL

General methods.—Optical rotations were measured with a Perkin-Elmer 241 polarimeter at $22 \pm 2^{\circ}$ C. Analytical TLC was performed on Silica Gel 60-F₂₅₄ (E. Merck, Darmstadt) with detection by quenching of fluorescence and/or by charring with H₂SO₄. All commercial reagents were used as supplied and chromatography solvents were distilled prior to use. Column chromatography was performed on Silica Gel 60 (E. Merck 40-60 μ m, Darmstadt). Millex-GV (0.22 μ m) filter units were from Millipore (Missisauga, ON), C₁₈ Sep-Pak sample preparation cartridges were from Waters Associates (Missisauga, ON), and Ecolite scintillation cocktail was from ICN Radiochemicals (St. Laurent, PQ). UDP-[6-³H]-Gal (specific activity 15 Ci/mmol) and UDP-[6-³H]-GalNAc (specific activity 10 Ci/mmol) were from American Radiolabelled Chemicals (St. Louis, MO). UDP-Gal, UDP-GalNAc, and ATP were from Sigma (St. Louis, MO). ¹H NMR were recorded at 360 MHz (Bruker WM-360) or 300 MHz (Bruker AM-300) with either internal $(CH_3)_4$ Si (δ 0, CDCl₃, CD₃OD) or DOH (δ 4.80, D₂O). ¹³C NMR were recorded at 75.5 MHz (Bruker AM-300) with internal $(CH_3)_4$ Si (δ 0, CDCl₃, CD₃OD) or external 1,4-dioxane (δ 67.4, D₂O). ¹⁹F NMR were recorded at 188.3 MHz (Bruker WH-200) or 376.5 MHz (Bruker WH-400) with external CFCl₃ (δ 0, CDCl₃, CD₃OD, D₂O). ¹H data are reported as though they were first order. All ¹³C shifts assignments are tentative and were assigned based on comparison with published spectra²⁸⁻³¹. Unless otherwise stated, all reactions were carried out at room temperature and in the processing of mixtures, solutions of organic solvents were washed with equal amounts of aqueous solutions. Organic solutions were dried (Na_2SO_4) prior to concentration under vacuum at $< 40^{\circ}C$ (bath). Microanalyses were carried out by the analytical services at this department and all samples submitted for elemental analyses were dried overnight under vacuum with P_2O_5 at

56°C (refluxing Me_2CO). Mass spectra were recorded on samples suspended in a matrix of glycerol and HCl using a Kratos AEIMS9 instrument with Xe as the bombarding gas.

Protons of the allyl group present in the compounds described in paper were designated H_a , H_b , H_c , H_d , and H_e as defined below. These protons showed the same coupling constants and thus the same multiplicity pattern in all the compounds examined, only the chemical shifts varied. The observed couplings were as follows: H_a , (dddd, $J_{a,c}$ 10.5, $J_{a,d} = J_{a,e} = J_{a,b} = 1.5 \pm 0.5$ Hz); H_b , (dddd, $J_{b,c}$ 17.0, $J_{b,d} = J_{b,e} = J_{a,b} = 1.5 \pm 0.5$ Hz); H_c , (dddd, $J_{b,c}$ 17.0, $J_{a,c}$ 10.5, $J_{c,d} = J_{c,e} = 5.5$ Hz); H_d , (dddd, $J_{d,e}$ 13.5, $J_{c,d}$ 5.5, $J_{b,d} = J_{a,d} = 1.5 \pm 0.5$ Hz); H_e , (dddd, $J_{d,e}$ 13.5, $J_{c,e}$ 5.5, $J_{a,c} = J_{b,c} = 1.5 \pm 0.5$ Hz).

Octyl 3-O-benzyl- β -D-galactopyranoside (14).—Octyl β -D-galactopyranoside²³ (13; 10.02 g, 34.32 mmol) and dibutyltin oxide (8.51 g, 34.20 mmol) were refluxed in benzene (250 mL) for 21 h. Water was removed by passing the refluxing solvent through a column of 4A molecular serves. To this solution was added Bu_4NI (12.87 g, 34.88 mmol) and PhCH₂Br (8.2 mL, 69 mmol), and refluxing continued for an additional 21 h. The solution was evaporated to give a brown oil which was dissolved in CH₂Cl₂ and extracted with a saturated solution of Na₂S₂O₃. After evaporation, column chromatography of the resulting oil (1:1 CH₂Cl₂-EtOAc) gave 14 (7.8 g, 60%) as a white solid; $[\alpha]_D = -3.1^\circ$ (c 1.4, CHCl₃); $R_f = 0.46$ (1:1 CH_2Cl_2 -EtOAc). ¹H NMR (CDCl_3): δ 7.20-7.45 (m, 5 H, Ph), 4.74 (s, 2 H, PhCH₂), 4.23 (d, 1 H, J_{1.2} 7.8 Hz, H-1), 3.74–4.04 (m, 5 H, H-2, H-4, H-6a, H-6b, OCH₂CH₂), 3.39–3.56 (m, 3 H, OCH₂CH₂, H-5, H-3), 2.77 (d, 1 H, J_{4.4-OH} 1 Hz, 4-OH), 2.56 (d, 1 H, J_{2.2-OH} 2.5 Hz, 2-OH), 2.44 (dd, 1 H, J_{6a,6-OH} 8.5 Hz, J_{6b,6-OH} 4 Hz), 1.62 (m, 2 H, OCH₂CH₂), 1.20–1.40 (10 H, octyl CH₂), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ137.72 (Ph quat.), 128.65, 128.13, 127.94 (Ph methine), 103.12 (C-1), 80.16 (C-3), 74.35 (C-5), 72.23 (PhCH₂), 71.17 (C-2), 70.19 (OCH₂CH₂), 67.22 (C-4), 62.50 (C-6), 31.85, 29.65, 29.41, 29.25, 25.99, 22.67 (octyl CH₂), 14.11 (octyl CH₃). Anal. Calcd for C₂₁H₃₄O₆ (382.50): C, 65.97; H, 8.90. Found: C, 65.69; H, 8.98.

Octyl 3-O-benzyl-4,6-O-benzylidene- β -D-galactopyranoside (15).—Galactoside 14 (6.56 g, 17.2 mmol) was dissolved in PhCHO (50 mL) and ZnCl₂ (3.79 g, 27.8 mmol) was added. After stirring for 5 h the solution was cooled to 0°C and water (125 mL) was added. Stirring continued for 1 h and then the mixture was diluted with CH₂Cl₂ and extracted with NaHCO₃, water, and brine. The organic layer was dried and evaporated under reduced pressure to remove the PhCHO. Column chromatography of the resulting clear oil (3:1 hexane-EtOAc) gave 15 (6.9 g, 86%) as a white solid; $[\alpha]_D + 32.8^\circ$ (c 1.4, CHCl₃); R_f 0.14 (3:1 hexane-EtOAc). ¹H NMR (CDCl₃): δ 7.20–7.60 (m, 10 H, Ph), 5.46 (s, 1 H, PhCHO₂), 4.76 (s, 2 H,

PhC H_2), 4.30 (dd, 1 H, $J_{6a,6b}$ 12.5, $J_{5,6a}$ 1.5 Hz, H-6a), 4.28 (d, 1 H, $J_{1,2}$ 7.8 Hz, H-1), 4.12 (dd, 1 H, $J_{3,4}$ 3, $J_{4,5}$ 1 Hz, H-4), 4.02 (dd, 1 H, $J_{6a,6b}$ 12.5, $J_{5,6b}$ 1.5 Hz, H-6b), 3.94 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OC H_2 CH₂), 3.44–3.54 (m, 2 H, H-3, OC H_2 CH₂), 3.34 (br s, 1 H, H-5), 2.43 (br s, 1 H, 2-OH), 1.55–1.70 (m, 2 H, OCH₂CH₂), 1.20–1.40 (10 H, octyl CH₂), 0.88 (t, 3 H J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 138.24, 137.66 (Ph quat.), 128.89, 128.45, 128.10, 127.65 (Ph methine), 102.99 (C-1), 101.15 (PhCHO₂), 79.21 (C-3), 73.33 (C-4), 71.54 (PhCH₂), 70.14 (C-2), 69.85 (OCH₂CH₂), 69.34 (C-6), 66.73 (C-5), 31.83, 29.55, 29.42, 29.24, 25.99, 22.67 (octyl CH₂), 14.11 (octyl CH₃). Anal. Calcd for C₂₈H₃₈O₆ (470.61): C, 71.46; H, 8.14. Found: C, 71.17; H, 8.00.

Octyl 3-O-benzyl-4,6-O-benzylidene-2-O- $(2,3,4-tri-O-benzyl-\alpha-L-fucopyranosyl)-\beta$ p-galactopyranoside (17).—Alcohol 15 (50 mg, 0.11 mmol) and Et₄NBr (25 mg, 0.12 mmol) were dissolved in CH_2Cl_2 (4 mL) and DMF (0.5 mL) containing crushed 4A molecular sieves (3 g). The system was purged with Ar and stirred overnight. To this slurry was added freshly prepared 2,3,4-tri-O-benzyl-Lfucopyranosyl bromide³² (16, 0.44 mmol) in CH₂Cl₂ (3 mL) and the mixture stirred for 2 days under Ar. Methanol (1 mL) was added and stirring continued for 30 min and then the mixture was filtered and taken to dryness. Chromatography of the residue (3:2 hexane-EtOAc) gave the product 17 (63 mg, 67%) as a white solid; $[\alpha]_{\rm D}$ - 50.5° (c 0.6, CHCl₃); R_f 0.32 (3:2 hexane-EtOAc). ¹H NMR (CDCl₃): δ 7.17-7.60 (m, 25 H, Ph), 5.64 (d, 1 H, J_{1'2'} 3.5 Hz, H-1'), 5.40 (s, 1 H, PhCHO₂), 4.95, 4.86, 4.70, 4.65, 4.58, 4.54, 4.52 (d, 1 H, J_{gem} 11.5 Hz, PhCH₂) 4.45 (d, 1 H, J_{1.2} 8 Hz, H-1), 4.44 (q, 1 H, J_{5'6'} 6.5 Hz, H-5'), 4.29 (dd, 1 H, J_{6a.6b} 12, J_{5.6a} 1 Hz, H-6a), 4.18 (dd, 1 H, $J_{1,2}$ 8, $J_{2,3}$ 9.5 Hz, H-2) 4.14 (d, 1 H, $J_{3,4}$ 3.5 Hz, H-4), 3.86-4.06 (m, 4 H, OCH₂CH₂, H-2', H-3', H-6b), 3.81 (dd, 1 H, J_{2,3} 9.5, J_{3,4} 3.5 Hz, H-3), 3.64 (br d, 1 H, J_{3'4'} 1.5 Hz, H-4'), 3.39 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.32 (br s, 1 H, H-5'), 1.45–1.60 (m, 2 H, OCH₂CH₂), 1.20–1.35 (10 H, octyl CH₂), 1.13 (d, 3 H, J_{5'6'} 6.5 Hz, H-6'), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 139.08, 138.88, 138.54, 138.35, 137.78 (Ph quat.), 128.75, 128.27, 128.17, 128.09, 127.77, 127.46, 127.32, 127.29, 127.08, 126.28 (Ph methine), 101.82 (C-1), 100.87 (PhCHO₂), 97.01 (C-1'), 81.71 (C-3), 79.55 (C-2), 78.20 (C-4'), 75.99 (C-4), 74.72, 73.05 (PhCH₂), 72.80 (C-3'), 72.47 (PhCH₂), 71.57 (C-2'), 70.59 (OCH₂CH₂), 69.42 (C-5'), 69.35 (C-5), 66.39 (PhCH₂), 66.18 (C-6), 31.86, 29.69, 29.33, 26.29, 22.65 (octyl CH₂), 16.59 (C-6'), 14.10 (octyl CH₃). Anal. Calcd for C₅₅H₆₆O₁₀ (887.13): C, 74.47; H, 7.50. Found: C, 74.45; H, 7.60.

Octyl 2-O-(α -L-fucopyranosyl)- β -D-galactopyranoside (6).—The protected disaccharide 17 (105 mg, 0.12 mmol) was dissolved in MeOH (10 mL), 5% Pd-C (50 mg) added and the solution stirred under a flow of H₂ overnight. After completion of the reaction, the catalyst was filtered off and the solvent evaporated. The product was purified by redissolution in water and then passing the solution through a Waters C₁₈ Sep-Pak cartridge. The cartridge was washed with water and then the product eluted with MeOH. The MeOH eluant was evaporated, the residue redissolved in water, filtered through a 0.22- μ m filter, and lyophilized to give the product 6 (47 mg, 90%) as a white solid. ¹H NMR (CD₃OD): 5.10 δ (br s, 1 H, H-1'), 4.21 (m, 2 H, H-1, H-5'), 3.82 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.75 (d, 1 H, $J_{3,4}$ 3 Hz, H-4), 3.50–3.73 (m, 7 H, H-2, H-3, H-6a, H-6b, H-2', H-3', H-4'), 3.31–3.50 (m, 2 H, H-5, OCH₂CH₂), 1.52–1.68 (m, 2 H, OCH₂CH₂), 1.22–1.43 (10 H, octyl CH₂), 1.18 (d, 3 H, $J_{5'6'}$ 6.5 Hz, H-6'), 0.88 (t, 3 H J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CD₃OD): δ 103.56 (C-1), 101.57 (C-1'), 79.07 (C-2), 76.48 (C-5), 75.74 (C-3), 73.74 (C-3'), 72.56 (C-4'), 71.76 (C-3), 70.78 (OCH₂CH₂), 70.62 (C-2'), 70.38 (C-4), 67.78 (C-5'), 62.38 (C-6), 32.98, 30.98, 30.60, 30.39, 27.29, 23.68 (octyl CH₂), 16.78 (C-6'), 14.41 (octyl CH₃). FABMS: m/z 461 [M + Na]⁺ and 439 [M + H]⁺ (C₂₀H₃₈O₁₀ requires m/z 438).

Octyl 3-O-allyl- β -D-galactopyranoside (18).—Octyl β -D-galactopyranoside²³ (13; 6.54 g, 22.39 mmol) and dibutyltin oxide (5.53 g, 22.21 mmol) were refluxed in benzene (250 mL) for 24 h as described for 14. The solution was cooled to 60°C and then Bu₄NI (8.28 g, 22.43 mmol) and allyl bromide (20 mL, 229 mmol) were added, and heating at 60°C continued for an additional 20 h. The solution was cooled, washed with a saturated solution of Na₂S₂O₃, and evaporated. After evaporation, column chromatography of the resulting oil (1:1 CH₂Cl₂-EtOAc) gave 18 (4.51 g, 60%) as a white solid; $[\alpha]_D = 5.1^\circ$ (c 0.6, CHCl₃); $R_f = 0.26$ (1:1 CH_2Cl_2 -EtOAc) ¹H NMR (CDCl₃): δ 5.96 (1 H, H_c allyl), 5.33 (1 H, H_b allyl), 5.23 (1 H, H_a allyl), 4.26 (d, 1 H, $J_{1,2}$ 8 Hz, H-1), 4.21 (m, 2 H, H_d allyl, H_e allyl), 4.04 (ddd, 1 H, $J_{3,4}$ 3.5, $J_{4,5}$ 2, $J_{4,4-OH}$ 1 Hz, H-4), 3.78-4.01 (m, 3 H, OC H_2 CH₂, H-6a, H-6b), 3.73 (ddd, 1 H, J_{4.5} 2, J_{5,6a} 10, J_{5,6b} 9 Hz, H-5), 3.46-3.58 (2 H, H-2, OCH₂CH₂) 3.39 (dd, 1 H, J_{2.3} 9.5, J_{3.4} 3.5 Hz, H-3), 2.46 (d, 1 H, J_{44-OH} 1 Hz, 4-OH), 2.25 (d, 1 H, J_{2,2-OH} 2.5 Hz, 2-OH), 2.05 (dd, 1 H, J_{6a,6-OH} 8.5, J_{6b,6-OH} 4 Hz), 1.57-1.72 (m, 2 H, OCH₂CH₂), 1.20-1.40 (10 H, octyl CH₂), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 134.79 (CH₂=CHCH₂O), 118.02 (CH₂=CHCH₂O), 103.12 (C-1), 80.04 (C-3), 74.34 (C-5), 71.08 (CH₂=CHCH₂O), 70.91 (C-2), 70.20 (OCH₂CH₂), 66.98 (C-4), 62.44 (C-6), 31.83, 29.63, 29.40, 29.24, 25.97, 22.66 (octyl CH₂), 14.10 (octyl CH₃). Anal. Calcd for $C_{17}H_{32}O_6$ (332.44): C, 61.42; H, 9.70. Found: C, 61.33; H, 9.45.

