

Tetrahedron Letters 40 (1999) 931-934

TETRAHEDRON LETTERS

Reactions of Alkynylselenonium Salts with Tetrabutylammonium Halides: Apparent Umpolung of Alkynyl Moiety

Tadashi Kataoka*, Shin-ichi Watanabe and Keiichirou Yamamoto

Gifu Pharmaceutical University, 6-1, Mitahora-higashi 5-chome, Gifu 502-8585, Japan

Received 26 October 1998; revised 17 November 1998; accepted 20 November 1998

Abstract

The reactions of alkynylselenonium salts with n-Bu₄NX (X = I, Br, Cl) in CH₂Cl₂ gave 1-halo-1-alkynes or phenacyl halide derivatives and selenide, while the reaction with F⁻ afforded a terminal alkyne and a selenoxide. Seemingly, the selenonium salts acted as alkynyl cations in the former case and as alkynyl anions in the latter case. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: selenonium ions; alkynyl halides; ammonium salts; hypervalent elements; coupling reactions

1-Halo-1-alkynes are useful intermediates in organic synthesis [1] and are usually prepared by the substitution reaction of alkynylmetallics with the halogenation reagents [2]. Recently, it has been shown that alkynyliodinanes (or iodonium salts) reacted with various nucleophiles to give the corresponding alkynes [3]. However, there has been known only one report on the formation of an alkynyl chloride by decomposition of phenyl(β -phenylethynyl)iodonium chloride [4].

We previously reported that diphenyl(phenylethynyl)selenonium triflate **1a** reacted with sodium benzenesulfinate in alcohols to give exclusively (Z)- β -alkoxy- α phenylsulfonylstyrenes via an addition-elimination process [5] different from the reactions of the iodinanes via alkylidene carbenes [6, 7]. This paper describes the reactions of alkynylselenonium salts with tetrabutylammonium halides, affording alkynyl halides or terminal alkynes via the σ -selenuranes.

Nucleophilic alkynylic substitution of the alkynylselenonium salt 1 with tetrabutylammonium halides was carried out (Scheme 1). To a solution of the selenonium salt 1a [5] in CH_2Cl_2 , 3 equivalents of n-Bu₄NI were added. The mixture was stirred at room temperature for 1 d under Ar and extracted with ether. The solvent was evaporated under

reduced pressure and purification by preparative TLC afforded the alkynyl iodide 2a in 74% yield (Table 1). *n*-Bu₄NBr and *n*-Bu₄NCl were less reactive than *n*-Bu₄NI. The alkynyl bromide **2b** was obtained in only 36% yield because of its volatility, but the alkynyl halides **2c**, **2d** with higher boiling points were isolated in better yields than **2a**, **2b**, respectively (entries 6 and 7). Alkynyl chloride was not obtained from the reaction of **1a** or **1b**¹ with *n*-Bu₄NCl but 2-chloroacetophenone derivatives **6c** and **6d** were given in low yields. In contrast, the reaction with *n*-Bu₄NF in CH₂Cl₂ gave diphenyl selenoxide **5** in good yield. The counterpart, phenylacetylene **3a**, was analyzed directly by HPLC (DEVELOSIL 60-5, hexane, 1 ml/min) of the reaction mixture in 88% yield (entry 5). In entry 9, the reaction of **1b** with *n*-Bu₄NF afforded *p*-chlorophenylacetylene **3b** in 56% yield. Diphenyl selenide **4** was not converted into **5** by treatment with *n*-Bu₄NF.

