1206 Short Papers SYNTHESIS

v-Triazolines; 33. Synthesis of 3-Aminoquinoxaline 1-Oxides and 2-Aminopyrido[3,4-b]-pyrazine 4-Oxides

Maurizio Battistini, Emanuela Erba,* Donato Pocar Istituto di Chimica Organica, Facoltà di Farmacia, Università di Milano, Via Venezian 21, I-20133 Milano, Italy Received 21 April 1992

 N^1 , N^1 -Disubstituted N^2 -(2-nitrophenyl)- and N^2 -(2-nitropyridyl)-phenylacetamidines, derived from the thermal rearrangement of 5-amino-4,5-dihydro-1-(2-nitroaryl)-4-phenyl-1H-1,2,3-triazoles, are obtained in a one-pot reaction from phenylacetaldehyde, a secondary amine and an aryl azide and undergo ring closure to the title compounds on reaction with sodium ethoxide in ethanol.

5-Amino-1-aryl-4,5-dihydro-1*H*-1,2,3-triazoles are readily accessible compounds whose synthetic usefulness, apart from the straightforward deamination to aromatic 1,2,3-triazoles, has not yet been fully exploited. Of importance is their relatively high thermal lability which allows an easy entry to substituted amidine synthons from which nitrogen-containing heterocycles can be derived. In line with this synthetic strategy a new 2-aminobenzimidazole synthesis starting from 5-amino-4,5-dihydro-1-(2-nitroaryl)-1*H*-1,2,3-triazoles has been described by us. Now, we report on a synthesis of 3-aminoquinoxaline 1-oxides and 2-aminopyrido[3,4-*b*]pyrazine 4-oxides. As far as we are aware both class of compounds have not been described previously.

The reaction of phenylacetaldehyde (1) with equimolar amounts of secondary amines 2a-d and aromatic azides 4a-d in benzene solution at room temperature readily afforded the corresponding 4,5-dihydro-1,2,3-triazoles

5a-g through cycloaddition of the azide to the 2-aminostyrenes **3a-d** formed in situ from the aldehyde and the amine. Though identifiable during the reaction course by TLC, compounds **5** could not be isolated because they suffered a quick rearrangement with ring cleavage, nitrogen elimination and hydrogen transfer according to a well established reaction path.²

As final reaction products the corresponding N^2 -(2-nitrophenyl)- and N^2 -(2-nitropyridyl)-substituted phenylacetamidines $\mathbf{6a-g}$ were obtained. The thermal lability of intermediates $\mathbf{5}$ is not surprising since it is known that both electron-poor substituents on N-1 and aryl groups on C-4 are detrimental for the stability of the 4,5-dihydro-1,2,3-triazole ring.³

Analytical and spectral data of compounds 6 are given in Table 1 and confirm their structure. Cyclization of amidines 6a-g to the corresponding 3-aminoquinoxaline 1-oxides 7a-e or 2-aminopyrido[3,4-b]pyrazine 4-oxides 7f,g, respectively, was readily obtained by reaction with bases. Best results were achieved using sodium ethoxide in ethanol. This ring-closure reaction occurs via deprotonation of the benzyl group and intramolecular nucleophilic addition to the nitro group. This reaction, though already

2, 3	NR ₂	4	Y	5-8	NR ₂	Y
a b c d	morpholino pyrrolidin-1-yl NMe ₂ NEt ₂	a b c d	CH CMe CCI N	a b c d e f	morpholino morpholino morpholino morpholino pyrrolidin-1-yl NMe ₂ NEt ₂	CH CCI N CMe CCI CH

applied to the preparation of 1,2-dihydro-2-oxoquinoxaline 4-oxides^{4,5} was never applied to amidine substrates and appears of utility giving structurally definite compounds with respect to the mono-*N*-oxidation reaction of the parent heterocycles which must face a selectivity problem,⁶ expectedly even more complicated by the presence of an amino substituent. Deoxygenated quinoxalines **8a,b** and pyrido[3,4-b]pyrazine **8c** were readily formed on reduction of the corresponding mono-N-oxides **7** with sodium dithionite in water/tetrahydrofuran.