Octyl 3-O-allyl-2,4,6-tri-O-benzyl-β-D-galactopyranoside (19).—Allyl ether 18 (4.41 g, 13.29 mmol) was dissolved in dry DMF (100 mL). Sodium hydride (4.06 g, 80% dispersion in oil, 135.4 mmol) was added and the mixture stirred for 30 min. Benzyl bromide (15 mL, 120 mmol) was added and stirring continued for 15 h. The solution was then cooled to 0°C, water added, and then diluted with CH₂Cl₂ and extracted with NaHCO₃ water, and brine. Evaporation of the organic layer gave a brown liquid which was chromatographed (12:1 hexane–EtOAc) to give 19 (5.73 g, 71%) as a colorless oil; $[\alpha]_D - 3.0^\circ$ (c 1.1, CHCl₃); R_f 0.25 (12:1 hexane–EtOAc). ¹H NMR (CDCl₃): δ 7.2–7.4 (m, 15 H, Ph), 5.93 (1 H, H_c allyl), 5.32 (1 H, H_b allyl), 5.17 (1 H, H_a allyl), 4.93, 4.89, 4.74, 4.61, 4.45, 4.39 (d, 1 H, J_{gem} 11.5 Hz, PhCH₂), 4.32 (d, 1 H, J_{1,2} 7.5 Hz, H-1), 4.19 (m, 2 H, H_d allyl, H_e allyl), 3.91 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.85 (dd, 1 H, J_{3,4} 3, J_{4,5} 1 Hz, H-4), 3.74 (dd, 1 H, J_{1,2} 7.5, J_{2,3} 10 Hz, H-2) 3.44–3.62 (m, 4 H, H-5, H-6a, H-6b, OCH₂CH₂), 3.40

(dd, 1 H, $J_{2,3}$ 10, $J_{3,4}$ 3 Hz, H-3), 1.55–1.70 (m, 2 H, OCH₂CH₂), 1.20–1.40 (10 H, octyl CH₂), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR: δ 138.93, 138.75, 138.01 (Ph quat.), 135.06 (CH₂=CHCH₂O), 128.56, 128.38, 128.32, 128.20, 128.10, 127.10, 127.86, 127.72, 127.46 (Ph methine), 116.50 (CH₂=CHCH₂O), 103.96 (C-1), 81.99 (C-3), 79.54 (C-2), 75.13, 74.39, 73.54 (Ph CH₂), 73.47 (C-5), 73.38 (C-4), 71.92 (CH₂=CHCH₂O), 70.02 (OCH₂CH₂), 68.96 (C-6), 31.82, 29.74, 29.43, 29.25, 26.16, 22.65 (octyl CH₂), 14.09 (octyl CH₃). Anal. Calcd for C₃₈H₅₀O₆ (602.82): C, 75.72; H, 8.36. Found: C, 75.46; H, 8.33.

Octyl 2,4,6-tri-O-benzyl-β-D-galactopyranoside (20).—To a solution of 19 (5.73 g, 9.520 mmol) dissolved in 7:3:1 EtOH-benzene-water (125 mL), tris(triphenylphosphine)rhodium(I) chloride (1.26 g, 1.36 mmol) and 1,4 diazabicyclo[2.2.2]octane (460 mg, 4.10 mmol) were added, and the solution refluxed for 20 h. The solvent was evaporated and the residue dissolved in 9:1 Me₂CO-water (50 mL). Mercuric oxide (50 mg) and HgCl₂ (12 g) were added and stirring continued overnight. The mixture was then diluted with CH₂Cl₂ and washed with satd KI, water, and brine. Evaporation of the organic layer followed by chromatography (6:1 hexane-EtOAc) gave 20 (4.54 g, 85%) as a colorless oil; $[\alpha]_{D}$ +5.7° (c 1, CHCl₃); R_f 0.20 (6:1 hexane-EtOAc). ¹H NMR (CDCl₃): δ 7.2-7.4 (m, 15 H, Ph), 4.97, 4.78, 4.67, 4.62, 4.50, 4.43 (d, 1 H, J_{gem} 11.5 Hz, PhCH₂), 4.33 (d, 1 H, $J_{1,2}$ 7.5 Hz, H-1), 3.93 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OC H_2 CH₂), 3.85 (d, 1 H, $J_{3,4}$ 3.5 Hz, H-4), 3.59–3.70 (m, 4 H, H-3, H-5, H-6a, H-6b), 3.55 (dd, 1 H, J_{1,2} 7.5 Hz, J_{2.3} 10 Hz, H-2), 3.48 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.40 (d, 1 H, J_{3,3-OH} 4.5 Hz, 3-OH), 1.58-1.70 (m, 2 H, OCH₂CH₂), 1.20-1.40 (10 H, octyl CH₂), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 138.59, 138.02 (Ph quat.), 128.51, 128.46, 128.34, 128.22, 128.18, 127.83, 127.70 (Ph methine), 103.84 (C-1), 79.68 (C-2), 75.62 (C-5), 75.02, 74.66 (PhCH₂), 74.16 (C-4), 73.64 (C-3), 73.58 (PhCH₂), 70.07 (OCH₂CH₂), 68.87 (C-6), 31.87, 29.77, 29.46, 29.30, 26.22, 22.70 (octyl CH₂), 14.13 (octyl CH₃). Anal. Calcd for C₃₅H₄₆O₆ (562.75): C, 74.70; H, 8.24. Found: C, 74.55; H, 7.93.

Octyl 2,4,6-tri-O-benzyl-3-O-[(methylthio)thiocarbonyl]-β-D-galactopyranoside (21).—To a solution of 20 (1.01 g, 1.80 mmol) in dry THF (15 mL) was added NaH (162 mg, 80% in oil, 5.4 mmol) and imidazole (32 mg). After stirring for 1 h, CS₂ (1.1 mL, 18.1 mmol) was added, and then 1 h later, MeI (340 μ L, 5.5 mmmol) was added, and stirring continued overnight. Evaporation of the solvent gave a yellow liquid which was chromatographed (6:1 hexane–EtOAc) to give 21 (1.0 g, 86%) as a yellow oil; $[\alpha]_D$ + 51.9° (c 0.9, CHCl₃); R_f 0.55 (12:1 hexane–EtOAc). ¹H NMR (CDCl₃): δ 7.15–7.45 (m, 15 H, Ph), 5.75 (dd, 1 H, $J_{2,3}$ 10, $J_{3,4}$ 3 Hz, H-3), 4.85, 4.69, 4.65 (d, 1 H, J_{gem} 11.5 Hz, PhC H_2), 4.36–4.5 (m, 3 H, 3 PhC H_2 , H-1), 4.18 (br d, 1 H, $J_{3,4}$ 3 Hz, H-4), 3.89–3.99 (m, 2 H, H-2, OC H_2 CH₂), 3.68 (br t, 1 H, $J_{5,6a} = J_{5,6b} = 6.5$ Hz, H-5), 3.45–3.63 (m, 3 H, H-6a, H-6b, OC H_2 CH₂), 2.54 (s, 3 H, SCH₃) 1.58–1.70 (m, 2 H, OCH₂CH₂), 1.20–1.40 (10 H, octyl CH₂), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 215.66 (C=S), 138.38, 137.97, 137.91 (Ph quat.), 128.46, 128.37, 128.29, 128.27, 128.09, 127.86, 127.80, 127.75, 127.60 (Ph methine), 103.76 (C-1), 84.00 (C-3), 76.90 (C-2), 74.87, 74.79, 73.57 (PhC H_2), 73.36 (C-5), 72.90 (C-4), 70.28 (OCH₂CH₂), 68.52 (C-6), 31.86, 29.73, 29.45, 29.30, 26.17, 22.70 (octyl CH₂), 19.16 (SCH₃), 14.13 (octyl CH₃). Anal. Calcd for C₃₇H₄₈O₆S₂ (652.91): C, 68.07; H, 7.41; S, 9.82. Found: C, 68.06; H, 7.20; S, 9.76.

Octyl 2,4,6-tri-O-benzyl-3-deoxy- β -D-xylo-hexopyranoside (22).—Compound 21 (717 mg, 1.10 mmol) was dissolved in dry toluene (100 mL) and then tributylstannane (1.5 mL, 5.58 mmol) and AIBN (135 mg, 0.82 mmol) were added. The solution was heated under reflux for 60 min. Evaporation of the solvent followed by chromatography (12:1 hexane-EtOAc) gave 22 (403 mg, 67%) as a colorless oil; $[\alpha]_{\rm D} = 26.1^{\circ} (c \ 0.4, \text{CHCl}_3); R_f \ 0.32 \ (12:1 \text{ hexane}-\text{EtOAc}).$ ¹H NMR (CDCl₃): δ 7.2-7.4 (m, 15 H, Ph), 4.86, 4.61, 4.56, 4.55, 4.46 (d, 1 H, J_{gem} 11.5 Hz, PhCH₂), 4.38 (d, 1 H, J_{1,2} 8 Hz, H-1), 4.36 (d, 1 H, J_{gem} 11.5 Hz, PhCH₂), 3.95 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.54-3.72 (m, 5 H, H-2, H-4, H-5, H-6a, H-6b), 3.49 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OC H_2 CH₂), 2.36 (ddd, 1 H, $J_{3a,3e}$ 14.5, $J_{2,3e}$ 5, $J_{3e,4}$ 3 Hz, H-3e), 1.58–1.70 (m, 2 H, OCH₂CH₂), 1.46, (ddd, 1 H, $J_{3a,3e}$ 14.5, $J_{2,3a}$ 2.4, $J_{3a,4}$ 11.5 Hz, H-3a) 1.20–1.40 (10 H, octyl CH₂), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 138.91, 138.33, 138.25 (Ph quat.), 128.37, 128.30, 128.26, 127.90, 127.87, 127.72, 127.63, 127.58, 127.50 (Ph methine), 105.46 (C-1), 76.48 (C-2), 73.55, 73.21 (PhCH₂), 73.10 (C-5), 72.47 (C-4), 71.11 (PhCH₂), 69.45 (OCH₂CH₂), 69.34 (C-6), 32.83 (C-3), 31.85, 29.78, 29.45, 29.29, 26.21, 22.68 (octyl CH₂), 14.11 (octyl CH₃). Anal. Calcd for C₃₅H₄₆O₅ (546.75): C, 76.89; H, 8.48. Found: C, 76.96; H, 8.81.

Octyl 3-deoxy-β-D-xylo-hexopyranoside (23).—Compound 22 (512 mg, 0.94 mmol), was dissolved in MeOH (15 mL) and 5% Pd–C (250 mg) added. The mixture was allowed to stir overnight under a flow of H₂. The catalyst was filtered off, the solvent evaporated, and the residue chromatographed (19:1 CH₂Cl₂–MeOH) to give 23 (237 mg, 92%) as a white solid; $[\alpha]_D$ – 55.9° (*c* 0.6, MeOH); R_f 0.30 (19:1 CH₂Cl₂–MeOH). ¹H NMR (CDCl₃): δ 4.25 (d, 1 H, $J_{1,2}$ 7.5 Hz, H-1), 4.03 (m, 1 H, H-4), 3.93 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.75–3.90 (m, 3 H, H-2, H-6a, H-6b), 3.46–3.58 (m 2 H, H-5, OCH₂CH₂), 2.29 (ddd, 1 H, J_{gem} 14.5, $J_{2,3e}$ 5.5, $J_{3e,4}$ 3.5 Hz, H-3e), 1.55–1.77 (m, 3 H, H-3a, OCH₂CH₂), 1.20–1.40 (10 H, octyl CH₂), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 105.75 (C-1), 77.11 (C-2), 70.05 (OCH₂CH₂), 67.88 (C-5), 66.02 (C-4), 63.34 (C-6), 37.14 (C-3), 31.83, 29.68, 29.42, 29.26, 26.01, 22.67 (octyl CH₂), 14.10 (octyl CH₃). Anal. Calcd for C₁₄H₂₈O₅ (276.38): C, 60.84; H,10.21. Found: C, 60.74; H, 10.42.

Octyl 4,6-O-benzylidene-3-deoxy- β -D-xylo-hexopyranoside (24).—Galactoside 23 (100 mg, 0.37 mmol) was dissolved in PhCHO (1 mL) and CH₂Cl₂ (2 mL), and ZnCl₂ (75 mg, 0.55 mmol) added. After stirring for 3 h the solution was cooled to 0°C and water (2 mL) was added. Stirring was continued for 1 h and then the mixture was diluted with CH₂Cl₂, and extracted with 2 M NaOH (to remove traces of benzoic acid), water, and brine. The organic layer was dried with Na₂SO₄ and evaporated under reduced pressure to remove the PhCHO. Column chromatography of the resulting clear oil (3:1 hexane–EtOAc) gave 24 (112 mg, 83%) as a

white solid; $[\alpha]_D = 80.4^\circ$ (c 0.5, CHCl₃); $R_f 0.70$ (3:1 hexane–EtOAc). ¹H NMR (CDCl₃): $\delta7.50-7.62$ (m, 2 H, Ph), 7.34–7.44 (m, 3 H, Ph), 5.56 (s, 1 H, PhCHO₂), 4.34 (dd, 1 H, $J_{6a,6b}$ 12.5, $J_{5,6a}$ 1 Hz, H-6a), 4.28 (d, 1 H, $J_{1,2}$ 8 Hz, H-1), 4.10 (m, 2 H, H-4, H-6b), 4.02 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.92 (ddd, 1 H, $J_{1,2}$ 8, $J_{2,3e}$ 5, $J_{2,3a}$ 10.5 Hz, H-2), 3.51 (m, 2 H, H-5, OCH₂CH₂), 2.42 (ddd, 1 H, $J_{3a,3e}$ 14, $J_{2,3e}$ 5, $J_{3c,4}$ 2.5 Hz, H-3e), 2.30 (br s, 1 H, 2-OH), 1.73 (ddd, 1 H, $J_{3a,3e}$ 14, $J_{2,3a}$ 10.5, $J_{3a,4}$ 3.5 Hz, H-3a), 1.58–1.70 (m, 2 H, OCH₂CH₂), 1.20–1.40 (10 H, octyl CH₂), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR: δ 138.06 (Ph quat.), 129.03, 128.23, 126.40 (Ph methine), 105.27 (C-1), 101.37 (PhCHO₂), 73.20 (C-4), 69.70 (OCH₂CH₂), 69.55 (C-6), 69.35 (C-2), 65.81 (C-5), 35.25 (C-3), 31.87, 29.63, 29.47, 29.28, 26.08, 22.70 (octyl CH₂), 14.13 (octyl CH₃). Anal. Calcd for C₂₁H₃₃O₅ (365.49): C, 69.20; H, 8.85. Found: C, 69.51; H, 8.85.

Octyl 4,6-O-benzylidene-3-deoxy-2-O- $(2,3,4-tri-O-benzyl-\alpha-D-fucopyranosyl)$ - β -Dxylo-hexopyranoside (25).—Alcohol 24 (130 mg, 0.35 mmol) and Et_4NBr (81 mg, 0.39 mmol) were fucosylated as described for 15 using 2,3,4-tri-O-benzyl-Lfucopyranosyl bromide (1.408 mmol). Column chromatography of the mixture (3:1 hexane-EtOAc) gave the disaccharide 25 (241 mg, 88%) as a white solid; ($[\alpha]_{D}$ -111.51° (c 0.5, CHCl₃); R_f 0.34 (3:1 hexane-EtOAc). ¹H NMR (CDCl₃): 7.10-7.55 (m, 20 H Ph), 5.48 (s, 1 H, PhCHO₂), 4.98 (d, 1 H, J_{gem} 11.5 Hz, PhC H_2), 4.90 (d, 1 H, $J_{1'2'}$ 3.5 Hz, H-1'), 4.60–4.88 (m 5 H, PhC H_2), 4.47 (d, 1 H, J_{1.2} 8 Hz, H-1), 4.20-4.35 (m, 2 H, H-5', H-6a), 3.88-4.08 (m, 6 H, H-2', H-3', H-6b, H-4, H-2, OCH₂CH₂), 3.65 (1 H, J_{3'4'} 2 Hz, H-4'), 3.32–3.46 (m, 2 H, H-5, OCH_2CH_2), 2.38 (ddd, 1 H, J_{gem} 14, $J_{2,3e}$ 5.5, $J_{3e,4}$ 2.5 Hz, H-3e) 1.75 (ddd, 1 H, J_{3a.4} 3.5, J_{2.3a} 11, J_{gem} 13 Hz, H-3a), 1.55–1.70 (m, 2 H, OCH₂CH₂), 1.20–1.45 (10 H, octyl CH₂), 1.11 (d, 3 H, J_{5'6'} 6.5 Hz, H-6'), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): 138.98, 138.78, 138.58, 137.69 (Ph quat.), 129.16, 128.91, 128.60, 128.29, 128.19, 128.10, 127.93, 127.71, 127.62, 127.42, 127.38, 127.33, 126.37 (Ph methine), 103.18 (C-1), 101.25 (PhCHO₂), 94.27 (C-1'), 79.67 (C-4'), 78.03 (C-3'), 76.38 (C-3), 75.91 (C-2'), 74.72, 73.37, 73.16 (PhCH₂), 73.03 (C-4), 69.48 (OCH₂CH₂), 68.99 (C-6), 68.83 (C-5'), 68.25 (C-5), 33.41 (C-3), 31.83, 29.72, 29.49, 29.33, 26.22, 22.62 (octyl CH₂), 16.50 (C-6'), 14.08 (octyl CH₂). Anal. Calcd for C₄₈H₆₀O₉ (781.01): C, 73.82; H, 7.74. Found: C, 73.67; H, 7.74.

