NEW SYNTHESIS OF β -KETO ACETALS

Osamu TAKAZAWA * and Teruaki MUKAIYAMA ** Kawasaki Research Laboratories, T. Hasegawa Co. Ltd., 335 Kariyado, Nakahara-ku, Kawasaki 211 **Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

Enamines derived from ketones or aldehydes react smoothly with trialkyl orthoformates in the presence of Lewis acids to give β -keto acetals in good yields.

In the preceding paper, it was shown that β -keto acetals are obtained by the reaction of silyl enol ethers with trimethyl orthoformate in the presence of ${
m TiCl}_{\it L}.^{1)}$ In the present investigation, we wish to report that enamines, instead of silyl enol ethers, react with trialkyl orthoformates in the presence of Lewis acids to give the corresponding β -keto acetals, useful synthetic intermediates, in good yields.

The typical procedure is described for the reaction of 1-(N-morpholino)-1cyclohexene with triethyl orthoformate: To a mixture of 1-(N-morpholino)-1cyclohexene (50 mmol), triethyl orthoformate (65 mmol), and dichloromethane (50 ml) was added $BF_3 \cdot OEt_2$ (65 mmol) at -40 °C under argon atmosphere. Then the reaction mixture was stirred for 1 h at 0 °C. The mixture was quenched with water and stirred for 1 h at room temperature. After hydrolysis, the organic layer was washed with a saturated solution of NaHCO_3 and dried over MgSO_4 . After removal of the solvent, the residue was distilled under reduced pressure. The reaction product, 2-diethoxymethylcyclohexanone, was isolated in 85% yield.

In a similar manner, the reactions of enamines derived from various ketones or aldehydes with trialkyl orthoformates afforded the corresponding &-keto acetals as listed in the table.

It is known that the reaction of enamines with mixed anhydride of formic acid and acetic acid²⁾ or Vilsmeier reagent (POCl₃-DMF)³⁾ affords 2-formyl ketones. In comparison with the above methods, the present reaction has an advantage point in exclusive formation of β -keto acetals having the protected formyl and keto groups in the same molecule, by one-step procedure. Different from the result that the reaction of dienoxysilanes with trialkyl orthoformates gave γ-dialkoxymethyl-α,βunsaturated ketones, the present reaction of dienamines with trialkyl orthoformates afforded α -dialkoxymethyl- β , γ -unsaturated ketones, useful synthetic intermediates.

Enamines	Methyl or ethyl orthoformate	Lewis ac	 Reaction conditions Temp.(°C) Time(h)	Products ^a)	Yi

Table. The reactions of enamines with methyl or ethyl orthoformate

Enamines	Methyl or ethyl orthoformate	Lewis acids	Reaction co		Danadara ta di	Yields ^{b)} (%)
[,,]					O CH(OEt) ₂	
, N	CH(OEt) ₃	$\mathtt{BF_3} \cdot \mathtt{OEt}_2$	0	1		85
		SnC1 ₄	0	1	~	90
•		ZnC1 ₂	r.t.	14	0 CII (OM-)	54
	CH(OMe) ₃	$BF_3 \cdot OEt_2$	0	1	CH(OMe) ₂	74
c 05	_	TiC1 ₄	-40	1	~	64
	CH(OMe) ₃	TiC1 ₄	-78	0.5	CH(OMe) ₂	70
$\binom{n}{0}$	CH(OMe) ₃	$BF_3 \cdot OEt_2$	0	1	OCH(OMe) ₂	75
N	` '3	SnCl ₄	0	1	on (one) ₂	68
		TiC14	0	1	Y	63
(N)		·			OHC CH(OEt)	
, N	$CH(OEt)_3$	$\mathtt{BF_3 \cdot OEt}_2$	-40	1	· [2	71
٦		SnCl ₄	-40	1	Ĺ	70
_						

a) All of the products gave satisfactory NMR and IR data in accord with the assigned structures. b) Isolated yields.

References

- 1) T. Mukaiyama and M. Hayashi, Chem. Lett., 1974, 15.
- 2) G. Stork, A. Brizzolara, H. Landesman, J. Smuszkovicz, and R. Terrell, J. Am. Chem. Soc., 85, 207 (1963).
- 3) W. Ziegenbein, Angew. Chem., 77, 380 (1965).
- 4) M. Asaoka, N. Sugimura, and H. Takei, Bull. Chem. Soc. Jpn., <u>52</u>, 1953 (1979);
 - I. Fleming, J. Goldhill, and I. Paterson, Tetrahedron Lett., 1979, 3209;
 - O. Takazawa, H. Tamura, K. Kogami, and K. Hayashi, Bull. Chem. Soc. Jpn., 55, 1907 (1982).