All reagents including phenylacetaldehyde (1) and amines 2 were commercial products. Azides 4 were prepared according to described methods: 2-nitrophenyl azide;⁷ 2-nitro-4-methylphenyl azide;⁸ 2-nitro-4-chlorophenyl azide;⁸ 3-nitro-4-azidopyridine.⁹

Analytical TLC plates and silica gel 60 F 254 Merck. Melting points were taken using a Büchi 510 (capillary) apparatus. IR spectra were measured using a Pye Unicam SP3-200 S Philips infrared spectrophotometer. ¹H NMR spectra were obtained on a Bruker AC-200 spectrometer. Column chromatography was performed on silica gel using silica gel 60/70-230 ASTM/Merck.

Phenylacetamidines 6a-g; General Procedure:

In a round-bottomed flask, phenylacetaldehyde (1; 5.85 mL, 50 mmol) was added to a stirred solution of azide $4\mathbf{a} - \mathbf{d}$ (50 mmol) dissolved in benzene (100 mL). A solution of amine $2\mathbf{a} - \mathbf{d}$ (50 mmol) in benzene (20 mL) was immediately added dropwise and stirring was continued, at r. t. or at reflux, for the time indicated (Table 1). The mixture was dried (Na₂SO₄) and the solvent was evaporated at reduced pressure and the crude product $\mathbf{6}$ was chromatographed on a silica gel column using as eluent EtOAc cyclohexane (35:65). The main fraction, containing the product, was crystallized from $i\text{-Pr}_2\text{O}$ (except for $\mathbf{6g}$ for which Et₂O was used).

3-Aminoquinoxaline 1-Oxides 7 a – e and 2-Aminopyrido[3,4-b]pyrazine 4-Oxides 7f,g; General Procedure:

NaOEt was prepared by dissolving Na (0.25 g, 10 mmol) in anhydr. EtOH (20 mL). A suspension of amidine $\bf 6a-g$ (7.7 mmol) in EtOH (10 mL) was added to the stirred solution and stirring was continued, at r. t. or at reflux, for 1–16 h (Table 2). The solvent was evaporated at reduced pressure and the residue was dissolved in CH₂Cl₂, washed thoroughly with H₂O (3 × 30 mL) and dried (Na₂SO₄). The solvent was evaporated and the crude product 7 was crystallized from i-Pr₂O.

3-Aminoquinoxalines 8 a,b and 2-Morpholino-3-phenylpyrido[3,4-b]-pyrazine (8c); General Procedure:

Quinoxaline 1-oxides **7a,b**, or aminopyrido[3,4-b]pyrazine 4-oxide-**7c** (4.5 mmol) was dissolved in THF (10 mL); a solution of NaS_2O_4 (2.54 g, 15 mmol) in H_2O (15 mL) was added and the mixture was stirred for 0.5–20 h (Table 3) at r. t. The organic solvent was evaporated at reduced pressure and the watery residue was