Octyl 3-deoxy-2-O-(α-L-fucopyranosyl)-β-D-xylo-hexopyranoside (7).—The protected disaccharide **25** (150 mg, 0.19 mmol) was dissolved in MeOH (20 mL), 5% Pd-C (75 mg) added, and the solution stirred under a flow of H₂ overnight. The catalyst was filtered off, and the product purified as described for **6** to give 7 (70 mg, 86%) as a white solid. ¹H NMR (CD₃OD): 4.84 (s, 1 H, H-1'), 4.40 (d, 1 H, $J_{1,2}$ 8 Hz, H-1), 4.33 (q, 1 H, $J_{5'6'}$ 6.5 Hz, H-5'), 3.41–4.00 (m, 10 H, H-2, H-4, H-5, H-6a, H-6b, H-2', H-3', H-4', 2 OC H_2 CH₂), 2.29 (dt, 1 H, $J_{3e,3a}$ 13, $J_{3e,4} = J_{3e,2} = 4$ Hz, H-3e), 1.50–1.70 (m, 3 H, H-3a, OCH₂CH₂), 1.23–1.45 (10 H, octyl CH₂), 1.18 (d, 3 H, $J_{5'6'}$ 6.5 Hz, H-6'), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CD₃OD): 104.90 (C-1), 96.81 (C-1'), 79.48 (C-2), 73.79 (C-5), 71.73 (C-3'), 70.31 (C-4'), 70.13 (OCH₂CH₂), 69.83 (C-2'), 67.34 (C-4), 66.88 (C-5), 62.81 (C-6), 35.93 (C-3), 33.02,

31.03, 30.61, 30.48, 27.44, 23.70 (octyl CH₂), 16.63 (C-6'), 14.42 (octyl CH₃). FABMS: m/z 445 [M + Na]⁺ and 423 [M + H]⁺ (C₂₀H₃₈O₉ requires m/z 422).

Octvl 2-O-allvl-4,6-O-benzylidene-3-O-benzyl-B-D-galactopyranoside (26).-To a solution of 15 (4.77 g, 10.15 mmol) in dry DMF (75 mL), NaH (730 mg, 30.45 mmol) was added. After stirring for 30 min allyl bromide (3.5 mL, 40.6 mmol) was added and stirring continued for 15 h. The mixture was diluted with CH₂Cl₂ and extracted with water, NaHCO₃, and brine. Column chromotography of the resulting oil (3:1 hexane-EtOAc) gave 26 (4.68 g, 90%) as a white solid; $[\alpha]_D$ +29.7° (c 1.3; CHCl₃); R_f 0.44 (3:1 hexane-EtOAc). ¹H NMR (CDCl₃): δ 7.20-7.60 (m, 10 H, Ph), 5.98 (1 H, H_c allyl), 5.48 (s, 1 H, PhCHO₂), 5.30 (1 H, H_b allyl), 5.15 (1 H, H_a allyl), 4.80, 4.73 (d, 1 H, J_{gem} 11.5 Hz, PhCH₂), 4.41 (1 H, H_d allyl), 4.27 (m, 2 H, H-6a, H_e allyl), 4.29 (d, 1 H, J_{1,2}, 8.0 Hz, H-1), 4.07 (dd, 1 H, J_{3,4} 3.8, J_{4,5} 1 Hz, H-4), 3.99 (dd, 1 H, J_{6a.6b} 12.5, J_{5.6b} 1.5 Hz, H-6b), 3.95 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OC H₂CH₂), 3.69 (dd, 1 H, J_{1,2} 8.0, J_{2,3} 10 Hz, H-2), 3.48 (dd, 1 H, J_{2,3} 10, J_{3,4} 3.8 Hz, H-3), 3.45 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.28 (br s, 1 H, H-5), 1.62 (m, 2 H, OCH₂CH₂), 1.20-1.40 (10 H, octyl CH₂), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 138.66, 137.97 (Ph quat.), 135.46 (CH₂=CHCH₂O), 128.66, 128.33, 128.08, 127.61, 126.58 (Ph methine), 116.41 (CH₂=CHCH₂O), 103.75 (C-1), 101.33 (PhCHO₂), 79.13 (C-3), 78.11 (C-2), 74.25 (C-4), 73.96 (CH₂=CHCH₂O), 72.12 (PhCH₂), 70.03 (OCH₂CH₂), 69.29 (C-6), 66.42 (C-5), 31.85, 29.68, 29.43, 29.28, 26.10, 22.68 (octyl CH₂), 14.11 (octyl CH₃). Anal. Calcd for C₃₁H₄₂O₆ (510.68): C, 72.91; H, 8.29. Found: C, 72.95; H, 8.18.

Octyl 2-O-allyl-3,6-di-O-benzyl-β-D-galactopyranoside (27).—Compound 26 (3.10 g, 6.09 mmol), NaCNBH₃ (4.15 g, 66.1 mmol) and Methyl Orange indicator were dissolved in dry THF (40 mL) containing crushed 3A molecular sieves (2 g). The solution was cooled to 0°C and then ethereal HCl was added until the red color of the solution persisted. After 4 h, TLC indicated the reaction was complete and the reaction was quenched by the additon of NaHCO₃. The mixture was filtered, diluted with CH₂Cl₂, and washed with water and brine, and evaporated. Column chromotography of the residue (3:1 hexane-EtOAc) gave 27 (2.54 g, 81%) as a colorless oil; $[\alpha]_D = 8.5^\circ$ (c 0.8, CHCl₃); $R_f = 0.50$ (3:1 hexane-EtOAc). ¹H NMR (CDCl₃): δ 7.20–7.40 (m, 10 H, Ph), 5.96 (1 H, H_c allyl), 5.28 (1 H, H_b allyl), 5.16 (1 H, H_a allyl), 4.75, 4.71 (d, 1 H, J_{gem} 11.5 Hz, PhCH₂), 4.58 (s, 2 H, PhCH₂), 4.39 (1 H, H_d allyl), 4.27 (d, 1 H, J_{1.2} 7.8 Hz, H-1), 4.21 (m, 1 H, H_e allyl), 3.99 (ddd, 1 H, $J_{3,4}$ 3.5, $J_{4,5}$ 1, $J_{4,4-OH}$ 2 Hz, H-4), 3.91 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.79 (dd, 1 H, J_{6a,6b} 10, J_{5,6a} 6 Hz, H-6a), 3.70 (dd, 1 H, J_{6a,6b} 10, J_{5,6b} 6 Hz, H-6b), 3.45-3.57 (3 H, H-2, H-5, OCH₂CH₂), 3.42 (dd, 1 H, J_{2,3} 10, J_{3,4} 3.5 Hz, H-3), 2.45 (d, 1 H, J_{44-OH} 2 Hz, 4-OH), 1.55-1.65 (m, 2 H, OCH₂CH₂), 1.20–1.40 (10 H, octyl CH₂), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR $(CDCl_3)$: δ 138.12 (Ph quat.), 135.28 (CH₂=CHCH₂O), 128.47, 128.44, 127.82, 127.78, 127.75 (Ph methine), 116.73 (CH₂=CHCH₂O), 103.71 (C-1), 80.51 (C-3), 78.68 (C-2), 73.94 (CH₂=CHCH₂O), 73.73 (PhCH₂), 73.20 (C-5), 72.56 (PhCH₂), 70.02 (OCH₂CH₂), 69.28 (C-6), 67.11 (C-4), 31.84, 29.72, 29.40, 29.27, 26.10, 22.68 (octyl CH₂), 14.11 (octyl CH₃). Anal. Calcd for $C_{31}H_{44}O_6$ (512.69): C, 72.62; H, 8.65. Found: C, 72.29; H, 8.75.

Octyl 2-O-allyl-3,6-di-O-benzyl-4-O-[(methylthio)thiocarbonyl]-B-D-galactopyranoside (28).-To a solution of 27 (353 mg, 0.69 mmol) in 20 mL dry THF was added NaH (68 mg, 80% in oil, 2.27 mmol) and imidazole (5 mg). After stirring for 1 h, CS_2 (420 µL, 6.96 mmol) was added and stirring continued for 1 h. At this point, MeI (129 μ L, 2.07 mmmol) was added and stirring continued overnight. Evaporation of the solvent gave a yellow liquid which was chromatographed (4:1 hexane-EtOAc) to give 28 (332 mg, 80%) as a yellow oil; $[\alpha]_{D} + 23.5^{\circ}$ (c 0.6, CHCl₃); R_{e} 0.55 (4:1 hexane-EtOAc). ¹H NMR (CDCl₃): δ 7.20-7.40 (m, 10 H, Ph), 6.48 (dd, 1 H, J_{3,4} 3.5, J_{4,5} 1 Hz, H-4), 5.93 (1 H, H_c allyl), 5.26 (1 H, H_b allyl), 5.13 (1 H, H_a allyl), 4.78, 4.53, 4.50, 4.45 (d, 1 H, J_{gem} 11.5 Hz, PhCH₂), 4.35 (1 H, H_d allyl), 4.35 (1 H, J_{1.2} 7.5 Hz, H-1), 4.22 (1 H, H_e allyl), 3.92 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH_2CH_2), 3.76 (dt, 1 H, $J_{5,6a} = J_{5,6b} = 6$, $J_{4,5}$ 1 Hz H-5), 3.43–3.63 (5 H, H-2, H-3, H-6a, H-6b, OCH₂CH₂), 2.58 (s, 3 H, SCH₃), 1.62 (m, 2 H, OCH₂CH₂), 1.20–1.40 (10 H, octyl CH₂), 0.88 (t, 3 H J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 216.61 (C=S), 137.97, 137.83 (Ph quat.), 135.22 (CH₂=CHCH₂O), 128.43, 128.26, 128.03, 127.95, 127.81, 127.63 (Ph methine), 116.70 (CH₂=CHCH₂O), 103.87 (C-1), 79.41 (C-3), 78.65 (C-2), 76.47 (C-4), 74.15 (CH2=CHCH2O), 73.85 (PhCH2), 72.89 (C-5), 72.73 (PhCH₂), 70.51 (OCH₂CH₂), 68.69 (C-6), 67.11 (C-5), 31.86, 29.69, 29.40, 29.28, 26.06, 22.69 (octyl CH₂), 19.23 (SCH₃), 14.12 (octyl CH₃). Anal. Calcd for C33H46O6S2 (602.85): C, 65.75; H, 7.69; S, 10.64. Found: C, 65.69; H, 7.57; S, 10.35.

Octyl 2-O-allyl-3,6-di-O-benzyl-4-deoxy-β-D-xylo-hexopyranoside (29).—Compound 28 (157 mg, 0.26 mmol) was dissolved in dry toluene (50 mL) and then tributylstannane (1.05 mL, 3.9 mmol) and AIBN (35 mg, 0.21mmol) were added. The solution was heated under reflux for 90 min. Evaporation of the solvent followed by chromatography (99:1 CH₂Cl₂-MeOH) gave 29 (109 mg, 85%) as a colorless oil; $[\alpha]_D$ – 19.9° (c 0.5, CHCl₃); R_f 0.45 (99:1 CH₂Cl₂-MeOH). ¹H NMR (CDCl₃): δ7.20-7.40 (m, 10 H, Ph), 5.98 (1 H, H_c allyl), 5.29 (1 H, H_b allyl), 5.15 (1 H, H_a allyl), 4.72, 4.66, 4.59, 4.52 (d, 1 H, J_{gem} 11.5 Hz, PhCH₂), 4.40 (1 H, H_d allyl), 4.27 (d, 1 H, J_{1,2} 8 Hz, H-1), 4.23 (1 H, H_e allyl), 3.91 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.43-3.63 (5 H, H-3, H-5, H-6a, H-6b, OCH₂CH₂), 3.18 (dd, 1 H, J_{1.2} 8, J_{2.3} 10 Hz, H-2), 2.08 (ddd, 1 H, J_{4e.5} 1, J_{3.4e} 5, J_{gem} 13 Hz, H-4e), 1.57-1.70 (m, 2 H, OCH₂CH₂), 1.20-1.50 (11 H, octyl CH₂, H-4a), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): 138.74, 138.15 (Ph quat.), 135.37 (CH₂=CHCH₂O), 128.36, 128.30, 127.64, 127.56, 127.48 (Ph methine), 116.57 (CH₂=CHCH₂O), 103.78 (C-1), 82.59 (C-3), 78.09 (C-2), 73.73 (CH₂=CHCH₂O), 73.50, 72.55 (PhCH₂), 72.37 (C-6), 70. 93 (C-5), 70.06 (OCH₂CH₂), 34.04 (C-4), 31.80, 29.73, 29.36, 29.23, 26.06, 22.63 (octyl CH₂), 14.08 (octyl CH₃). Anal. Calcd for C₃₁H₄₄O₅ (496.69): C, 74.96; H, 8.93. Found: C, 74.68; H, 8.83.

Octyl 3,6-di-O-benzyl-4-deoxy- β -D-xylo-hexopyranoside (30).—To a solution of 29 (199 mg, 0.40 mmol) dissolved in 7:3:1 EtOH-benzene-water (20 mL), tris(tri-

phenylphosphine)rhodium(I) chloride (55 mg, 0.06 mmol) and 1,4diazabicyclo[2.2.2]octane (20 mg, 0.18 mmol) were added, and the solution refluxed for 20 h. The solvent was evaporated and the residue dissolved in 9:1 Me₂COwater (10 mL). Mercuric oxide (3 mg) and HgCl₂ (1 g) were added and stirring continued at room temperature overnight. The mixture was then diluted with CH₂Cl₂ and washed with satd KI, water, and brine. Evaporation of the organic layer followed by chromatography (4:1 hexane-EtOAc) gave 30 (159 mg, 86%) as a colorless oil; $[\alpha]_D = 8.2^\circ$ (c 0.6, CHCl₃); R_f 0.45 (3:1 hexane-EtOAc). ¹H NMR (CDCl₃): δ 7.20–7.40 (m, 10 H, Ph), 4.72, 4.65, 4.53 (d, 1 H, J_{gem} 11.5 Hz, PhCH₂), 4.21 (d, 1 H, $J_{1,2}$ 7.5 Hz, H-1), 3.89 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH_2CH_2), 3.40-3.68 (6 H, H-2, H-3, H-5, H-6a, H-6b, OCH₂CH₂), 2.46 (d, 1 H, J_{2,2-OH} 1.5 Hz, 2-OH), 2.12 (ddd, 1 H, J_{4e,5} 1.8, J_{3,4e} 4.5, J_{gem} 13 Hz, H-4e), 1.55–1.68 (m, 2 H, OCH_2CH_2), 1.43 (dt, 1 H, $J_{3,4a} = J_{4a,5} = 11$, J_{gem} 13 Hz, H-4a), 1.20–1.40 (10 H, octyl CH₂), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): 138.46 (Ph quat.), 128.46, 128.43, 127.71 (Ph methine), 103.00 (C-1), 77.94 (C-3), 75.10 (C-5), 73.57, 72.49 (PhC H_2), 71.68 (C-6), 71.31 (C-2), 70.08 (OC H_2 C H_2), 33.31 (C-4), 31.83, 29.67, 29.40, 29.24, 26.00, 22.66 (octyl CH₂), 14.11 (octyl CH₃). Anal. Calcd for C₂₈H₄₀O₅ (456.63): C, 73.65; H, 8.83. Found: C, 73.35; H, 8.28.