Entry 1 n-Bu₄NX Solvent Time Products (% Yield) a 1 1a : Ar=Ph n-Bu₄NI CH₂Cl₂ 1 d 2a : Ar=Ph, X=I (74) 4 (82) 20 1a n-Bu₄NI CH₂Cl₂ 1 d 2a (59) 4 (77) 6a : Ar=Ph, X=I (2) 3 1a n-Bu₄NBr CH₂Cl₂ 3 d 2b : Ar=Ph, X=Br (36) 4 (73) 6b : Ar=Ph, X=Br (8) 4 1a n-Bu₄NCl CH₂Cl₂ 3 d 4 (34) 6c : Ar=Ph, X=Cl (23) 4 (10) ° 5 (62) 5 1a n-Bu₄NF CH₂Cl₂ 1 d 3a : Ar=Ph (88) c 6 n-Bu₄NI 1b : Ar=p-ClC_H CH₂Cl₂ 1 d 2c : Ar=p-Cl C₆H₄, X=I (84) 4 (82) 7 1b n-Bu₄NBr CH₂Cl₂ 3 d **2d** : $Ar=p-Cl C_6H_4$, X=Br (49)4 (73) 8 1b n-Bu,NCl CH,Cl, 3 d 4 (36) 6d : Ar=p-Cl C₆H₄, X=Cl (21) 9 1b n-Bu₄NF CH₂Cl₂ 1 d **3b** : $Ar = p - Cl C_6 H_4$ (56) 4 (9) 5 (60) 10 CH₃CN 2a (66) 1a n-Bu₄NI 1 d 4 (69)

3 d

3 d

1 d

Table 1		
Reactions of Selenonium Salts 1	with Tetrabutylammonium	Halides in Aprotic Solvents.

" Isolated yield. " A drop of H₂O was Added. C Determined by HPLC.

n-Bu₄NBr CH₃CN

n-Bu₄NCI CH₃CN

n-Bu₄NF CH₃CN

11

12

13

1a

1a

1a

¹ Selenonium salt 1b was prepared from trimethyl(*p*-chlorophenylethynyl)silane and diphenyl selenoxide 5 with trifluoromethanesulfonic anhydride in a similar manner to that for 1a.

2b (20)

4 (32)

3a (93) °

4 (43)

6c (22)

4 (2) ^c

5 (72)

On the other hand, the results of the reactions in CH₃CN, which is a kind of dipolar aprotic solvent, were similar to those in nonpolar aprotic CH₂Cl₂. Irrespective of the polarity of the solvents, the rate of substitutions of 1 with *n*-Bu₄NX decreased in order of I > Br > Cl, while *n*-Bu₄NF did not bring about the substitution and afforded terminal alkynes 3 together with selenoxide 5 (entry 10-13). In order to clarify the origin of the oxygen atom in the selenoxide 5, a mixture of 1a and *n*-Bu₄NF was stirred in CH₃CN containing H₂¹⁸O, and Ph₂Se(¹⁸O) was obtained in good yield. This result showed that a trace amount of water in *n*-Bu₄NF was responsible for the oxygen atom in the selenoxide 5.

Three possible reaction pathways for formation of alkynyl halides 2 can be considered: 1,2migration via an alkylidene carbene intermediate A [6], an addition-elimination route via a betaine B [8], and a ligand coupling on a selenurane intermediate C [9]. If these reactions are carried out in a nucleophilic solvent such as an alcohol, the solvent would react with the intermediate A or B [5, 7, 10]. Thus, we examined the reaction of 1a with n-Bu₄NX in methanol (Table 2).

 Table 2

 Reactions of Selenonium Salt 1a with Tetrabutylammonium Halides in McOH.

Entry 1	n-Bu₄NX 	Time 1 d	Products (%Yield)		
			2a (53)	4 (62)	<u> </u>
2	n-Bu₄NBr	3 d	2b (5)	4 (39)	6b (18)
3	n-Bu₄NCi	3 d		4 (2)	
4	n-Bu ₄ NF	1 d		4 (17)	5 (0)

