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High-efficiency undoped blue organic light-emitting device
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A high-efficiency, undoped, blue, organic light-emitting device was devised that employed a novel electrolu-
minescent material 4-(7,10-diphenylfluoranthen-8-yl)-N,N-diphenylbenzenamine as electrofluorescence
emitter. The device with a simple structure of ITO/N,N0-bis(1-naphthyl)-N,N0-diphenyl-1,10-biphenyl-4,40-
diamine/4-(7,10-diphenylfluoranthen-8-yl)-N,N-diphenylbenzenamine/4,7-diphenyl-1,10-phenanthroline/LiF
/Al exhibited stable blue light emission of CIE chromaticity coordinates (x¼ 0.19� 0.01 and y¼ 0.45� 0.02),
and a current efficiency of 6.0 cd A�1 and a power efficiency of 4.6 lmW�1.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Since Tang and VanSlyke [1] first introduced efficient organic
light-emitting devices (OLEDs), organic electroluminescent devices
have attracted much scientific and commercial interest owing to
their promising application in full-colour displays as well as large-
area, flexible, lightweight light sources [2,3]. Full-colour displays
require blue, green, and red emission elements with high device
stability, high luminous efficiency and colour purity. Although
significant improvement in OLED performance has been achieved
over the past decades, further improvement is still required,
especially in terms of the performance of blue OLEDs in the context
of current efficiency and external quantum efficiency, which are
relatively poor compared with red and green OLEDs. Blue-emitting
materials are of interest not only as a major constituent of
redegreeneblue full-colour displays, but also as the key emitting
element for generating white light in combination with the
complementary yellow colour.
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To improve electroluminescence (EL) quantum efficiency,
doping of fluorescent or phosphorescent dyes in the emissive layer
(EML) is the most effective approach adopted nowadays. However,
the success of this doping method relies on the precise control of
the small dopant amounts used, which are of the orderw0.1% [2,4].
This imposes pronounced manufacturing process control which
increases production costs. In addition, phase separation in a guest-
host system is also a potential problem [5e7]; recent investigation
has proven that phase separation upon heating is an important
cause of performance degradation in some guest-host system-
based devices. Although host and guest molecules are initially
homogeneously mixed, guest molecules commonly aggregate
leading to phase separation during operation and/or upon heating
[5e7]. Phase separation increases the host-guest distance beyond
the capture radius R (1e10 nm) of a guest molecule for efficient
host-guest energy transfer, thus rendering energy transfer inef-
fective [8]. This phenomenon can further reduce device lifetime,
especially under high-temperature operation. In view of these
shortcomings, considerable efforts have recently been devoted to
the synthesis of high-efficiency non-doped blue-emitting materials
[9e23].

Indeed, the molecular design of the structure of blue-emitting
materials can influence their performance and thermal stability.
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Scheme 1. Synthetic route of TPADPF.

Q.-X. Tong et al. / Dyes and Pigments 86 (2010) 233e237234
Spiro-fluororene has received much attention as blue emitters
because of its outstanding luminescent properties [24e26],
although the multiple-step synthesis, coupled with low yields, are
not commercially attractive. Chiechi et al. [9] recently developed
a robust, fluoranthene derivative, fluorophore 7,8,10-triphenyl-
fluoranthene (TPF), as a blue-emitting material in OLEDs. This
compound was simply obtained in two synthetic steps from
commercial starting materials and exhibited high quantum yield
(0.86) in the solid-state. In addition, TPF can be employed as
a single layer for light emission, in which the undoped device dis-
played maximum current and power efficiencies of 3.02 cd A�1 and
1.1 lm W�1, respectively.

This paper concerns the synthesis and characterization of the
fluoranthene derivative, 4-(7,10-diphenylfluoranthen-8-yl)-N,N-
diphenylbenzenamine (TPADPF) which is obtained by a four step
synthesis in high yield according to the DielseAlder reaction.
Comparing with unsubstituted TPF [9], diphenylamine was intro-
duced at carbon 4 position of the benzene ring 8 because of its rigid
structure and hole transporting properties that are important for
producing an undoped emitting material.

2. Experimental

2.1. Material synthesis

The fluoranthene derivative TPADPF was synthesized according
to the DielseAlder reaction [9,27,28] (Scheme 1). 4-ethynyl-N,N-
diphenylbenzene amine [28] and 7,9-diphenyl-8H-cyclopenta[l]
acenaphthylen-8-one [29] were synthesized according to literature
procedures. All solvents were purified by routine procedures.