Octyl 4-deoxy-2-O- $(\alpha$ -L-fucopyranosyl)- β -D-xylo-hexopyranoside (8).—Alcohol 30 (101 mg, 0.22 mmol) and $Et_4 NBr$ (51 mg, 0.243 mmol) were dissolved in CH_2Cl_2 (4 mL) and DMF (0.5 mL) containing crushed 4A molecular sieves (3 g), and the solution stirred overnight. To this slurry was added freshly prepared 2,3,4-tri-Obenzyl-L-fucopyranosyl bromide (1.105 mmol) in CH₂Cl₂ (3 mL) and the mixture was stirred for 2 days. Methanol (1 mL) was added and stirring continued for 30 min, and then the mixture was filtered and taken to dryness. At this point it was not possible to obtain a pure product, therefore the partially purified product was dissolved in MeOH (10 mL), 5% Pd-C (50 mg) added and the solution stirred under a flow of H_2 overnight. Final purification as described for 6 gave 8 (36 mg, 39%) as a white solid. ¹H NMR (CD₃OD): 5.19 (d, 1 H, $J_{1'2'}$ 2 Hz, H-1'), 4.29 (m, 2 H, H-1, H-5'), 3.88 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.72-3.84 (m, 3 H, H-2', H-3, H-6a), 3.63 (d, 1 H, J_{3'4'} 1.5 Hz, H-3'), 3.44-3.58 (m, 4 H, H-5, H-2, H-4', OC H_2 CH₂), 3.22 (dd, 1 H, $J_{1,2}$ 8, $J_{2,3}$ 10 Hz, H-2) 1.90 (ddd, 1 H, $J_{4e,5}$ 1.5, J_{3,4e} 5, J_{4e,4a} 13 Hz, H-4e), 1.62 (m, 2 H, OCH₂CH₂), 1.25–1.45 (11 H, octyl CH₂, H-4a), 1.19 (d, 3 H, $J_{5'6'}$ 6.5 Hz, H-6'), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CD₃OD): δ 103.36 (C-1), 101.77 (C-1'), 83.42 (C-2), 73.79 (C-4'), 73.76 (C-5), 73.02 (C-3), 71.75 (C-3'), 70.83 (OCH₂CH₂), 70.68 (C-2'), 67.83 (C-5'), 65.50 (C-6), 36.49 (C-4), 33.01, 30.99, 30.63, 30.41, 27.30, 23.70 (octyl CH₂), 16.80 (C-6'), 14.42 (octyl CH₃). FABMS: m/z 445 [M + Na]⁺ and 423 [M + H]⁺ $(C_{20}H_{38}O_9 \text{ requires } m/z 422).$

Methyl 3,4 di-O-benzoyl-6-bromo-6-deoxy- β -D-galactopyranoside (33).—Methyl 3-O-benzoyl-4,6-O-benzylidene- β -D-galactopyranoside (32; 3.0 g, 7.78 mmol), N-bromosuccinimide (1.73 g, 9.72 mmol) and BaCO₃ (7 g) were refluxed in CCl₄ (75 mL) for 30 min. The orange solution was cooled, filtered, evaporated, and the

resulting liquid chromatographed (1:1 hexane–EtOAc) to give **33** (2.74 g, 76%) as a white foam; $[\alpha]_D$ +71.6° (c 0.4, CHCl₃); R_f 0.65 (1:1 hexane–EtOAc). ¹H NMR (CDCl₃): δ 7.0–7.84 (m, 10 H, Ph), 5.74 (dd, 1 H, $J_{3,4}$ 3.2, $J_{4,5}$ 1 Hz, H-4), 5.20 (dd, 1 H, $J_{2,3}$ 10, $J_{3,4}$ 3.2 Hz, H-3), 4.31 (d, 1 H, $J_{1,2}$ 7.5 Hz, H-1), 3.96 (m, 2 H, H-2, H-5), 3.57 (s, 3 H, OCH₃), 3.37 (dd, 1 H, $J_{6a,6b}$ 9.5, $J_{5,6a}$ 7 Hz, H-6a), 3.32 (dd, $J_{6a,6b}$ 9.5, $J_{5,6b}$ 6.5 Hz, H-6), 2.48 (br s, 1 H, 2-OH); ¹³C NMR (CDCl₃): δ 165.94, 164.44 (C=O), 133.61, 133.26, 129.97, 129.81 (Ph methine), 129.25, 129.07 (Ph quat.), 128.59, 128.28 (Ph methine), 104.27 (C-1), 73.92 (C-5), 73.38 (C-3), 69.73 (C-2), 68.75 (C-4), 57.62 (OCH₃), 28.61 (C-6). Anal. Calcd for C₂₁H₂₁BrO₇ (465.30): C, 54.21; H, 4.55; Br, 17.17. Found: C, 54.05; H, 4.64; Br, 17.32.

Methyl 3,4 di-O-benzoyl-6-deoxy-β-D-galactopyranoside (34).—Compound 33 (2.43 g, 5.23 mmol), Et₃N (910 μL, 6.53 mmol), and 5% Pd–C (2.25 g) were stirred in 5:1 EtOH–EtOAc (120 mL) under a flow of H₂ for 18 h. The catalyst was filtered off, the solvent evaporated, and the residue chromatographed (1:1 hexane–EtOAc) to give 34 (1.84 g, 91%) as a white solid; $[\alpha]_D$ +100.0° (*c* 0.4, CHCl₃); R_f 0.58 (1:1 hexane–EtOAc). ¹H NMR (CDCl₃): δ 7.2–8.1 (m, 10 H, Ph), 5.63 (dd, 1 H, $J_{3,4}$ 3.5, $J_{4,5}$ 1 Hz, H-4), 5.34 (dd, 1 H, $J_{2,3}$ 10, $J_{3,4}$ 3.5 Hz, H-3), 4.40 (d, 1 H, $J_{1,2}$ 8 Hz, H-1), 4.05 (ddd, 1 H, $J_{1,2}$ 8, $J_{2,3}$ 10, $J_{2,OH}$ 2.5 Hz, H-2), 4.01 (q, 1 H, $J_{5,6}$ 6.5 Hz, H-5), 3.65 (s, 3 H, OCH₃), 2.50 (d, 1 H, $J_{2,2OH}$ 2.5 Hz, 2-OH), 1.32 (d, 3 H, $J_{5,6}$ 6.5 Hz, H-6); ¹³C NMR (CDCl₃): δ 166.06, 165.96 (C=O), 133.37, 133.15, 129.25, 129.78 (Ph methine), 129.45 (Ph quat.), 128.49, 128.25 (Ph methine), 104.24 (C-1), 73.75 (C-5), 71.21 (C-3), 69.80 (C-2), 68.68 (C-4), 57.50 (OCH₃), 16.28 (C-6). Anal. Calcd for C₂₁H₂₂O₇ (386.41): C, 65.28; H, 5.74. Found: C, 65.28; H, 5.97.

Methyl 2-O-acetyl-3,4 di-O-benzoyl-6-deoxy-β-D-galactopyranoside (**35**).—Alcohol **34** (1.77 g, 4.58 mmol) was dissolved in pyridine (15 mL) and then Ac₂O (5 mL) was added. The mixture was stirred overnight and was quenched by cooling to 0°C and adding MeOH. The solvent was evaporated and the product chromatographed (4:1 hexane–EtOAc) to give the product **35** (1.88 g, 96%) as a white foam; $[\alpha]_D$ +139.4° (c 0.8, CHCl₃); R_f 0.22 (4:1 hexane–EtOAc). ¹H NMR (CDCl₃): δ 7.2–8.1 (m, 10 H, Ph), 5.67 (dd, 1 H, $J_{3,4}$ 3.5, $J_{4,5}$ 1 Hz, H-4), 5.49 (dd, 1 H, $J_{1,2}$ 8, $J_{2,3}$ 10.5 Hz, H-2), 5.36 (dd, 1 H, $J_{2,3}$ 10.5, $J_{3,4}$ 3.5 Hz, H-3), 4.54 (d, 1 H, $J_{1,2}$ 8 Hz, H-1), 4.02 (dq, 1 H, $J_{5,6}$ 6.5, $J_{4,5}$ 1 Hz, H-5), 3.60 (s, 3 H, OCH₃), 1.98 (s, 3 H, acetate CH₃), 1.33 (d, 3 H, $J_{5,6}$ 6.5 Hz, H-6); ¹³C NMR (CDCl₃): δ 169.67 (acetate C=O), 165.98, 165.68 (benzoate C=O), 133.40, 133.30, 129.99, 129.76 (Ph methine), 129.27, 129.02 (Ph quat.), 128.57, 128.38 (Ph methine), 102.0 (C-1), 72.24 (C-5), 71.04 (C-3), 69.65 (C-2), 69.17 (C-4), 56.95 (OCH₃), 20.81 (acetate CH₃), 16.27 (C-6). Anal. Calcd for C₂₃H₂₄O₈ (428.44): C, 64.48; H, 5.65. Found: C, 64.27; H, 5.67.

2-O-Acetyl-3,4 di-O-benzoyl-6-deoxy- α -D-galactopyranosyl chloride (36).—Compound 35 (901 mg, 2.10 mmol), and ZnCl₂ (50 mg) were dissolved in CHCl₃ (2 mL). To this solution was added MeOCHCl₂ (5 mL) and the mixture was refluxed for 45 min. The solvent was evaporated and the product subjected to a rapid chromatographic separation (4:1 hexane-EtOAc) to give 36 (703 mg, 78%) as a

white foam; R_f 0.47 (4:1 hexane–EtOAc). ¹H NMR (CDCl₃): δ 7.30–8.12 (m, 10 H, Ph), 6.50 (d, 1 H, $J_{1,2}$ 4 Hz, H-1), 5.84 (dd, 1 H, $J_{1,2}$ 4, $J_{2,3}$ 10 Hz, H-2), 5.80 (dd, 1 H, $J_{3,4}$ 3.5, $J_{4,5}$ 1 Hz, H-4), 5.60 (dd, 1 H, $J_{2,3}$ 10, $J_{3,4}$ 3.5 Hz, H-3), 4.68 (q, 1 H, $J_{5,6}$ 6.5, $J_{4,5}$ 1 Hz, H-5), 2.08 (s, 3 H, acetate CH₃), 1.32 (d, 3 H, $J_{5,6}$ 6.5 Hz, H-6); ¹³C NMR (CDCl₃): δ 170.33 (acetate C=O), 165.72, 165.39 (benzoate C=O), 133.60, 133.35, 129.90, 129.74 (Ph methine), 129.13 (Ph quat.), 128.66, 128.40 (Ph methine), 92.02 (C-1), 70.98 (C-5), 68.47 (C-3), 68.32 (2 C, C-4, C-2), 20.72 (acetate CH₃), 15.87 (C-6).

Octyl 2-O-acetyl-3, 4-di-O-benzoyl-6-deoxy- β -D-galactopyranoside (37).—Silver triflate (502 mg, 1.95 mmol, dried in vacuo over P_2O_5 for 1 h), was stirred with collidine (125 μ L, 1.02 mmol) and 1-octanol (604 μ L, 3.84 mmol) in CH₂Cl₂ (10 mL) containing crushed 3A molecular sieves (2.5 g) under N_2 at $-30^{\circ}C$ for 20 min. To this solution was added dropwise, chloride 36 (549 mg, 1.28 mmol) in CH_2Cl_2 (15 mL). The mixture was stirred under N_2 and warmed to room temperature. After 8 h the reaction was quenched with collidine (200 μ L), filtered, and evaporated. The residue was then chromatographed (4:1 hexane-EtOAc) to give the product 37 (590 mg, 88%) as an oil; $[\alpha]_{\rm D}$ +114.7° (c 0.5, CHCl₃); R_f 0.51 (4:1 hexane-EtOAc). ¹H NMR (CDCl₃): δ 7.28-8.11 (m, 10 H, Ph), 5.65 (dd, 1 H, J_{3.4} 3.5, $J_{4,5}$ 1 Hz, H-4), 5.48 (dd, 1 H, $J_{1,2}$ 8, $J_{2,3}$ Hz, H-2), 5.36 (dd, 1 H, $J_{2,3}$ 10, $J_{3,4}$ 3.5 Hz, H-3), 4.59 (d, 1 H, J_{1.2} 8 Hz, H-1), 3.92-4.05 (m, 2 H, OCH₂CH₂, H-5), 3.54 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 1.98 (s, 3 H, acetate CH₃), 1.55–1.70 (m, 2 H, OCH₂CH₂), 1.20–1.40 (m, 13 H, octyl CH₂, H-6). 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); 13 C NMR (CDCl₃): δ 169.54 (acetate C=O), 166.07, 165.73 (benzoate C=O), 133.39, 133.29, 130.06, 129.82 (Ph methine), 129.34, 129.11 (Ph quat.), 128.53, 128.40 (Ph methine), 101.30 (C-1), 72.29 (C-5), 71.13 (C-3), 70.19 (OCH₂CH₂), 69.65 (C-2), 69.36 (C-4), 31.85, 29.53, 29.36, 29.31, 25.91, 22.69 (octyl CH₂), 20.79 (acetate CH₃), 16.35 (C-6), 14.12 (octyl CH₃). Anal. Calcd for C₃₀H₃₈O₈ (526.63): C, 68.42; H, 7.27. Found: C, 68.58; H, 7.52.

Octyl 3,4-di-O-benzoyl-6-deoxy-β-D-galactopyranoside (**38**).—Compound **37** (399 mg, 0.76 mmol) was dissolved in 49:1 MeOH–AcCl (9 mL) and stirred for 9 h. The reaction was quenched with NaHCO₃ and then diluted with CH₂Cl₂ and extraced with NaHCO₃, water, and brine. Chromatography of the residue (4:1 hexane–EtOAc) gave **38** (331 mg, 90%) as an oil; $[\alpha]_D$ +81.4° (*c* 0.4, CHCl₃); *R_f* 0.36 (4:1 hexane–EtOAc). ¹H NMR (CDCl₃): δ 7.20–8.15 (m, 10 H, Ph), 5.65 (d, 1 H, *J*_{3,4} 3.5 Hz, H-4), 5.38 (dd, 1 H, *J*_{2,3} 10, *J*_{3,4} 3.5 Hz, H-3), 4.49 (d, 1 H, *J*_{1,2} 7.5 Hz, H-1), 4.07 (ddd, 1 H, *J*_{1,2} 7.5, *J*_{2,3} 10, *J*_{2,2-OH} 2.5 Hz), 4.02 (m, 2 H, OCH₂CH₂, H-5), 3.62 (dt, 1 H, *J*_{gem} 10, *J*_{vic} 7 Hz, OCH₂CH₂), 2.38 (d, 1 H, *J*_{2,OH} 2.5 Hz, 2-OH), 1.58–1.70 (m, 2 H, OCH₂CH₂), 1.20–1.40 (m, 13 H, octyl CH₂, H-6), 0.88 (t, 3 H, *J*_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 166.03 (C=O), 133.37, 133.13, 130.01, 129.82 (Ph methine), 129.57 (Ph quat.), 128.51, 128.28 (Ph methine), 103.28 (C-1), 73.67(C-5), 71.34 (C-3), 70.59 (OCH₂CH₂), 69.88 (C-2), 69.72 (C-4), 31.85, 29.63, 29.43, 29.28, 25.99, 22.69 (octyl CH₂), 16.36 (C-6), 14.13 (octyl CH₃). Anal. Calcd for C₂₈H₃₆O₇ (484.59): C, 69.40; H, 7.49. Found: C, 69.49; H, 7.64.