The reactions in MeOH were slower than those in CH_2Cl_2 . Especially, *n*-Bu₄NCl hardly reacted and the reaction with *n*-Bu₄NF did not afford selenoxide because the halide ion was solvated by MeOH. In any case, the solvent-incorporated products were not obtained. The result indicates that the reaction pathway via the selenurane intermediate **C** is the most feasible. A halide ion initially attacks the selenium atom to form selenurane intermediate **C**, and the subsequent ligand coupling reaction between the alkynyl group and the halogen atom gives the alkynyl halide **2** and selenide **4**. The fluorine intermediate **C** (X=F) would be more susceptible to hydrolysis than the other haloselenuranes or undergo hydrolysis because of the slower ligand coupling than the others. Water attacks the selenurane **C** (X=F) and the resulting hydroxyselenurane **D** decomposes to the terminal alkyne **3** and selenoxide **5**. Another possible pathway contains the nucleophilic attack of water at the selenurane **E**, which finally changes into diphenyl selenoxide **5** and hydrogen fluoride. Thus, the alkynyl moiety of **1** acted as the alkynyl cation or the acetylide ion depending upon the kind of halide ion and we could find apparent umpolung of the alkynyl moiety.

Acknowledgment.

The authors thank Central Glass Co., Ltd, (Tokyo, Japan) for a generous gift of trifluoromethanesulfonic anhydride.

References:

- (a) Kluge, A. F.; Untch, K. G.; Fried, J. H. J. Am. Chem. Soc. 1972, 94, 9256-9258. (b) Corey, E. J.; Park, H.; Barton, A.; Nii, Y. Tetrahedron Lett. 1980, 21, 4243-4246. (c) Sttz, A.; Petranyi, G. J. Med. Chem. 1984, 27, 1539-1543. (d) Brown, H. C.; Basavaiah, D.; Singh, S. M.; Bhat, N. G. J. Org. Chem. 1988, 53, 246-250.
- (a) Brandsma, L. Preparative Acetylenic Chemistry; Elsevier Amsterdam, London, and N.Y., 1971; pp. 97. (b) Barluenga, J.;
 Gonzales, J. M.; Rodrigez, M. A.; Campos, P. J.; Asensio, G. Synthesis 1987, 661-662. (c) Casarini, A.; Dembech, P.; Reginato, G.; Ricci, A.; Seconi, G. Tetrahedron Lett. 1991, 32, 2169-2170. (d) Miller, S. I.; Ziegler, G. Tetrahedron Lett. 1990, 31, 3141-3144.
- (a) Ochiai, M.; Kunishima, M.; Nagao, Y.; Fuji, K.; Shiro, M.; Fujita, E. J. Am. Chem. Soc. 1986, 108, 8281-8283. (b) Stang, P. J.; Boehshar, M.; Wingert, H.; Kitamura, T. J. Am. Chem. Soc. 1988, 110, 3272-3278. (c) Stang, P. J.; Kitamura, T.; Boehshar, M.; Wingert, H. J. Am. Chem. Soc. 1989, 111, 2225-2230. (d) Ochiai, M.; Ito, T.; Takaoka, Y.; Masaki, Y.; Kunishima, M.; Tani, S.; Nagao, Y. J. Chem. Soc., Chem. Commun. 1990, 118-119. (e) Stang, P. J.; Boehshar, M.; Lin, J. J. Am. Chem. Soc. 1986, 108, 7832-7834. (f) Bachi, M. D.; Bar-Ner, N.; Crittell, C. M.; Stang, P. J.; Williamson, B. L. J. Org. Chem. 1991, 56, 3912-3915.
- [4] Beringer, F. M.; Galton, S. A. J. Org. Chem. 1965, 30, 1930.
- [5] Kataoka, T.; Banno, Y.; Watanabe, S.; Iwamura, T.; Shimizu, H. Tetrahedron Lett. 1997, 38, 1809-1812.
- [6] Stang, P. J. Angew. Clem. Int. Ed. Engl. 1992, 31, 274-285.
- [7] Kitamura, T.; Stang, P. J. Tetrahedron L ett. 1988, 29, 1887-1890.
- [8] Miller, S. I.; Orzech, C. E.; Welch, C. A.; Ziegler, G. R.; Dickstein, J. I. J. Am. Chem. Soc. 1962, 84, 2020-2021.
- [9] Oae, S.; Uchida, Y. Acc. Chem. Res. 1991, 24, 202-208.
- [10] Miller, S. I.; Dickstein, J. I. Acc. Chem. Res. 1976, 9, 358-363.