2.2. Synthesis of TPADPF

4-ethynyl-N,N-diphenylbenzene amine (807 mg, 3.0 mmol) and
7,9-diphenyl-8H-cyclopenta[l]acenaphthylen-8-one (1.07 g, 3.0 mmol)
Fig. 1. Chemical structure
were dissolved in o-xylene (40 mL) under an argon atmosphere and
the resultant mixture was heated for 24 h at 170 �C (oil bath
temperature). After the mixture was cooled to room temperature,
ethanol (200 mL) was added. The precipitate was filtered, washed
with ethanol (300 mL) and dried in a vacuum, followed by column
chromatography (dichloromethane/petroleum ether, 1:6) on silica
gel, TPADPF was obtained as a slightly yellow and strongly fluo-
rescent solid. Yield: 85%. 1H NMR (CD2Cl2, 400 MHz): d 7.78e7.68
(m, 4H), 7.61e7.52 (m, 3H), 7.48e7.18 (m, 12H), 7.12e6.95 (m, 9H),
7.14 (d, J ¼ 7.2, 2H), 6.74 (d, J ¼ 7.2, 1H),. MS: m/z 597. Anal. Calcd for
C46H31N: C, 92.43; H, 5.23; N, 2.34. Found: C, 94.55; H, 5.28; N, 2.28.
2.3. Device fabrication and characterization

Fig. 1 shows the structures of N,N0-bis(1-naphthyl)-N,N0-
diphenyl-1,10-biphenyl-4,40-diamine (NPB) and 4,7-diphenyl-1,10-
phenanthroline (BPhen). Devices were constructed on a glass
substrate which had been pre-coated with a patterned layer of
indium-tin oxide (ITO) having a sheet resistance of 30 U square�1.
Substrates were cleaned with isopropyl alcohol, Decon 90, and
deionized water and then dried in an oven, before being finally
treated in a UV-ozone chamber. All organic and metal layers were
grown in succession without breaking vacuum (at a base pressure
of 10�6 mbar). Deposition rates were monitored with a quartz
oscillation crystal and controlled at 0.1e0.2 nm/s for both organic
and metal layers. A shadowmask was used to define the cathode to
make four 0.1 cm2 devices on each substrate. EL spectra and current
density-voltage-luminance (J-V-L) characteristics of OLEDs were
measured with a programmable Keithley model 237 power source
and a Spectrascan PR650 photometer under ambient condition. 1H
NMR spectra were recorded with a Bruker DPX-400 spectrometer
(400 MHz). Mass spectrometry (MS) was performed on a PE SCIEX
LC/MS spectrometer. Elemental analyses (EA) were performed on
a Vario EL Elementar by the Flash EA 1112 method. Absorption and
photoluminescence (PL) spectra of TPADPF were measured with
s of NPB and BPhen.



Fig. 2. Absorption and PL spectra of thermally evaporated thin film of TPADPF on
a quartz substrate.

Fig. 4. Energy level diagram for the TPADPF-based device.
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a Perkin Elmer Lambda 2S US/VIS spectrometer and a Perkin Elmer
LS 50B luminescence spectrometer, respectively. The ionization
potential (IP) of TPADPF was measured with ultraviolet photoelec-
tron spectroscopy (UPS) in a VG ESCALAB 220i-XL surface analysis
system, whereas the electron affinity (EA) was estimated by sub-
tracting from the optical bandgap (Eg) determined by the absorp-
tion spectrum of its solid-state film.

3. Results and discussion

3.1. Photo-physical characteristics of TPADPF

TPADPF was synthesized in-house according to the synthesis
route in Scheme 1, and its molecular structure was confirmed with
mass spectrometry, 1H nuclear magnetic resonance, and elemental
analyses. Fig. 2 shows the absorption and PL spectra of vacuum-
deposited thin film of TPADPF on a quartz substrate. It can be seen
that the PL spectrum has a strong blue emission peak at 486 nm
under direct excitation at 386 nm, while the absorption spectrum
has its characteristic peaks at 385, 314, and 238 nm, respectively.
Fig. 3. UPS spectrum of a TPADPF film
The Eg for TPADPF is 2.7 eV, calculated from the onset of the thin
film absorption spectrum.

3.2. Electronic structure of TPADPF

UPS is the useful tool for obtaining the electronic band struc-
tures of organics. Some important values, for instance, IP and the
highest occupied states (HOS) can be obtained from UPS. Fig. 3
shows a He I (hv ¼ 21.22 eV) UPS spectrum of the TPADPF film
under ultra-high vacuum conditions. The inelastic electron cutoff
and the HOS of the highest occupied molecular orbital (HOMO) are
also enlarged. With reference to these values, IP could be calculated
by IP ¼ 21.22 � (25.32 � 9.70) ¼ 5.6 eV. Subtracting the Eg of 2.7 eV
from the IP, the EA of TPADPF was estimated to be 2.9 eV. Fig. 4
illustrates the energy level diagram for the TPADPF-based device.