Octyl 3,4-di-O-benzoyl-6-deoxy-2-O- $(2,3,4-tri-O-benzyl-\alpha-L-fucopyranosyl)-\beta-D$ galactopyranoside (39).—Alcohol 38 (148 mg, 0.31 mmol) and Et_4NBr (71 mg, 0.34 mmol) were fucosylated as described for compound 15 using 2,3,4-tri-O-benzyl-Lfucopyranosyl bromide (1.224 mmol). Column chromatography of the mixture (3:1 hexane-EtOAc) gave the disaccharide 39 (245 mg, 88%) as an oil; $[\alpha]_{\rm D} = 1.3^{\circ} (c$ 0.2, CHCl₃); R_f 0.24 (3:1 hexane-EtOAc). ¹H NMR (CDCl₃): 6.9-8.1 (m, 25 H Ph), 5.68 (dd, 1 H, J_{3.4} 3.5, J_{4.5} 1 Hz, H-4), 5.57 (dd, 1 H, J_{2.3} 10, J_{3.4} 3.5 Hz, H-3), 5.40 (d, 1 H, $J_{1'2'}$ 3.5 Hz, H-1'), 4.98, 4.78 (d, 1 H, J_{gem} 11.5 Hz, PhCH₂), 4.60-4.70 (m 3 H, H-1, 2 PhCH₂), 4.44 (q, 1 H, J_{5'6'} 6.5 Hz, H-5'), 4.28-4.38 (m, 3 H, 2 PhCH₂, H-2), 3.94–4.04 (m, 2 H, H-5, OCH₂CH₂), 3.86–3.94 (m, 2 H, H-3', H-2'), 3.68 (s, 1 H, H-4'), 3.62 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OC H_2 CH₂), 1.55–1.70 (m, 2 H, OCH₂CH₂), 1.20-1.45 (13 H, octyl CH₂, H-6), 1.10 (d, 3 H, J_{5'6'} 6.5 Hz, H-6'), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 166.08, 165.30 (C=O), 138.68, 138.64, 137.82 (Ph quat.), 133.24, 133.17, 129.92, 129.65 (Ph methine), 129.43, 129.31 (Ph quat.), 128.42, 128.39 (Ph methine), 102.04 (C-1), 97.08 (C-1'), 79.37 (C-4'), 77.99 (C-3'), 75.63 (C-2'), 75.50 (C-2), 74.72, 73.22, 72.36 (PhCH₂), 71.41 (C-3), 71.28 (C-4), 70.24 (OCH₂CH₂), 69.22 (C-5), 66.55 (C-5'), 31.82, 29.66, 29.47, 29.30, 26.20, 22.63 (octyl CH₂), 16.55 (C-6), 16.27 (C-6'), 14.08 (octyl CH₃). Anal. Calcd for C₅₅H₆₄O₁₁ (901.12): C, 73.31; H, 7.16. Found: C, 73.05; H, 7.01.

Octyl 6-deoxy-2-O- $(\alpha$ -L-fucopyranosyl)- β -D-galactopyranoside (9).—To a solution of protected disaccharide 39 (200 mg, 0.22 mmol) in MeOH (10 mL), 5% Pd-C (100 mg) was added and the solution stirred under a flow of H₂ overnight. After completion of the reaction, the catalyst was filtered away and the solvent evaporated. The residue was redissolved in MeOH (20 mL), 1 M NaOH (1 mL) was added, and the mixture stirred overnight. The solution was neutralized with Amberlite IR 120 (H⁺) resin, evaporated, and the product purified by chromatography (9:1 CH_2Cl_2 -MeOH). Final purification was achieved as described for 6 to give the product 9 (76 mg, 81%) as a white solid; R_f 0.15 (9:1 CH₂Cl₂-MeOH). ¹H NMR (CD₃OD): δ 5.19 (d, 1 H, $J_{1'2'}$ 2 Hz, H-1'), 4.29 (m, 2 H, H-1, H-5'), 3.83 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.56-3.77 (m, 7 H, H-2, H-3, H-4, H-5, H-2', H-3', H-4'), 3.48 (dt, 1 H, J_{gen} 10, J_{vic} 7 Hz, OCH₂CH₂), 1.53-1.66 (m, 2 H, OCH₂CH₂), 1.21-1.42 (13 H, octyl CH₂, H-6), 1.18 (d, 3 H, J_{5'6'} 6.5 Hz, H-6'), 0.88 (t, 3 H J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CD₃OD): δ 103.38 (C-1), 101.54 (C-1'), 78.86 (C-2), 75.88 (C-5), 73.74 (C-3), 73.12 (C-4'), 71.76 (2 C, C-3' C-4'), 70.70 (OCH₂CH₂), 70.61 (C-2'), 67.74 (C-5'), 32.99, 30.99, 30.59, 30.38, 27.28, 23.68 (octyl CH₂), 16.77 (C-6'), 16.67 (C-6), 14.40 (octyl CH₃). FABMS: m / z 445 $[M + Na]^+$ and 423 $[M + H]^+$ (C₂₀H₃₈O₉ requires m/z 422).

2,4,6 Tri-O-acetyl-3-deoxy-3-fluoro- α -D-galactopyranosyl bromide (41).—1,2,4,6tetra-O-Acetyl-3-deoxy-3-fluoro-D-galactopyranose 40³³ (0.86 g, 2.44 mmol) was dissolved in CH₂Cl₂ (2 mL) and hydrobromic acid (33% in AcOH, 7 mL) added. The mixture was stirred for 1 h and then evaporated to dryness, coevaporating with dry toluene. The crude product was purified by a rapid chromatographic separation (3:1 hexane-EtOAc) to give the product 41 (850 mg, 80%) as an oil which solidified on standing; R_f 0.48 (3:1 hexane-EtOAc). ¹H NMR (CDCl₃): δ 6.68 (t, 1 H, $J_{1,2} = J_{1,F} = 4$ Hz, H-1), 5.68 (ddd, 1 H, $J_{3,4}$ 3.5, $J_{4,5}$ 1, $J_{H4,F}$ 6 Hz, H-4), 5.11 (ddd, 1 H, $J_{1,2}$ 4.0, $J_{2,3}$ 10, $J_{H2,F}$ 12 Hz, H-2) 5.00 (ddd, 1 H, $J_{2,3}$ 10, $J_{3,4}$ 3.5, $J_{H3,F}$ 48 Hz, H-3), 4.44 (br t, 1 H, $J_{5,6}$ 6.5 Hz, H-5), 4.24 (ddd, 1 H, $J_{5,6a}$ 6.5, $J_{6a,6b}$ 12 Hz, H-6a), 4.11 (ddd, 1 H, $J_{5,6b}$ 6.5, $J_{6a,6b}$ 12, $J_{H6b,F}$ 1 Hz, H-6b), 2.19 (s, 3 H, acetate CH₃), 2.08 (s, 6 H, acetate CH₃).

Octyl 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-B-D-galactopyranoside (42).—Compound 41 (644 mg, 1.74 mmol), was glycosylated as described for the conversion of 36 to 37, using silver triflate (669 mg, 2.60 mmol), collidine (167 μ L, 1.31 mmol), and octanol (830 μ L, 5.22 mmol). The reaction was complete after 30 min. Chromatography of the crude mixture (4:1 hexane-EtOAc) gave the product 42 (448 mg, 62%) as an oil; $[\alpha]_D$ + 3.5° (c 1.2, CHCl₃); R_f 0.38 (4:1 hexane-EtOAc). ¹H NMR (CDCl₃): δ 5.55 (ddd, 1 H, $J_{3,4}$ 3.5, $J_{4,5}$ 1, $J_{4,F}$ 6 Hz, H-4), 5.28 (ddd, 1 H, J_{1,2} 8, J_{2,3} 9.5, J_{2,F} 12 Hz, H-2) 4.61 (ddd, 1 H, J_{2,3} 9.5, J_{3,4} 3.5, J_{H3,F} 47 Hz, H-3), 4.40 (d, 1 H, $J_{1,2}$ 8 Hz, H-1), 4.17 (d, 2 H, $J_{5,6a} = J_{5,6b} = 6.5$ Hz, H-6a, H-6b), 3.88 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OC H_2 CH₂), 3.83 (ddt, 1 H, $J_{5.6}$ 6.5, $J_{4.5}$ 1, $J_{5.F}$ 1 Hz), 3.47 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OC H_2 CH₂), 2.18, 2.12, 2.07 (s, 3 H, acetate CH₃), $1.45-1.70 \text{ (m, 2 H, OC}H_2\text{CH}_2\text{)}, 1.20-1.40 \text{ (m, 10 H, octyl CH}_2\text{)}, 0.88 \text{ (t, 3 H, } J_{\text{vic}} \text{ 7}$ Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ170.43 170.02, 169.25 (acetate C=O), 100.77 (d, 1 C, J_{C1,F} 10.6 Hz, C-1), 88.98 (d, 1 C, J_{C3,F} 194.0 Hz, C-3), 70.35 (OCH₂CH₂), 70.03 (d, 1 C, J_{C2,F} 25.7 Hz, C-2), 69.94 (C-5), 67.00 (d, 1 C, J_{C4,F} 16.6 Hz, C-4), 61.37 (d, 1 C, J_{C6.F} 2.4 Hz, C-6) 31.82, 29.42, 29.29, 25.82, 22.66 (octyl CH₂), 20.79, 20.68 (acetate CH₃), 14.09 (octyl CH₃); ¹⁹F NMR (CDCl₃): δ -200.3 (ddd, 1 F, $J_{\text{H3,F}}$ 47, $J_{\text{H2,F}}$ 12, $J_{\text{H4,F}}$ 5.3 Hz, F-3). Anal. Calcd for $C_{20}H_{36}FO_8$ (423.50): Calculated: C, 56.72; H, 8.57. Found: C, 57.30; H, 8.34.

Octyl 3-deoxy-3-fluoro-β-D-galactopyranoside (43).—Galactoside 42 (338 mg, 0.80 mmol), was dissolved in MeOH (10 mL) and NaOMe (60 mg) was added. After stirring for 48 h, the solution was neutralized by the addition of prewashed Amberlite IR 120 (H⁺) resin. Evaporation of the solvent followed by chromatography (19:1 CH₂Cl₂-MeOH) gave the product 43 (218 mg, 92%) as a white solid; $[\alpha]_{\rm D}$ – 19.2° (c 0.7, MeOH); R_f 0.11 (19:1 CH₂Cl₂–MeOH). ¹H NMR (CD₃OD): δ 4.28 (ddd, 1 H, $J_{3,4}$ 3.5, $J_{2,3}$ 9.5, $J_{H3,F}$ 48.5 Hz, H-3), 4.14 (d, 1 H, $J_{1,2}$ 7.5 Hz, H-1), 4.01 (dd, 1 H, J_{H4,F} 6.5, J_{3,4} 3.5 Hz, H-4), 3.86 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.62–3.80 (m, 2 H, H-2, H-6a, H-6b), 3.50 (dt, 1 H, J_{sem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.45 (br t, 1 H, J_{5.6} 6.5 Hz, H-5), 1.58–1.75 (m, 2 H, OCH₂CH₂), 1.20–1.40 (m, 10 H, octyl CH₂), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CD₃OD): δ 104.31 (d, 1 C, $J_{C1,F}$ 11.8 Hz, C-1), 95.01 (d, 1 C, $J_{C3,F}$ 184.8 Hz, C-3), 75.25 (d, 1 C, $J_{C5,F}$ 6.9 Hz, C-5), 71.02 (OCH₂CH₂), 70.98 (d, 1 C, $J_{C2,F}$ 18.1 Hz, C-2), 68.34 (d, 1 C, J_{C4,F} 16.5 Hz, C-4) 62.03 (d, 1 C, J_{C6,F} 3 Hz, C-4), 33.00, 30.80, 30.55, 30.41, 27.09, 23.71 (octyl CH₂), 14.41 (octyl CH₃); ¹⁹F NMR (CD₃OD): δ -201.0 (dddd, 1 F, $J_{H3,F}$ 48.5, $J_{H2,F}$ 13, $J_{H4,F}$ 6.5, $J_{H5,F}$ 1 Hz, F-6). Anal. Calcd for C₁₄H₂₇FO₅ (294.37): C, 57.13; H, 9.25. Found: C, 56.88; H, 9.16.

Octyl 4,6-O-benzylidene-3-deoxy-3-fluoro- β -D-galactopyranoside (44).—Compound 43 (131 mg, 0.45 mmol) and PhCH(OMe)₂ (201 μ L, 1.34 mmol) were dissolved in MeCN (5 mL) and TsOH (5 mg) added. After stirring for 30 min the reaction was neutralized with Et_3N , evaporated, and chromatographed (3:1 hexane-EtOAc) to give 44 (169 mg, 98%) as a white solid; $[\alpha]_{\rm D} = -34.3^{\circ}$ (c 0.5, CHCl₃); R_f 0.13 (3:1 hexane-EtOAc). ¹H NMR (CDCl₃): δ 7.1-7.52 (m, 5 H, Ph), 5.42 (s, 1 H, PhCHO₂), 4.4 (ddd, 1 H, $J_{2,3}$ 9, $J_{3,4}$ 3.5, $J_{H3,F}$ 45.5 Hz, H-3), 4.20-4.32 (m, 2 H, H-6a, H-4), 4.18 (d, 1 H, J_{1.2} 8 Hz, H-1), 3.92-4.04 (m, 2 H, H-6b, H-2), 3.89 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.42 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.41 (br s, 1 H, H-5), 2.42 (d, 1 H, J_{2.2-OH} 2-OH), 1.62 (m, 2 H, OCH₂C H_2), 1.20–1.40 (m, 10 H, octyl CH₂), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 137.47 (Ph quat.), 129.09, 128.18, 126.36 (Ph methine), 102.44 (d, 1 C, J_{C1.F} 11.3 Hz, C-1), 101.04 (PhCHO₂), 91.21 (d, 1 C, J_{C3.F} 191.7 Hz, C-3), 74.14 (d, 1 C, J_{C4,F} 15.8 Hz, C-4), 70.31 (OCH₂CH₂), 69.57 (d, 1 C, J_{C2,F} 18.1 Hz, C-2), 69.01 (C-6), 65.62 (d, 1 C, J_{C5.F} 6.0 Hz, C-5), 31.83, 29.52, 29.41, 29.24, 25.97, 22.67 (octyl CH₂), 14.11 (octyl CH₃); ¹⁹F NMR (CDCl₃): δ - 205.1 (m, 1 F, F-3). Anal. Calcd for C₂₁H₃₁FO₅ (382.48): C, 65.95; H, 8.17 Found: C, 65.84; H, 8.49.

Octyl 4,6-O-benzylidene-3-deoxy-3-fluoro-2-O-(2,3,4-tri-O-benzyl-α-L-fucopyranosyl)- β -D-galactopyranoside (45).—Alcohol 44 (117 mg, 0.31 mmol) and Et₄NBr (72 mg, 0.34 mmol) were fucosylated as described for compound 15 using 2,3,4-tri-O-benzyl-L-fucopyranosyl bromide (1.27 mmol). Column chromatography of the residue (3:1 hexane-EtOAc) gave the disaccharide 45 (217 mg, 89%) as an oil; $[\alpha]_{\rm D}$ -84.0° (c 0.1, CHCl₃); R_f 0.23 (3:1 hexane-EtOAc). ¹H NMR (CDCl₃): δ 7.2-7.6 (m, 20 H Ph), 5.55 (s, 1 H, PhCHO₂), 5.36 (d, 1 H, J_{1'2'} 4 Hz, H-1'), 4.99, 4.90 (d, 1 H, J_{sem} 11.5 Hz, PhCH₂), 4.64–4.87 (m, 7 H, 6 PhCH₂, H-3), 4.21–4.45 (m, 5 H, H-1, H-5', H-2, H-4, H-6a) 4.0–4.11 (m, 2 H, H-6b, H-2') 3.87–3.98 (m, 2 H, H-3', OC H_2 CH₂), 3.66 (d, 1 H, $J_{3'4'}$ 2 Hz, H-4'), 3.40 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH_2CH_2), 3.36 (br s, 1 H, H-5), 1.45–1.70 (m, 2 H, OCH_2CH_2), 1.20–1.40 (m, 10 H, octyl CH₂), 1.12 (d, 1 H, $J_{5',6'}$ 6.5 Hz, H-6'), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 139.15, 138.84, 138.47, 137.39 (Ph quat.), 129.08, 128.34, 128.31, 128.27, 128.20, 128.18, 128.14, 127.59, 127.49, 127.42, 127.36, 126.42 (Ph methine), 101.06 (PhCHO₂), 101.00 (d, 1 C, J_{C1F} 10 Hz, C-1), 97.10 (d, 1 C, J_{C1',F} 5.3 Hz, C-1'), 93.36 (d, 1 C, J_{C3,F} 191 Hz, C-3), 79.41 (C-4'), 78.10 (C-3'), 76.39 (C-2'), 74.78 (PhCH₂), 74.49 (d, 1 C, J_{C4.F} 15.8 Hz, C-2), 73.38, 72.77 (PhCH₂), 72.11 (d, 1 C, J_{C2.F} 16.5 Hz, C-4), 69.61 (OCH₂CH₂), 69.06 (C-6), 66.45 (C-5'), 65.32 (d, 1 C, J_{C5.F} 6.8 Hz, C-5), 31.87, 29.67, 29.51, 29.34, 26.21, 22.68 (octyl CH₂), 16.60 (C-6'), 14.13 (octyl CH₃); ¹⁹F NMR (CDCl₃); $\delta -203$ (dt, 1 F, $J_{\text{H3,F}}$ 47, $J_{\text{H4,F}}$ 6, $J_{\text{H2,F}}$ 12.5 Hz, F-3). Anal. Calcd for $C_{48}H_{59}FO_9$ (799.00): C, 72.16; H, 7.44. Found: C, 72.15; H, 7.59.

