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Abstract—Ketol-acid reductoisomerase (KARI; EC 1.1.1.86) catalyzes the second common step in branched-chain amino acid
biosynthesis. The catalyzed process consists of two stages, the first of which is an alkyl migration from one carbon atom to its
neighbouring atom. The likely transition state is a cyclopropane derivative, thus a series of new cyclopropane derivatives, such
as 1-cyano-N-substituted-cyclopropanecarboxamide, were designed and synthesized. Their structures were verified by 1H NMR,
FTIR spectrum, MS and elemental analysis. The Ki values of active compounds 2, 4b against rice KARI were 95.30 ± 13.71,
207.9 ± 21.99 lM, respectively. The X-ray crystal structure of compound 4a was also determined. Auto-Dock was used to predict
the binding mode of 4a. This was done by analyzing the interaction of the compounds 4a with the active sites of spinach KARI. This
result was in accord with the result analyzed by the frontier molecular orbital theory.
� 2007 Elsevier Ltd. All rights reserved.
Plants and most micro-organisms have biosynthetic
ability which allows them to survive on relatively simple
nutrients. For this reason, plants and microorganisms
contain numerous enzymes that are potential targets
for designing bioactive compounds such as herbicides
and antibiotics. Enzymes involved in the biosynthesis
of the branched chain amino acids are one such exam-
ple. Isoleucine and valine are synthesized in a parallel
set of four reactions while an extension of the valine
pathway results in leucine.1

This pathway is the target for the sulfonylureas,2 the
imidazolinones3 and a variety of other herbicides,1

which all inhibit the first enzyme, acetohydroxyacid syn-
thase. The success of these herbicides has stimulated re-
search into inhibitors of other enzymes in the pathway,
including the second enzyme in the common pathway,4

ketol-acid reductoisomerase (KARI; EC 1.1.1.86), and
two enzymes in the leucine extension.5,6 The reaction
catalyzed by KARI is shown in Scheme 1 which consists
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of two steps,7,8 an alkyl migration followed by a
NADPH dependent reduction. Both steps require a
divalent metal ion, such as Mg2+, Mn2+ or Co2+, but
the alkyl migration is highly specific for Mg2+. HOE
7049 and IpOHA10 are potent competitive inhibitors of
the enzyme (Scheme 1).

A transition state being a cyclopropane is postulated
and mimicked by Gerwick et al.11 They showed that
cyclopropane-1,1-dicarboxylate (CPD) can inhibit Esch-
erichia coli KARI. They also showed that application of
CPD to various plant tissues caused the accumulation of
the substrate 2-acetolactate; in vivo data strongly sug-
gest that the CPD can inhibit the activity of KARI
Scheme 1.12

The first step in the KARI catalyzed process involves an
alkyl migration from one carbon atom to its neighboring
atom. The likely transition state is a cyclopropane deriv-
ative. For this reason, some new cyclopropane derivatives
were synthesized in our laboratory (Scheme 2).

Biological studies revealed that some of these com-
pounds inhibit ketol-acid reductoisomerase in vivo
effectively.
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Table 1. Inhibition rate (%) of compounds 4a–p against rice KARI at

200 ppm in vitro

Compound R KARI activity

1 0

2 100

4a p-CH3C6H4– 61.21

4b 2-CHCl2C2N2S– 100

4c p-BrC6H4– 32.23

4d 2-CH3C3HNS– 69.81

4e 2,4,5-Cl3C6H2– 0

4f m-BrC6H4– 17.25

4g C6H5– 77.23

4h 2,4-Cl2C6H3– 97.04

4i o-CH3C6H4– 100

4j p-ClC6H4– 93.92

4k OHCH2CH2– 98.92

4l p-CF3C6H4– 0

4m m-ClC6H4– 0

4n o-CF3C6H4– 0

4o m-CF3C6H4– 0

4p p-OCH3C6H4– 3.95
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Scheme 1. Reaction catalyzed by KARI.
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Scheme 2. Synthesis route for compounds 4a–p.
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The 1-cyan-1-cyclopropane carboxylic acid, prepared
from 1,2-dichloroethane and ethyl cyanacetate was cyc-
lized for 16 h at refluxing temperature. In order to opti-
mize the reaction time, microwave assisted irradiation
was applied which shortened the reaction time to
40 min. Compound 3 reacted with substituted anilines,
heterocyclic amine or alkyl amines in the presence of
inorganic base to yield substituted cyclopropanecarbox-
amides as shown in Scheme 2.13

The KARI activities in vitro of these compounds were
determined.14 The results for compound, 1, 2 and com-
pounds 4a–p are summarized in Table 1.