3.3. Device characteristics of TPADPF

In order to investigate EL properties of organic TPADPF, OLEDs
with architectures of: (A) ITO/TPADPF (100 nm)/BPhen (20 nm)/LiF
(0.5 nm)/Al (100 nm); and (B) ITO/NPB (70 nm)/TPADPF (30 nm)/
BPhen (20 nm)/LiF (0.5 nm)/Al (100 nm) were fabricated by
thermal vapor deposition, whereas NPB and BPhen served as
a hole transporting and an electron transporting materials,
respectively, and TPADPF functioned as both hole transporting and
light-emitting material. Fig. 5 shows the EL spectra for devices A
obtained with He I excitation.



Fig. 5. EL spectra of device A and device B viewed in the normal direction at the
luminescence of 10, 100, 1000, and 10,000 cd/m2, respectively.

Fig. 7. Current efficiency-current density-power efficiency characteristics of the
TPADPF-based devices.
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and B viewed in the normal direction at different luminance (L)
levels. As seen in Fig. 5, both devices A and B exhibited blue light.
The EL spectral peaks centered at 492 nm with the full spectral
widths at half maxima (FWHM) of 73.5, 73.5, 74.3, and 77.9 nm for
device A while the peaks located at 496 nm with FWHM of 76.3,
76.5, 76.8, and 77.0 nm for device B at the L ¼ 10, 100, 1000, and
10,000 cd/m2, respectively. The corresponding CIE 1931 chroma-
ticity coordinates of (x ¼ 0.19 � 0.01, y ¼ 0.43 � 0.02) for device A
and (x ¼ 0.19 � 0.01, y ¼ 0.45 � 0.02) for device B, respectively. It
should be highlighted that our recent study on the use of another
new blue emitter 4,40,400-trispyrenylphenylamine (TPyPA) showed
exciplex formation at the TPyPA/BPhen contact as a consequence
of an additional yellow emission peak at 570 nm [17]. On the
contrary, exciplex formation does not occur in the present devices,
which may be attributed to a weaker electron donating property
of TPADPF as compared to TPyPA.

The electrical characteristics of devices A and B are depicted in
Fig. 6. Under the same operating voltage, device B demonstrates
a lower current density and a higher luminance than device A, even
though the turn-on voltage (defined as voltage required to obtain
a luminance of 1 cd/m2) of both devices are the same (Vturn-

on ¼ 2.6 V). For instance, at the operating voltage of 5 V, the current
density and the luminance for device A are 114.6 mA/cm2 and
Fig. 6. J-V-L characteristics of the TPADPF-based devices.
3477 cd/m2, respectively; whilst those for device B are only
77.4 mA/cm2 and 4597 cd/m2. Surprisingly, the driving voltage for
device A is much lower than that for device B at the same current
density. It is commonly realized that NPB can act as a stepping-
stone to enhance hole injection from ITO to EML, resulting in
a reduction of driving voltage. However, it is not the case for the
present TPADPF-based devices. The reasons behind this phenom-
enon may be attributed to the elimination of current/luminescence
quenching sites at the contact of ITO/TPADPF; particularly NPBwith
relatively small EA (w2.3 eV) can function as an electron-blocking
layer at the ITO/TPADPF interface. Another factormay be ascribed to
different carrier mobilities in organic layers [30], in which the hole
mobility in TPADPF is comparatively higher than that in NPB, thus
resulting in a lower driving voltage.

Apart from the J-V-L characteristics, the incorporation of NPB
can improve device efficiencies. As shown in Fig. 7, the maximum
current and power efficiencies of device A are 3.0 cd/A (hEQE ¼
1.20%) and 3.1 lm/W, respectively, whereas those of device B are
6.0 cd/A (hEQE ¼ 2.37%) and 4.6 lm/W, respectively (hEQE is the
external quantum efficiency). The performance improvement for
device B can be assigned to be a better confinement of hole and
electron currents within the TPADPF layer, whichmay be due to the
lower hole mobility in NPB than that in TPADPF as well as the
elimination of the quenching sites by incorporation of low EA of
NPB, consistent with the J-V-L characteristics. It is worth pointing
out that the problematic roll-off characteristic of current efficiency
at high operational brightness is not observed in the present
devices. There is only a slight change in current efficiencies of
2.9 and 5.8 cd/A for devices A and B (only w3% drop from
the maximum values) even at the current density as high as
250 mA/cm2. Although its colour purity has room for improvement,
these excellent device performance does show that TPADPF is the
suitable candidate for commercial lighting/display applications.
4. Conclusions

In summary, we have fabricated a highly efficient non-doped
blue OLED by using a novel EL material TPADPF. The device with
a simple structure of ITO/NPB/TPADPF/BPhen/LiF/Al demonstrated
a high current efficiency of 6.0 cd/A, and a high power efficiency of
4.6 lm/W. It shows stable blue emission with the CIE coordinates of
(x ¼ 0.19 � 0.01, y ¼ 0.45 � 0.02), with the CIE coordinates and the
FWHM remaining unchanged over a wide luminance range.
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The present results demonstrate that TPADPF is a promising
candidate as a blue-emitting material in OLEDs.
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