Octyl 3-deoxy-3-fluoro-2-O-(α -L-fucopyranosyl)- β -D-galactopyranoside (10).— The protected disaccharide 45 (166 mg, 0.21 mmol) was dissolved in MeOH (10 mL), 5% Pd-C (100 mg) was added, and the solution stirred under a flow of H₂ overnight. After completion of the reaction, the catalyst was filtered off, the solvent evaporated, and the product was purified by chromatography (9:1) CH_2Cl_2 -MeOH). Final purification of the product was achieved as described for 6 to give the product 10 (75 mg, 82%) as a white solid; $R_f 0.20 (9:1 \text{ CH}_2\text{Cl}_2\text{-MeOH})$. ¹H NMR (CD₃OD): δ 5.12 (br s, 1 H, H-1'), 4.66 (ddd, 1 H, $J_{H3,F}$ 48.5, $J_{2,3}$ 9.5, $J_{3,4}$ 3.5 Hz, H-3), 4.37 (m, 2 H, H-1, H-5'), 4.06 (dd, 1 H, J_{H4,F} 7.5, J_{3,4} 3.5 Hz, H-4), 3.98 (ddd, 1 H, J_{H2,F} 7.5, J_{1,2} 8, J_{2,3} 9.5 Hz, H-2), 3.91 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.68-3.79 (m, 4 H, H-6a, H-6b, H-2', H-3'), 3.63 (br d, 1 H, J_{3'4'} 1 Hz, H-4'), 3.44-3.55 (m, 2 H, H-5, OCH₂CH₂), 1.52-1.68 (m, 2 H, OCH₂CH₂), 1.22–1.43 (10 H, octyl CH₂), 1.18 (d, 3 H, $J_{5'6'}$ 6.5 Hz, H-6'), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CD₃OD): δ 102.59 (d, 1 C, J_{C1.F} 12.8 Hz, C-1), 99.83 (d, 1 C, J_{C1',F} 6 Hz, C-1'), 96.60 (d, 1 C, J_{C3,F} 184.0 Hz, C-3), 75.15 (d, 1 C, J_{C5,F} 6.9 Hz, C-5), 74.01 (d, 1 C, J_{C2.F} 16.6 Hz, C-2), 73.75 (C-3'), 71.53 (C-4'), 70.78 (OCH₂CH₂), 69.97 (C-2'), 68.50 (d, 1 C, J_{C4,F} 16.5 Hz, C-4), 67.44 (C-5'), 61.94 (d, 1 C, J_{C6,F} 3.1 Hz, C-6), 32.99, 30.97, 30.57, 30.41, 27.38, 23.67 (octyl CH₂), 16.62 (C-6'), 14.40 (octyl CH₃); ¹⁹F NMR (CD₃OD): δ -198.4 (dt, 1 F, J_{H3F} 48.5, $J_{\text{H2,F}} = J_{\text{H4,F}} = 7.5$ Hz, F-3). FABMS: m/z 463 [M + Na]⁺ and 441 [M + H]⁺ $(C_{20}H_{37}FO_9 \text{ requires } m/z 440).$

Octyl 4,6-O-benzylidene-2,3-di-O-benzyl- β -D-glucopyranoside (47).—Octyl β -Dglucopyranoside (46, 1.05 g, 3.61 mmol) was dissolved in PhCHO (10 mL) and ZnCl₂ (750 mg, 5.41 mmol) was added. After stirring overnight, the solution was cooled to 0°C and water (35 mL) was added. Stirring was continued for 1 h and then the mixture was diluted with CH_2Cl_2 and washed with NaHCO₃, water, and brine. The organic layer was dried with Na₂SO₃ and evaporated under reduced pressure to remove the PhCHO. The residue was redissolved in CH₂Cl₂ and extracted with 2 M NaOH to remove traces of benzoic acid. The organic layer was then washed with water and brine, and evaporated. The compound was not characterized, but directly benzylated by dissolving in DMF (25 mL) and adding NaH (650 mg, 80% dispersion in oil, 24.64 mmol). After stirring for 30 min, PhCH₂Br (3 mL, 25.20 mmol) was added and the mixture stirred for 20 h. Methanol was added to decompose the excesss NaH and the mixture diluted with CH_2Cl_2 and then washed with water and brine. After solvent evaporation, column chromatography of the resulting clear oil (9:1 hexane-EtOAc) gave 47 (1.53 g, 76%) as a white solid; $[\alpha]_{\rm D}$ - 39.1° (c 1, CHCl₃); R_f 0.52 (9:1 hexane-EtOAc). ¹H NMR (CDCl₃): δ 7.23-7.55 (m, 15 H, Ph), 5.60 (s, 1 H, PhCHO₂), 4.93 (d, 2 H, J_{gem} 11.5 Hz, 2 PhCH₂), 4.82, 4.77 (d, 1 H, J_{gem} 11.5 Hz, PhCH₂), 4.52 (d, 1 H, J_{1.2} 7.5 Hz, H-1), 4.36 (dd, 1 H, J_{6a,6b} 10.5, J_{5,6a} 5 Hz, H-6a), 3.95 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OC H_2 CH₂), 3.82 (t, 1 H, $J_{3,4} = J_{4,5} = 10$ Hz, H-4), 3.64–3.77 (m, 2 H, H-3, H-6b), 3.57 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OC H_2 CH₂), 3.47 (t, 1 H, $J_{1,2} = J_{2,3} = 8$ Hz, H-2), 3.43 (dt, 1 H, $J_{5,6a}$ 5, $J_{4,5} = J_{5,6b} = 10$ Hz, H-5), 1.55–1.75 (m, 2 H, OCH₂CH₂), 1.20-1.40 (10 H, octyl CH₂), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 138.62, 138.47, 137.42 (Ph quat.), 128.94, 128.35, 128.31, 127.25, 128.12, 128.04, 127.71, 127.62, 126.05 (Ph methine), 104.21 (C-1), 101.16 (PhCHO₂), 82.22 (C-3), 81.58 (C-2), 80.97 (C-4), 75.36, 75.14 (PhCH₂), 70.66 (OCH₂CH₂), 68.88 (C-6), 66.07 (C-5), 31.86, 29.82, 29.43, 29.27, 26.15, 22.69 (octyl CH_2), 14.13 (octyl CH_3). Anal. Calcd for $C_{35}H_{44}O_6$ (560.74): C, 74.97; H, 7.91. Found: C, 74.95; H, 7.87.

Octyl 2,3,6-tri-O-benzyl-B-D-glucopyranoside (48).—Compound 47 (1.5 g, 2.68 mmol), NaCNBH₃ (1.85 g, 29.5 mmol) and Methyl Orange indicator were dissolved in 25 mL dry THF containing crushed 3A molecular sieves (2 g). The solution was cooled to 0°C and then ethereal HCl was added until the red color of the solution persisted. After 1 h TLC indicated the reaction was complete and the reaction was quenched by the addtion of NaHCO3. The mixture was filtered, diluted with CH₂Cl₂, washed with water and brine, and then evaporated. Column chromotography of the resulting oil (4:1 hexane-EtOAc) gave 48 (1.32 g, 88%) as a colorless oil; $[\alpha]_D - 22.6^\circ$ (c 0.8, CHCl₃); R_f 0.44 (4:1 hexane-EtOAc). ¹H NMR (CDCl₃): δ 7.20-7.43 (m, 15 H, Ph), 4.96, 4.93, 4.73, 4.71, 4.61, 4.58 (d, 1 H, J_{sem} 11.5 Hz, PhC H_2), 4.41 (d, 1 H, $J_{1,2}$ 7.5 Hz, H-1), 3.94 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.77 (dd, 1 H, J_{5.6} 4, J_{6a,6b} 10.5 Hz, H-6a), 3.69 (dd, 1 H, J_{5,6b} 5, J_{6a,6b} 10.5 Hz, H-6b), 3.37-3.63 (m, 5 H, H-2, H-3, H-4, H-5, OCH₂CH₂), 2.53 (d, 1 H, J_{2,2-OH} 2 Hz, 2-OH), 1.59–1.70 (m, 2 H, OCH₂CH₂), 1.20–1.40 (10 H, octyl CH₂), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 138.72, 138.54, 138.03 (Ph quat.), 128.56, 128.44, 128.39, 128.16, 127.99, 127.91, 127.83, 127.73 (Ph methine), 103.75 (C-1), 84.12 (C-3), 81.78 (C-2), 75.28, 74.74 (PhCH₂), 74.07 (C-5), 73.71 (PhCH₂), 71.74 (C-4), 70.47 (OCH₂CH₂), 70.47 (C-6), 31.87, 29.83, 29.45, 29.29, 26.23, 22.70 (octyl CH₂), 14.13 (octyl CH₃). Anal. Calcd for C₃₅H₄₆O₆ (562.75): C, 74.70; H, 8.24. Found: C, 74.58; H, 8.52.

Octyl 2,3,6-tri-O-benzyl-4-deoxy-4-fluoro- β -D-galactopyranoside (49).—To a solution of 48 (1.0 g, 1.78 mmol), in 19:1 CH₂Cl₂-pyridine (50 mL) at 0°C, was added dropwise in CH₂Cl₂ (2 mL) triflic anhydride (1.30 mL, 7.55 mmol). After stirring for 30 min TLC showed the starting material was gone and a new spot (R_f 0.63, 4:1 hexane-EtOAc) appeared. The mixture was then extracted with ice-cold 5% HCl and water, dried with Na₂SO₄, and evaporated to an orange liquid. The product was directly dissolved in dry THF (9 mL), cooled to 0°C, and Bu₄NF (9 mL of a 1.0 M solution in THF) was added. After stirring for 15 h and warming to room temperature, the solvent was removed and the residue chromatographed (4:1 hexane-EtOAc) to give 49 (803 mg, 80%) as a colorless oil; $[\alpha]_D = -9.0^\circ$ (c 0.3, CHCl₃); R_f 0.40 (4:1 hexane-EtOAc). ¹H NMR (CDCl₃): δ 7.20-7.40 (m, 15 H, Ph), 4.69–4.95 (m, 5 H, 4 PhCH₂, H-4), 4.56 (s, 2 H, PhCH₂), 4.37 (dd, 1 H, J_{1,2} 8, $J_{\text{H1,F}}$ 1 Hz, H-1), 3.92 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OC H_2 CH₂), 3.40–3.78 (m, 6 H, H-2, H-3, H-5, H-6, H-6, OCH₂CH₂), 1.58-1.70 (m, 2 H, OCH₂CH₂), 1.20-1.40 (10 H, octyl CH₂), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 138.60, 137.98, 137.84 (Ph quat.), 128.50, 128.44, 128.33, 128.14, 127.88, 127.83, 127.67 (Ph methine), 103.66 (C-1), 86.09 (d, 1 C, J_{C4,F} 183.4 Hz, C-4), 79.04 (C-2), 79.03 (d, 1 C, J_{C3F} 18.0 Hz, C-3), 75.37, 73.77, 72.49 (PhCH₂), 72.16 (d, 1 C, J_{C5F} 18.2 Hz, C-5), 70.31 (OCH₂CH₂), 67.89 (d, 1 C, J_{C6.F} 5.3 Hz, C-6), 31.86, 29.78, 29.44, 29.27, 26.17, 22.69 (octyl CH₂), 14.11 (octyl CH₃); ¹⁹F NMR (CDCl₃): $\delta - 217.3$ (dt, 1 F, $J_{H4,F}$ 49.4, $J_{H5} = J_{H3,F} = 26.8$ Hz, 4-F). Anal. Calcd for $C_{35}H_{45}FO_5$ (580.74): C, 74.44; H, 8.03. Found: C, 74.70; H, 7.94.

Octyl 4-deoxy-4-fluoro-β-D-galactopyranoside (**50**).—Galactoside **49** (515 mg, 0.91 mmol), was hydrogenated in MeOH (30 mL) with 5% Pd–C (250 mg) as described for **23**. Chromatography (19:1 CH₂Cl₂–MeOH) gave the product **50** (228 mg, 85%) as a white solid; $[\alpha]_D - 30.3^\circ$ (*c* 0.6, MeOH); R_f 0.10 (19:1 CH₂Cl₂–MeOH). ¹H NMR (CD₃OD): δ 4.65 (dd, 1 H, $J_{3,4}$ 2.5, $J_{H4,F}$ 51 Hz, H-4), 4.21 (d, 1 H, $J_{1,2}$ 7.5 Hz, H-1), 3.86 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.40–3.75 (m, 6 H, H-2, H-3, H-5, H-6a, H-6b, OCH₂CH₂), 1.55–1.70 (m, 2 H, OCH₂CH₂), 1.20–1.40 (m, 10 H, octyl CH₂), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CD₃OD): δ 104.64 (C-1), 90.16 (d, 1 C, $J_{C4,F}$ 179.5 Hz, C-4), 75.08 (d, 1 C, $J_{C5,F}$ 18 Hz, C-5), 73.64 (d, 1 C, 18.3 Hz, C-3), 72.57 (C-2), 71.01 (OCH₂CH₂), 61.06 (d, 1 C, $J_{C6,F}$ 6 Hz, C-6), 32.98, 30.77, 30.53, 30.38, 27.05, 23.69 (octyl CH₂), 14.41 (octyl CH₃); ¹⁹F NMR (CD₃OD): δ –220.1 (dt, 1 F, $J_{H4,F}$ 51, $J_{H3,F} = J_{H5,F} = 26$ Hz, F-4). Anal. Calcd for C₁₄H₂₇FO₅ (294.37): C, 57.13; H, 9.25. Found: C, 57.36; H, 9.54.

Octyl 3,6-di-O-benzoyl-4-deoxy-4-fluoro- β -D-galactopyranoside (52).—Compound 50 (101 mg, 0.34 mmol) and dibutyltin oxide (178 mg, 0.68 mmol) were refluxed in dry benzene (30 mL) overnight as described for 14. The solution was cooled to room temperature and crushed 4A molecular sieves (500 mg) and benzoyl chloride (90 μ L, 0.68 mmol) were added. After stirring for 1 h, TLC indicated complete conversion of the starting material to two different products. The solvent was evaporated and the product chromatographed (3:1 hexane-EtOAc) to give 52 (63 mg, 37%) and 51 (68 mg, 50%), both as white solids. The monoester was converted into 52 in 76% yield by dissolution of the purified 51 in CH_2Cl_2 and then addition of 1.2 equiv of both pyridine and benzoyl chloride. The data below is for compound 52 only, support of structure 51 was the presence of 5 aromatic hydrogens and the large downfield shift of H-3 in the ¹H NMR spectrum. $[\alpha]_{\rm D}$ +9.6° (c 0.6, CHCl₃); R_f 0.54 (3:1 hexane-EtOAc). ¹H NMR (CDCl₃): δ 7.98-8.15 (m, 4 H, Ph), 4.70-7.62 (m, 6 H, Ph), 5.19 (ddd, 1 H, $J_{2,3}$ 10.5, $J_{3,4}$ 3, $J_{\rm H3,F}$ 27 Hz, H-3), 5.02 (dd, 1 H, $J_{3,4}$ 2.5, $J_{\rm H4,F}$ 50 Hz, H-4), 4.64 (ddd, 1 H, $J_{6a,6b}$ 11, $J_{5,6a}$ 6.5, $J_{H6a,F}$ 1 Hz, H-6a), 4.51 (dd, 1 H, $J_{6a,6b}$ 11, $J_{5,6b}$ 7.5 Hz, H-6b), 4.45 (dd, 1 H, J₁₂ 7.5, J_{H1F} 1 Hz, H-1), 3.90–4.12 (m, 3 H, H-2, H-5, OCH₂CH₂), 3.59 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 2.41 (d, 1 H, J_{2.2-OH} 2-OH), 1.62-1.70 (m, 2 H, OCH₂CH₂), 1.20-1.40 (m, 10 H, octyl CH₂). 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 166.17, 166.10 (C=O), 133.55, 133.38, 130.04, 129.76 (Ph methine), 129.55, 129.37, (Ph quat.), 128.51 (Ph methine), 103.13 (C-1), 86.31 (d, 1 C, $J_{C4,F}$ 186 Hz, C-4), 73.45 (d, 1 C, $J_{C5,F}$ 18.8 Hz, C-5), 71.18 (d, 1 C, $J_{C3,F}$ 17.2 Hz, C-3), 70.60 (OCH₂CH₂), 69.40 (C-2), 61.93 (d,1 C, J_{C6.F} 5.7 Hz, C-6), 31.83, 29.61, 29.35, 29.25, 25.96, 22.67 (octyl CH₂), 14.11 (octyl CH₃); 19 F NMR (CDCl₃): -216.4 (dddd, 1 F, $J_{H4,F}$ 50, $J_{H3,F} = J_{H5,F} = 27$, $J_{H1,F}$ 1 Hz, F-4). Anal. Calcd for C₂₈H₃₅FO₇ (502.59): C, 66.92; H, 7.02 Found: C, 66.92; H, 6.91.