It was found from Table 1 that compounds 2, 4b, 4h, 4i,
4j and 4k have favourable inhibitory activity against
KARI. The data given in Table 1 indicated that the
change of substituent at phenyl ring affects the KARI
activity. When the benzene ring is substituted by CF3

group, the compounds generally have no KARI bioac-
tivity, as 4l, 4n, 4o. While for heterocyclic and alkane
substituents, their inhibitory activities increase for 4b
and 4k. For the compounds, 2, 4a and 4b, further bioas-
say was conducted and their Ki values against KARI
were 95.30 ± 13.71, >300 and 207.9 ± 21.99 lM, respec-
tively. Hence, these identified cyclopropane derivatives
could be useful for further optimization work in finding
the potential KARI inhibitors.
In order to study the structure–activity relationship, the
single-crystal structure of 4a was determined15 by X-ray
crystallography16 as illustrated in Figure 1 in which
three C–N bond lengths C(5)–N(2), C(6)–N(2) and
N(1)–C(1) are 0.135, 0.142, and 0.114 nm, respectively,
which are all longer than that of 0.134 nm in the single
heterocycle ring.17 In 4a, the bond length of C(1)–N(1)
is 0.1396 nm, which is longer than the double C–N
bond.18 Based on the computal results by Gaussian,19,20

it was seen that DFT, HF and MP2 have good coher-
ence with the crystal diffraction, for example it can be
observed that C(2)–C(5) > C(1)–C(2) > N(2)–C(6) >
N(2)–C(5) >O(1)–C(5) > N(1)–C(1) in crystal structure,
which is accordance with the order of C(2)–C(5)
>C(1)–C(2) > N(2)–C(6) > N(2)–C(5) > O(1)–C(5) >
N(1)–C(1) in all calculation structures.

According to the frontier molecular orbital theory,
HOMO and LUMO are two most important factors
which affect the bioactivities of compounds. HOMO
has the priority to provide electrons, while LUMO
accepts electrons first.21,22 Thus, study on the frontier



Figure 1. Molecular structure of 4a.
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orbital energy can provide some useful information for
the active mechanism. Taking HF (Hatree–Fork)
results, the geometry of the frame of 4a is hardly influ-
enced by the introduction of either the cyano group or
the cyclopropane ring from Figure 2. The HOMO of
4a is mainly located on aromatic ring and the amide
group. On the other hand, the LUMO of 4a contains
aromatic ring, the amido group, the cyano group and
the cyclopropane ring. The fact that 4a has strong affin-
ity suggests the importance of the frontier molecular
orbital in the p–p stacking or hydrophobic interactions.
This also implies that the orbital interaction between 4a
and the rice KARI amino acid residues is dominated by
p–p or hydrophobic interaction between the frontier
molecular orbitals.

To make the results predicted by our frontier molecular
orbital model more relevant to the active sites of the en-
zyme and to further explore a probable binding site in
the KARI, the compound 4a was docked21,22 into the
active sites of KARI.23
Figure 2. Frontier molecular orbitals of compound 4a: (a) HOMO of

compound 4a; (b) LUMO of compound 4a.

Figure 3. Binding modes of compound 4a in the active sites of spinach

KARI: (a) p–p stacking interaction between the His 226 side chain and

phenyl ring; (b) hydrogen bond and hydrophobic interaction between

4a and the rice KARI amino acid residues.
Visual inspection of the conformation of 4a docked into
the KARI binding site revealed that the phenyl rings are
hosted in the pocket of KARI and are oriented to estab-
lish p–p stacking interactions with the His 226 side
chains (Fig. 3a). Moreover, two hydrogen bonds be-
tween the amino groups of 4a and the carbonyl oxygen
of Glu 319 and Asp 315 side chain are also observed.
Furthermore, the cyclopropane ring and aromatic ring
are embedded in a large hydrophobic pocket formed
by Ser 225, His 226, Glu 496, Leu 323, Ser 518, Glu
319 and Asp 315 (Fig. 3b).
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