Table 1. Compounds 6a-g Prepared

Prod- uct	Time (h), Temp.	Yield (%)	mp (°C) (solvent)	Molecular Formula ^a	$IR^{b} (cm^{-1})$ $v_{C=N}$	1 H NMR (CDCl ₃ /TMS) δ , J (Hz)
6a	8, reflux	34	91 (<i>i</i> -Pr ₂ O)	C ₁₈ H ₁₉ N ₃ O ₃ (325.3)	1600	3.48-3.59 (m, 4H, CH ₂ NCH ₂), 3.61-3.63 (m, 4H, CH ₂ OCH ₂), 3.71 (s, 2H, CH ₂), 6.8-7.9 (m, 9H _{2rom})
6b	5, reflux	25	oil	$C_{19}H_{21}N_3O_3$ (339.4)	1605	2.30 (s, 3 H, CH ₃), 3.40–3.53 (m, 4H, CH ₂ NCH ₂), 3.58–3.62 (m, 4H, CH ₂ OCH ₂), 3.69 (s, 2H, CH ₂), 6.69–7.91 (m, 8 H _{aron})
6c	12, r.t.	43	oil	C ₁₈ H ₁₈ ClN ₃ O ₃ (359.8)	1605	3.48-3.62 (m, 4H, CH ₂ NCH ₂), 3.59 (s, 2H, CH ₂), 3.63-4.14 (m, 4H, CH ₂ OCH ₂), 6.74-7.88 (m, 8H _{arom})
6d	3, reflux	74	oil	C ₁₈ H ₁₈ ClN ₃ O ₂ (343.8)	1600	1.85–1.92 [m, 4H, (CH ₂) ₂], 3.28–3.55 (m, 4H, CH ₂ NCH ₂), 3.68 (s, 2H, CH ₂), 6.74–7.84 (m, 8H _{arom})
6e	14, r.t.	26	83 (<i>i</i> -Pr ₂ O)	$C_{16}H_{17}N_3O_2$ (283.3)	1605	2.99 (s, 6H, 2CH ₃), 3.72 (s, 2H, CH ₂), 6.80–7.87 (m, 9 H _{arom})
6f	4, r.t.	81	111 (<i>i</i> -Pr ₂ O)	$C_{17}H_{18}N_4O_3$ (326.3)	1595	3.54-3.57 (m, 4H, CH ₂ NCH ₂), $3.57-3.65$ (m, 4H, CH ₂ OCH ₂), 3.72 (s, 2H, CH ₂), 6.71 (d, 1H, $J = 5.5$, H-5 _{pyr}), $7.14-7.37$ (m, 5H _{arom}), 8.36 (d, 1H, $J = 5.5$, H-6 _{pyr}), 9.03 (s, 1H, H-2 _{pyr})
6g	12, r.t.	70	84 (Et ₂ O)	$C_{17}H_{20}N_4O_2$ (312.3)	1595	0.99-1.15 (m, 6 H, CH ₃), $3.66-3.90$ (m, 4 H, CH ₂ NCH ₂), 3.69 (s, 2 H, CH ₂), 6.65 (d, 1 H, $J = 5.6$, H-5 _{pyr}), $7.11-7.48$ (m, 5 H _{arom}), 8.29 (d, 1 H, $J = 5.6$, H-6 _{pyr}), 8.99 (s, 1 H, H-2 _{pyr})

Satisfactory microanalyses obtained: C \pm 0.32, H \pm 0.32, N \pm 0.22. b Nujol or neat for oily compounds.

Table 2. Compounds 7a-g Prepared

Prod- uct	Time (h), Temp.	Yield (%)	mp (°C) i-Pr ₂ O	Molecular Formula ^a	1 H NMR (CDCl ₃ /TMS) δ , J (Hz)
7a	1, reflux	54	140	C ₁₈ H ₁₇ N ₃ O ₂ (307.3)	3.15-3.20 (m, 4H, CH_2NCH_2), 3.54-3.59 (m, 4H, CH_2OCH_2), 7.46-7.86 (m, 8H _{acom}), 8.47 (d, 1H, $J=8$, H-8)
7b	6, reflux	54	164	$C_{19}H_{21}N_3O_2$ (323.4)	2.54 (s, 3 H, CH ₃), 3.11–3.16 (m, 4H, CH ₂ NCH ₂), 3.53–3.58 (m, 4H, CH ₂ OCH ₂), 7.45–7.75 (m, 7H _{arem}), 8.27 (s, 1H, H-8)
7e	5, reflux	55	167	$C_{18}H_{16}CIN_3O_2$ (341.8)	3.11-3.19 (m, 4H, CH_2NCH_2), 3.23-3.70 (m, 4H, CH_2OCH_2), 7.26-7.78 (m, 7H _{arom}), 8.46 (d, 1H, $J=3$, H-8)
7d	2, reflux	85	161	$C_{18}H_{16}CIN_3O$ (325.8)	1.70–1.86 [m, 4H, (CH ₂) ₂], 3.07–3.23 (m, 4H, CH ₂ NCH ₂), 7.29–7.70 (m, 7H _{arom}), 8.39 (d, 1H, J = 2.6, H-8)
7e	1, reflux	48	118	$C_{16}H_{15}N_3O$ (265.3)	2.77 (s, 6 H, 2CH ₃), 7.37–7.81 (m, 8 H _{arom}), 8.44 (dd, 1 H, $J_m = 1.42$, $J_o = 8.42$, H-8)
7f	0.5, r.t.	65	178	$C_{17}H_{16}N_4O_2$ (308.3)	3.23-3.49 (m, 4H, CH_2NCH_2), 3.51-3.60 (m, 4H, CH_2OCH_2), 7.49-7.71 (m, 5 H_{arom} , H-8), 8.69 (d, 1H, J = 5.8, H-7), 9.68 (s, 1H, H-5)
7g	16, r.t.	67	151	$C_{17}H_{18}N_4O$ (294.3)	0.99 (t, 6H, CH ₃), 3.30 (q, 4H, CH ₂ NCH ₂), 7.48–7.57 (m, 5 H _{arom} , H-8), 8.63 (d, 1H, $J = 5.8$, H-7), 9.61 (s, 1H, H-5)