Octyl 3,6-di-O-benzoyl-4-deoxy-4-fluoro-2-O-(2,3,4-tri-O-benzyl- α -L-fucopyranosyl)- β -D-galactopyranoside (53).—Alcohol 52 (139 mg, 0.28 mmol) and Et₄NBr (64 mg, 0.30 mmol) were fucosylated as described for compound 15 using 2,3,4-tri-Obenzyl-L-fucopyranosyl bromide (1.11 mmol). Column chromatography of the residue (CH₂Cl₂) gave the disaccharide 53 (218 mg, 86%) as an oil; $[\alpha]_{\rm D} = 84.0^{\circ}$ (c 0.1, CHCl₃); R_f 0.44 (CH₂Cl₂). ¹H NMR (CDCl₃): δ 8.0–8.1 (m, 4 H, Ph), 7.40–7.62 (m, 6 H, Ph), 5.42 (d, 1 H, $J_{1'2'}$ 3.5 Hz, H-1'), 5.39 (ddd, 1 H, $J_{2,3}$ 10, $J_{3,4}$ 2.5, $J_{H3,F}$ 27 Hz, H-3), 5.06 (dd, 1 H, $J_{3,4}$ 2.5, $J_{H4,F}$ 50.5 Hz, H-4), 4.94, 4.75 (d, 1 H, J_{gem} 11.5 PhC H_2), 4.58–4.69 (m, 4 H, H-1, 3 PhC H_2), 4.50 (dd, 1 H, $J_{1.2}$ 7.5, J₂₃ 10 Hz, H-2), 4.27-4.42 (m, 4 H, PhCH₂, H-5, H-6a, H-6b), 3.84-4.08 (m, 4 H, H-5, OCH₂CH₂, H-3, H-2'), 3.64 (d, 1 H, J_{3'4'} 1.5 Hz, H-4'), 3.47 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 1.60-1.70 (m, 2 H, OCH₂CH₂), 1.20-1.40 (m, 10 H, octyl CH₂), 1.13 (d, 3 H, $J_{5'6'}$ 6.5 Hz, H-6'), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 166.05, 165.63 (C=O), 138.87, 138.59, 137.88, 133.69, 133.32 (Ph quat.), 129.96, 129.76 (Ph methine), 129.55, 129.10 (Ph quat.), 128.73, 128.48, 128.30, 128.19, 128.08, 127.66, 127.60, 127.43, 127.37 (Ph methine), 101.95 (C-1), 97.22 (C-1'), 86.18 (d, 1 C, J_{C4.F} 185 Hz, C-4), 79.41 (C-4'), 77.90 (C-3'), 75.76 (C-2'), 75.55 (d, 1 C, J_{C5.F} 17 Hz, C-5), 74.84, 73.24, 72.64 (PhCH₂), 70.91 (C-2), 70.74 (d, 1 C, J_{C3 F} 18.0 Hz, C-3), 70.62 (OCH₂CH₂), 66.69 (C-5'), 61.84 (d, 1 C, J_{C6,F} 6 Hz, C-6), 31.85, 29.70, 29.43, 29.31, 26.19, 22.66 (octyl CH₂), 16.57 (C-6'), 14.12 (octyl CH₃); ¹⁹F NMR (CDCl₃): δ -217.1 (dt, 1 F, $J_{H4,F}$ 50.5, $J_{H3,F} = J_{H5,F}$ = 27 Hz, F-4). Anal. Calcd for $C_{48}H_{59}FO_9$ (799.00): C, 72.16; H, 7.44. Found: C, 72.15; H, 7.59.

Octyl 4-deoxy-4-fluoro-2-O-(α -L-fucopyranosyl)- β -D-galactopyranoside (11).—To a solution of protected disaccharide 53 (155 mg, 0.17 mmol) in MeOH (10 mL), 10% Pd-C (100 mg) was added, and the solution stirred under a flow of H_2 overnight. After completion of the reaction the catalyst was filtered off and the solvent evaporated. The residue was redissolved in MeOH (20 mL) and 1 M NaOH (1 mL) added, and the mixture stirred overnight. The solution was neutralized with Amberlite IR 120 (H⁺) resin, evaporated, and the product further purified as described for 6 to give the product 11 (64 mg, 86%) as a white solid. ¹H NMR (CD₃OD): 5.20 (d, 1 H, $J_{1'2'}$ 3 Hz, H-1'), 4.69 (dd, 1 H, $J_{H4,F}$ 50.5, $J_{3,4}$ 2.5 Hz, H-4), 4.38 (d, 1 H, J_{1.2} 7.5 Hz, H-1), 4.30 (q, 1 H, J_{5'6'} 6.5 Hz, H-5'), 3.88 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.54–3.86 (m, 9 H, H-2, H-3, H-4, H-5, H-6a, H-6b, H-2', H-3', H-4') 3.52 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 1.50–1.65 (m, 2 H, OCH_2CH_2), 1.23–1.45 (10 H, octyl CH_2), 1.18 (d, 3 H, $J_{5'6'}$ 6.5 Hz, H-6'), 0.88 (t, 3 H J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CD₃OD): δ103.13 (C-1), 101.47 (C-1'), 90.26 (d, 1 C, J_{C4,F} 181 Hz, C-4), 78.50 (C-2), 75.00 (d, 1 C, J_{C5,F} 18 Hz, C-5), 74.39 (d, 1 C, J_{C3,F} 18.5 Hz, C-3), 73.71 (C-3'), 71.66 (C-4'), 70.92 (OCH₂CH₂), 70.48 (C-2'), 67.80 (C-5'), 61.00 (d, 1 C, J_{C6.F} 5.5 Hz, C-6), 32.99, 30.92, 30.57, 30.38, 27.25, 23.67 (octyl CH₂), 16.75 (C-6'), 14.40 (octyl CH₂); ¹⁹F NMR (CD₃OD): δ-220.2 (dt, 1 F, $J_{\text{H4,F}}$ 50.5, $J_{\text{H3,F}} = J_{\text{H5,F}} = 27.0$ Hz, F-4). FABMS: m/z 463 [M + Na]⁺ and 441 $[M + H]^+$ (C₂₀H₃₇FO₉ requires m/z 440).

1,2,3,4-Tetra-O-acetyl-6-deoxy-6-fluoro-galactopyranose (55).—6-Deoxy-6-fluoro-1,2:3,4-di-O-isopropylidene-D-galactopyranose³⁴ (54, 1.54 g, 5.88 mmol) was dissolved in CH₂Cl₂ (2 mL), 99% CF₃CO₂H (5 mL), and water (500 μ L). After stirring for 1 h the mixture was evaporated to dryness. The hydrolyzed product was not characterized, but was dissolved in pyridine (5 mL) and Ac₂O (5 mL), and stirred overnight. Then the mixture was cooled to 0°C and excess Ac₂O decomposed with MeOH. Evaporation of the solvent followed by chromatography (3:1 hexane-EtOAc) gave 55 (1.74 g, 84%) as a white foam containing both anomers (α : β ratio 1:1); R_f 0.20 (3:1 hexane-EtOAc). Partial ¹H NMR (CDCl₃): δ 6.4 (s, 1 H, H-1 α), 5.74 (d, 1 H, $J_{1,2}$ 8.5 Hz, H-1 β); ¹³C NMR: δ 92.10 (C-1 α), 89.60 (C-1 β).

2,3,4-Tri-O-acetyl-6-deoxy-6-fluoro-α-D-galactopyranosyl bromide (56).—Peracetate 55 (1.09 g, 3.1mmol), was dissolved in CH₂Cl₂ (5 mL) and hydrobromic acid (33% in AcOH, 10 mL) was added. The mixture was stirred for 2 h and then evaporated to dryness, coevaporating with dry toluene. The crude product was purified by a rapid chromatographic separation (3:1 hexane–EtOAc) to give the product 56 (920 mg, 80%) as a crystalline solid; R_f 0.28 (6:1 hexane–EtOAc). ¹H NMR (CDCl₃): δ 6.72 (d, 1 H, $J_{1,2}$ 4 Hz, H-1), 5.58 (d, 1 H, $J_{3,4}$ 3.5 Hz, H-4), 5.43 (dd, 1 H, $J_{2,3}$ 10.5, $J_{3,4}$ 3.5 Hz, H-3), 5.08 (dd, 1 H, $J_{1,2}$ 4, $J_{2,3}$ 10.5 Hz, H-2), 4.33–4.60 (m, 3 H, H-5, H-6a, H-6b), 2.15, 2.10, 2.02 (s, 3 H, acetate CH₃); ¹³C NMR (CDCl₃): δ 170.04, 169.79, 169.68 (acetate C=O), 87.99 (C-1), 80.28 (d, 1 C, $J_{C6,F}$ 174 Hz, C-6), 71.59 (d, 1 C, $J_{C5,F}$ 23.6 Hz, C-5), 67.96 (C-2), 67.77 (C-3), 67.04 (d, 1 C, $J_{C5,F}$ 5.4 Hz, C-4), 20.72, 20.56, 20.51 (acetate CH₃).

Octyl 2,3,4-tri-O-acetyl-6-deoxy-6-fluoro-β-D-galactopyranoside (57).—Compound 56 (1.43 g, 3.86 mmol), was glycosylated as described for the conversion of 36 to 37, using silver triflate (1.49 g, 5.796 mmol), collidine (378 μ L, 3.088 mmol), and octanol (1.795 mL, 11.4 mmol). The mixture was complete after 90 min. Chromatography of the crude mixture (6:1 hexane-EtOAc) gave 57 (1.19 g, 73%) as an oil; $[\alpha]_D = -10.1^\circ$ (c 0.8, CHCl₃); R_f 0.36 (6:1 hexane-EtOAc). ¹H NMR (CDCl₃): δ 5.44 (dd, 1 H, $J_{3,4}$ 3.5, $J_{4,5}$ 1 Hz, H-4), 5.22 (dd, 1 H, $J_{2,3}$ 10.5, $J_{1,2}$ 8 Hz, H-2), 5.03 (dd, 1 H, J_{3.4} 3.5, J_{2.3} 10.5 Hz, H-3), 4.51 (ddd, 1 H, J_{5.6a} 6.5, J_{6a.6b} 9.5, $J_{H6a,F}$ 46.5 Hz, H-6a), 4.48 (d, 1 H, $J_{1,2}$ 8 Hz, H-1), 4.43 (ddd, $J_{5.6b}$ 5.5, $J_{6a,6b}$ 10, $J_{H6b,F}$ 46.5 Hz, C-6b), 3.87–4.01 (m, 2 H, H-5, OC H_2 CH₂), 3.48 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 2.15, 2.08, 1.99 (s, 3 H, acetate CH₃), 1.50–1.65 (m, 2 H, OCH_2CH_2 , 1.20–1.40 (m, 13 H, octyl CH₂, H-6). 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ170.21 170.13, 169.36 (acetate C=O), 101.39 (C-1), 80.86 (d, 1 C, J_{C6,F} 172 Hz, C-6), 71.56 (d, 1 C, J_{C5,F} 23.5 Hz, C-5), 70.94 (C-3), 70.39 (OCH₂CH₂), 69.00 (C-2), 67.21 (d, 1 C, J_{C4,F} 6 Hz, C-4), 31.81, 29.42, 29.29, 29.25, 25.82, 22.66 (octyl CH₂), 20.73, 20.62, 20.59 (acetate CH₃), 14.10 (octyl CH₃); ¹⁹F NMR (CDCl₃): δ -230.9 (dt,1 F, J_{H6F} 46.5, $J_{H5, F}$ 12.5 Hz, F-6). Anal. Calcd for C₂₀H₃₃FO₈ (420.48): C, 57.13; H, 7.91. Found: C, 56.85; H, 7.85.

Octyl 6-deoxy-6-fluoro- β -D-galactopyranoside (58).—Galactoside 57 (1.06 g, 2.54 mmol), was dissolved in MeOH (20 mL) and NaOMe (100 mg) was added. After stirring for 2 h, the solution was neutralized by the addition of prewashed Amberlite IR 120 (H⁺) resin. Evaporation of the solvent followed by chromatogra-

phy (19:1 CH₂Cl₂–MeOH) gave **58** (673 mg, 90%) as an oil; $[\alpha]_D - 13.1^\circ$ (*c* 0.7, MeOH); R_f 0.11 (19:1 CH₂Cl₂–MeOH). ¹H NMR (CD₃OD): δ 4.58 (ddd, 1 H, $J_{5,6a}$ 5, $J_{6a,6b}$ 9, $J_{H6a,F}$ 46.5 Hz, H-6a), 4.43 (ddd, $J_{5,6b}$ 7, $J_{6a,6b}$ 9, $J_{H6b,F}$ 48 Hz, C-6b), 4.22 (dd, 1 H, $J_{1,2}$ 7.5, $J_{1,6F}$ 1 Hz, H-1), 3.85 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.71–3.82 (m, 2 H, H-4, H-5), 3.23–3.59 (m, 3 H, H-2, H-3, OCH₂CH₂), 1.53–1.70 (m, 2 H, OCH₂CH₂), 1.20–1.40 (m, 13 H, octyl CH₂, H-6). 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CD₃OD): δ 104.91 (C-1), 83.65 (d, 1 C, $J_{C6,F}$ 167.5 Hz, C-6), 74.72 (C-3), 74.70 (d, 1 C, $J_{C5,F}$ 21.9 Hz, C-5), 72.40 (C-2), 70.94 (OCH₂CH₂), 69.94 (d, 1 C, $J_{C4,F}$ 6 Hz, C-4), 32.98, 30.83, 30.52, 30.38, 27.08, 23.69 (octyl CH₂), 14.40 (octyl CH₃); ¹⁹F NMR (CD₃OD): δ –230.0 (ddd, 1 F, $J_{H6a,F}$ 46.5, $J_{H6b,F}$ 48, $J_{H5,F}$ 13.5 Hz, F-6). Anal. Calcd for C₁₄H₂₇FO₅ (294.37): C, 57.13; H, 9.25. Found: C, 57.09; H, 9.56.

Octyl 3,4-O-benzylidene-6-deoxy-6-fluoro-β-D-galactopyranoside (59).—Compound 58 (162 mg, 0.55 mmol) and PhCH(OMe)₂ (250 μ L, 1.65 mmol) were dissolved in MeCN (20 mL) and TsOH (5 mg) added. After stirring for 2 h the mixture was neutralized with Et_3N , evaporated and chromatographed (3:1 hexane-EtOAc). Both possible diastereomers were present in a 1:1 ratio (179 mg, 85%) and were easily separable by chromatography. Only the faster moving diastereomer was fully characterized and used; $[\alpha]_D + 19.8^\circ$ (c 0.5, CHCl₃); R_f 0.45 (3:1 hexane-EtOAc). ¹H NMR (CDCl₃): δ 7.3-7.5 (m, 5 H, Ph), 6.15 (s, 1 H, PhCHO₂), 4.75 (ddd, 1 H, J_{5,6a} 7, J_{6a,6b} 10, J_{H6a,F} 48 Hz, H-6), 4.66 (ddd, J_{5,6b} 4.5, J_{6a.6b} 10, J_{H6b,F} 46.5 Hz, C-6b), 4.46 (dd, 1 H, J_{3.4} 5.5, J_{2.3} 8 Hz, H-3), 4.26 (d, 1 H, $J_{1,2}$ 8 Hz, H-1), 4.13 (dd, 1 H, $J_{3,4}$ 5.5, $J_{4,5}$ 2 Hz, H-4), 4.03 (dddd, $J_{5,6a}$ 7, $J_{5,6b}$ 4.5, $J_{4.5}$ 2, $J_{5H,F}$ 14.5 Hz), 3.96 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.73 (t, 1 H, $J_{1,2} = J_{2,3} = 8$ Hz, H-2), 3.55 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OC H_2 CH₂), 2.54 (br s, 1 H, 2-OH), 1.61-1.70 (m, 2 H, OCH₂CH₂), 1.20-1.40 (m, 10 H, octyl CH₂), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 138.32 (Ph quat.), 129.26, 128.46, 126.20 (Ph methine), 103.65 (C-1), 102.08 (PhCHO₂), 82.38 (d, 1 C, J_{C6.F} 170.5 Hz, C-6), 79.66 (C-3), 73.02 (d, 1 C, J_{C4.F} 7 Hz, C-4), 72.37 (d, 1 C, J_{C5.F} 22 Hz, C-5), 71.06 (C-2), 70.33 (OCH₂CH₂), 31.86, 29.65, 29.41, 29.26, 26.02, 22.69 (octyl CH₂), 14.13 (octyl CH₃); ¹⁹F NMR (CDCl₃): δ -228.0 (ddd, 1 F, $J_{H6a,F}$ 48, $J_{H6b,F}$ 46.5, J_{H5, F} 14.5 Hz, F-6). Anal. Calcd for C₂₁H₃₁FO₅ (382.48): C, 65.95; H, 8.17. Found: C, 65.76; H, 8.06.

Octyl 3,4-O-benzylidene-6-deoxy-6-fluoro-2-O-(2,3,4-tri-O-benzyl-α-L-fucopyranosyl)-β-D-galactopyranoside (60).—Alcohol 59 (111 mg, 0.29 mmol) with Et₄NBr (67 mg, 0.32 mmol) was fucosylated as described for compound 15 using 2,3,4-tri-O-benzyl-L-fucopyranosyl bromide (1.16 mmol). Column chromatography of the residue (9:1 hexane-EtOAc) gave the disaccharide 60 (208 mg, 90%) as an oil; $[\alpha]_D - 66.7^\circ$ (c 0.7, CHCl₃); R_f 0.75 (3:1 hexane-EtOAc). ¹H NMR (CDCl₃): δ 7.18-7.5 (m, 20 H Ph), 6.10 (s, 1 H, PhCHO₂), 5.51 (d, 1 H, $J_{1'2'}$ 4 Hz, H-1'), 5.00, 4.89 (d, 1 H, J_{gem} 11.5 Hz, PhCH₂), 4.57-4.83 (m, 7 H, 4 PhCH₂, H-6a, H-6b, H-3), 4.43 (d, 1 H, $J_{1,2}$ 8 Hz, H-1), 4.28 (q, 1 H, $J_{5',6'}$ 6.5 Hz, H-5'), 4.15 (dd, 1 H, $J_{3,4}$ 5.5, $J_{4,5}$ 2 Hz, H-4), 4.09 (dd, 1 H, $J_{2'3'}$ 10.5, $J_{1'2'}$ 4 Hz, H-2'), 3.88-4.04 (m, 4 H, OC H_2 CH₂, H-5, H-2, H-3'), 3.63 (d, 1 H, $J_{3'4'}$ 2 Hz, H-4'), 3.45 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OC H_2 CH₂), 1.50–1.60 (m, 2 H, OCH₂CH₂), 1.20–1.40 (m, 10 H, octyl CH₂), 1.13 (d, 1 H, $J_{5',6'}$ 6.5 Hz, H-6'), 0.88 (t, 3 H, J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CDCl₃): δ 138.99, 138.73, 138.33, 138.14 (Ph quat.), 129.26, 128.37, 128.37, 128.33, 128.22, 128.13, 128.10, 127.65, 127.46, 127.35, 126.27 (Ph methine), 103.54 (C-1), 100.81 (PhCHO₂), 96.36 (C-1'), 82.40 (d, 1 C, $J_{C6,F}$ 170.5 Hz, C-6), 81.36 (C-3), 79.48 (C-2), 78.00 (C-4'), 76.22 (C-3'), 74.75 (PhCH₂), 73.35 (d, 1 C, $J_{C4,F}$ 6.8 Hz, C-4), 73.34, 73.23 (PhCH₂), 72.90 (C-2'), 72.12 (d, 1 C, $J_{C5,F}$ 21.9 Hz, C-5), 69.69 (OCH₂CH₂), 66.48 (C-5'), 31.83, 29.74, 29.42, 29.31, 26.18, 22.64 (octyl CH₂), 16.55 (C-6'), 14.09 (octyl CH₃); ¹⁹F NMR (CDCl₃): δ – 228.5 (dt, 1 F, $J_{H6,F}$ 46.5, $J_{H5,F}$ 15 Hz, F-6). Anal. Calcd for C₄₈H₅₉FO₉ (799.00): C, 72.16; H, 7.44. Found: C, 72.08; H, 7.56.

Octyl 6-deoxy-6-fluoro-2-O- $(\alpha$ -L-fucopyranosyl)- β -D-galactopyranoside (12). The protected disaccharide 60 (97 mg, 0.12 mmol) was dissolved in MeOH (10 mL) and 10% Pd-C (50 mg) was added, and the solution stirred under a flow of H₂ overnight. After completion of the reaction the catalyst was filtered off, and the product purified as described for 6 to give the product 12 (48 mg, 90%) as a white solid. ¹H NMR (CD₃OD): δ 5.08 (br s, 1 H, H-1'), 4.54 (m, 2 H, H-6a, H-6b), 4.34 (d, 1 H, $J_{1,2}$ 7.5 Hz, H-1), 4.28 (q, 1 H, $J_{5'6'}$ 6.5 Hz, H-5'), 3.85 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 3.58–3.82 (m, 7 H, H-2, H-3, H-4, H-5, H-2', H-3', H-4'), 3.51 (dt, 1 H, J_{gem} 10, J_{vic} 7 Hz, OCH₂CH₂), 1.52-1.68 (m, 2 H, OCH₂CH₂), 1.22–1.43 (10 H, octyl CH₂), 1.18 (d, 3 H, $J_{5'6'}$ 6.5 Hz, H-6'), 0.88 (t, 3 H J_{vic} 7 Hz, octyl CH₃); ¹³C NMR (CD₃OD): δ 103.43 (C-1), 101.56 (d, 1 C, J_{CI',F} 4 Hz, C-1'), 83.59 (d, 1 C, J_{C6.F} 167.5 Hz, C-6), 78.82 (C-2), 75.59 (d, 1 C, J_{C5.F} 22 Hz, C-5), 75.37 (C-3), 73.71 (C-3'), 71.72 (C-4'), 70.85 (OCH₂CH₂), 70.57 (C-2'), 70.01 (d, 1 C, J_{C4.F} 6 Hz, C-4), 67.78 (C-5'), 32.98, 30.96, 30.55, 30.37, 27.24, 23.66 (octyl CH₂), 16.76 (C-6'), 14.40 (octyl CH₃); ¹⁹F NMR (CD₃OD): δ -232.3 (dt, 1 F, $J_{\rm H6,F}$ 47.5, $J_{\rm H5,F}$ 13.5 Hz, F-6). FABMS: m/z 463 [M + Na]⁺ and 441 [M + H]⁺ $(C_{20}H_{37}FO_9 \text{ requires } m/z 440).$

Measurement of enzyme kinetics. —Radiochemical assays were based on modification of a previously described method which takes advantage of the use of hydrophobic acceptors and products to facilitate the removal of unreacted radiolabelled donor from reaction products¹⁸. Human serum used as a source of the Aand B-transferases was prepared by allowing freshly drawn blood to clot at room temperature for 2 h, refrigerating overnight at 4°C and centrifuging to remove blood clots. The serum was then stored frozen at -20° C in $100-\mu$ L aliquots until use. Incubations for the A and B assays were carried out in $600-\mu$ L plastic microfuge tubes at 37°C.

For the A-transferase, all assays were carried out in a total volume of 66 μ L with 50 mM sodium cacodylate buffer, pH 6.9, containing 20 mM MnCl₂, 30 μ M UDP-GalNAc, 0.2 μ Ci UDP-[6-³H]GalNAc, and 10 μ L of human serum containing the A-transferase (61 μ U/mL serum). Under these conditions, the rate of product formation with the native disaccharide 6 was shown to be linear up to a

time of 60 min. Incubations were carried out for 45 min and then quenched by the addition of EDTA (400 μ L of a 23 mM solution). The mixtures were transferred to pre-equilibrated¹⁸ C₁₈ Sep-Pak cartridges and the unreacted radiolabelled donor removed by washing with dil NH₃ and then water until background counts were obtained. The radiolabelled product was eluted with MeOH (1×3 mL) and quantitated by liquid scintillation¹⁸. The K_m of 6 was determined to be 1.50 μ M under these conditions. Assays to test activity as an acceptor were carried out at concentrations of 2.5 μ M. The results are presented in Table I. To test for inhibitory activity, the potential inhibitor (25 μ M) was added to 6 at 2.5 μ M. The results are recorded in Table III. At concentrations of 6 greater than 25 μ M, substrate inhibition was observed. K_m determinations for all compounds were carried out at the following concentrations: 25, 20, 15, 12.5, 10, 7.5, 6.25, 3.13, 1.56, and 0.78 μ M. K_i determinations for compound 7 were done with inhibitor concentrations of 25, 50, and 75 μ M. For compound 10, inhibitor concentrations of 44, 88, and 132 μ M were used.

For the B-transferase, assay conditions were identical to those described above except that the solution contained 30 μ M UDP-Gal, 0.2 μ Ci UDP-[6-³H]Gal, 250 μ M ATP, and 25 μ L of human serum containing the B-transferase (12.8 μ U/mL serum). Using these conditions, the rate of product formation with the native disaccharide **6** was linear up to a time of 180 min. Incubations were carried out for 120 min. The K_m of **6** was 21.91 μ M under these conditions. Assays to test activity as an acceptor were carried out at concentrations of 10 μ M. To test for inhibitory activity, the potential inhibitor (100 μ M) was added to disaccharide **6** at 10 μ M. At concentrations of **6** greater than 50 μ M, substrate inhibition was observed. See Tables I and III for results. In determining K_m values, the following substrate concentrations were used. Compound **6**: 50, 37.5, 25, 18.75, 12.5, 6.25, 3.13, and 1.56 μ M. Compounds **9** and **12**: 150, 125, 100, 75, 50, 37.5, 25, 18.75, and 12.5 μ M. Inhibitor concentrations of 10, 20, and 30 μ M were used in the determination of the K_i of **7**. In determining the K_i of **10**, inhibitor concentrations of 60, 150, and 200 μ M were used.

Rate data were fitted to the Michaelis-Menten equation using unweighted nonlinear regression with the SigmaPlot 4.0 program to estimate the kinetic parameters shown in Tables II and IV. Compounds 7 and 10 were determined to be competitive inhibitors of 6 by fitting the data to an equation for competitive inhibition using the SigmaPlot 4.0 program.

ACKNOWLEDGMENTS

We thank Dr. S. C. Crawley, Dr. M. M. Palcic, and Dr. S. Gosselin for invaluable assistance in performing and analyzing the enzyme kinetic experiments. This work was supported by the Natural Sciences and Engineering Research Council of Canada. T. L. L. is the recipient of a studentship from the Alberta Heritage Foundation for Medical Research.

REFERENCES

- 1 S. Hakomori, Adv. Cancer Res., 53 (1989) 257-331.
- 2 J.W. Dennis, in M. Fukuda (Ed.), Cell Surface Carbohydrates and Cell Development, CRC Press, Boca Raton, FL, 1991, pp 161–194.
- 3 A. Kobata, Biochime, 70 (1989) 1575-1585.
- 4 M.M. Palcic, L.D. Heerze, O.P. Srivastava, and O. Hindsgaul, J. Biol. Chem., 264 (1989) 17174-17181.
- 5 O.P. Srivastava, O. Hindsgaul, M. Shoreibah, and M. Pierce, Carbohydr. Res., 179 (1988) 137-161.
- 6 O. Hindsgaul, K.J. Kaur, G. Srivastava, M. Blaszczyk-Thurin, S.C. Crawley, L. D. Heerze, and M.M. Palcic, J. Biol. Chem., 266 (1991) 17858-17862.
- 7 O. Kanie, S.C. Crawley, M.M. Palcic, and O. Hindsgaul, Carbohydr. Res., 243 (1993) 139-164.
- 8 S.H. Khan, S.C. Crawley, O. Kanie, and O. Hindsgaul, J. Biol. Chem., 268 (1993) 2468-2473.
- 9 W.M. Watkins, Pure Appl. Chem., 63 (1991) 561-568.
- 10 A.E. Eckhardt and I.J. Goldstein, Biochemistry, 22 (1983) 5290-5297.
- 11 R.D. Cummings and S.A. Mattox, J. Biol. Chem., 263 (1988) 511-519.
- 12 F.-I. Yamamoto and S. Hakomori, J. Biol. Chem., 265 (1990) 19257-19262.
- 13 F.-I. Yamamoto, H. Clausen, T. White, J. Marken, and S. Hakomori, Nature, 345 (1990) 229-233.
- 14 F.-I. Yamamoto, J. Marken, T. Tsuji, T. White, H. Clausen, and S. Hakomori, J. Biol. Chem., 265 (1990) 1146-1151.
- 15 H. Shachter, Trends Glycosci. Glycotechnol., 4 (1992) 241-250.
- 16 C. Walsh, Enzymic Reaction Mechanisms, W.H. Freeman, New York 1979.
- 17 M.L. Sinnott, in M.I. Page, and A. Williams (Eds.), *Enzyme Mechanisms*, The Royal Society of London, London, 259, 1987, p. 259.
- 18 M.M. Palcic, L.D. Heerze, M. Pierce, and O. Hindsgaul, Glycoconjugate J., 5 (1988) 49-63.
- 19 D.M. Percival and S.G. Withers, Biochemistry, 31 (1992) 498-505.
- 20 D.M. Percival and S.G. Withers, Biochemistry, 31 (1992) 505-512.
- 21 P.S. Vermersch, J.J.G. Tesmer, and F.A. Quiocho, J. Mol. Biol., 226 (1992) 923-929.
- 22 R.U. Lemieux, K.B. Hendricks, R.V. Stick, and K. James, J. Am. Chem. Soc., 97 (1975) 4056-4062.
- 23 C.K. De Bruyne and G. Van Der Groen, Carbohydr. Res., 25 (1972) 59-65.
- 24 P. Kovác, N.F. Whittaker, and C.P.J. Glaudemans, J. Carbohydr. Chem., 4 (1985) 243-354.
- 25 R.U. Lemieux, Proc. VIIIth Intl. Symp. Med. Chem., Swedish Pharmaceutical Press, Stockholm, Vol. 1, 1985, pp 329–351.
- 26 L.T.J. Delbaere, M. Vandonselaar, L. Prasad, J.W. Quail, J.R. Pearlstone, M.R. Carpenter, L.B. Smillie, P.V. Nikrad, U. Spohr, and R.U. Lemieux, *Can. J. Chem.*, 68 (1990) 1116–1121.
- 27 F.A. Quiocho, D.K. Wilson, and N.K. Vyas, Nature, 340 (1989) 404-407.
- 28 K. Bock and H. Thørgerson, Ann. Rep. NMR Spectrosc., 13 (1987) 1-57.
- 29 E. Breitmaier, and W. Voelter, ¹³C-NMR Spectroscopy: High Resolution Methods and Applications in Organic Chemistry and Biochemistry, 3rd ed., VCH Publishers, New York, 1987, pp 379–498.
- 30 P. Kovac and C.P.J. Glaudemans, J. Carbohydr. Chem., 2 (1983) 313-327.
- 31 P.R. Rosevear, H.A. Nunez, and R. Barker, Biochemistry, 21 (1982) 1421-1431.
- 32 U. Spohr and R.U. Lemieux, Carbohydr. Res., 174 (1988) 211-237.
- 33 P. Kovác and C.P.J. Glaudemans, Carbohydr. Res., 123 (1983) 326-331.
- 34 L. Evelyn and L.D. Hall, Carbohydr. Res., 47 (1976) 285-297.