^a Satisfactory microanalyses obtained: $C \pm 0.34$, $H \pm 0.26$, $N \pm 0.32$.

Table 3. Compounds 8a-c Prepared

Prod- uct	Time (h), Temp.	Yield (%)	mp (°C) i-Pr ₂ O	Molecular Formula ^a	¹ H NMR (CDCl ₃ /TMS) δ, J (Hz)		
8a	14, r.t.	78	129	C ₁₈ H ₁₇ N ₃ O (291.3)	3.26-3.31 (m, 4H, CH ₂ NCH ₂), 3.69-3.74 (m, 4H, CH ₂ OCH ₂), 7.44-8.02 (m, 9H _{arom})		
8b	20, r.t.	93	126	$C_{18}H_{16}CIN_3O$ (325.8)	$3.25-3.27$ (m, 4H, CH ₂ NCH ₂), $3.68-3.73$ (m, 4H, CH ₂ OCH ₂), $7.45-8.01$ (m, $8H_{arom}$)		
8c	0.5, r.t.	97	128	C ₁₇ H ₁₆ N ₄ O (292.3)	3.28–3.55 (m, 4H, CH ₂ NCH ₂), 3.56–3.85 (m, 4H, CH ₂ OCH ₂), 7.49–7.61 (m, 5H _{arom}), 7.80–8.00 (m, 1H, H-8), 8.55–8.70 (m, 1H, H-7), 9.20–9.35 (m, 1H, H-5)		

^a Satisfactory microanalyses obtained: $C \pm 0.28$, $H \pm 0.11$, $N \pm 0.19$.

extracted with CH_2Cl_2 (3 × 45 mL). The organic phase was dried (Na_2SO_4) and the solvent was evaporated giving the crude product 8 which was crystallized from *i*-Pr₂O.

- (2) Kadaba, P.K.; Stanovnik, B.; Tišler, M. Adv. Heterocycl. Chem. 1984, 37, 219; especially p 339 and references cited therein.
- (3) Fusco, R.; Bianchetti, G.; Pocar, D. Gazz. Chim. Ital. 1961, 91, 933.
- (4) Tennant, G. J. Chem. Soc. 1964, 2666.
- (5) Fusco, R.; Rossi, S. Chim. Ind. 1963, 45, 834.
- (6) Porter, A.E.A. In Comprehensive Heterocyclic Chemistry; Boulton, A.J.; Mckillop, A., Eds.; Pergamon Press: Oxford, 1984; Vol. 3, p. 168.
- (7) Mallozy, F.B. Org. Synth. Coll. Vol. 4, 1963, 74.
- (8) Dyall, L.K. Aust. J. Chem. 1986, 39, 89.
- (9) Dyall, L.K.; Wong, M.W. Aust. J. Chem. 1985, 38, 1045.
- (1) 32: Erba, E.; Mai, G.; Pocar, D. J. Chem. Soc., Perkin Trans. 1, in press.